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Mathematical modeling has become a major tool to guide the characterization and syn-
thetic construction of cellular processes. However, models typically lose their capacity
to explain or predict experimental outcomes as soon as any, even minor, modification of
the studied system or its operating conditions is implemented. This limits our capacity
to fully comprehend the functioning of natural biological processes and is a major
roadblock for the de novo design of complex synthetic circuits. A common cause of
this problem is that cell-to-cell variability creates couplings between single-cell circuits
and population processes such as selection or growth. Altering the circuit may then
have unforeseen consequences inside growing populations. Here we construct a yeast
optogenetic differentiation system that exploits cell-to-cell variability to enable external
control of the population composition. We show that a simple deterministic model can
explain the dynamics of the core system. However, modifying the context of the circuit
by expressing system components from plasmids leads to failure of model predictions.
Subsequently, we deploy theory from stochastic chemical kinetics to construct models of
the system’s components that simultaneously track single-cell and population processes
and demonstrate that this allows us to quantitatively predict emerging dynamics of
the plasmid-based system without any adjustment of model parameters. We conclude
that carefully characterizing the dynamics of cell-to-cell variability using appropriate
modeling theory may allow one to unravel the complex interplay of stochastic single-cell
and population processes and to predict the functionality of complex synthetic circuits
in growing populations before the circuit is constructed.

optogenetics | synthetic differentiation circuits | composability | chemical master equation | population
dynamics

At the heart of rational circuit design in synthetic biology lies the assumption that
the functionality of complex circuits can be predicted from known properties of their
components. Yet in practice, we routinely fail to make predictions of circuit dynamics that
would agree with the data at the level expected in physics or engineering. A core reason for
this is cell-to-cell variability inside genetically identical cell populations. Such population
heterogeneity is often a consequence of the inherent stochasticity of biochemical processes
inside cells (1). Cell-to-cell variability may lead to unexpected and undesirable circuit
dynamics and has been identified as one of the major roadblocks for designing synthetic
circuits with in silico predictable functionality (2, 3). However, it has been shown that
identifying and carefully characterizing sources of variability at the single-cell scale allows
one to design remarkably robust synthetic circuits (4) or to exploit stochasticity for
creating features of cell populations, such as bimodal phenotype distributions, that would
otherwise be difficult to engineer (5).

While the single-cell perspective has certainly helped to advance our understanding
of cellular processes (6–9), what eventually matters for most applications in synthetic
biology is how a particular circuit functions inside growing populations. At the population
scale, synthetic circuits may intentionally [e.g., circuits to control growth (10)] or
unintentionally [e.g., toxicity or burden caused by the circuit (11, 12)] affect traits of
cells that can be selected during population growth. If this is the case, we need to expect
that variability that is generated at the single-cell scale (e.g., stochastic production of
the burdensome protein) will lead to consequences at the population scale that cannot
be predicted solely based on a characterization of the circuit inside single cells (13).
However, despite the apparent prevalence of problems where single-cell and population
processes are coupled, multiscale models that capture both single-cell stochastic chemical
kinetics and population dynamics are rarely used to predict, or even just to explain,
how population-scale functionality emerges from single-cell characteristics of synthetic
circuits. Presumably, this is because the classically used modeling framework for single-cell
processes, that is, the chemical master equation (CME) (14, 15), is only directly applicable
at the population scale whenever the population phenotype distribution is equivalent
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to the distribution of the single-cell process and not additionally
shaped by population-level processes (16, 17).

Here we construct an artificial yeast differentiation system
in which a Cre-recombinase is expressed from a light-inducible
promoter and used to create dynamically controllable yeast com-
munities of differentiated and undifferentiated cell types (18).
The system is equipped with four fluorescent reporter proteins
to allow for simultaneous measurements of cellular processes and
the differentiation state of cells. The core feature of our system
is that varying the duration of applied light pulses allows one to
modulate the fraction of cells that differentiate even though the
entire population is exposed to the same global light stimulation.
The system therefore exploits heterogeneity in the response of
cells to light to enable external control of population dynamics
but by doing so creates a complex coupling between population
dynamics and the single-cell process that leads to the production
of recombinase. It can therefore serve as an ideal test bed to study
what types of models are needed to explain and predict complex
dynamics of synthetic circuits at the population scale. We find that
a simple deterministic model that ignores all sources of variabil-
ity can explain dynamics of a chromosomally integrated system
version fairly well. However, modifying sources of variability and
growth conditions, by expressing the system from plasmids and
growing cells in selective media, leads to structural incapacity of
the deterministic model to match measured population dynamics.
To remedy this shortcoming, we derive a nonlinear version of the
CME that tracks conditional probabilities and that can be used
to simultaneously model single-cell and population processes.
Subsequently, we develop one such nonlinear CME model to
represent the chromosomally integrated differentiation system
and another to track plasmid copy number fluctuations, plasmid
loss, and growth in selective media. We find that composing these
two models allows one not only to match but to in silico predict
complex emerging dynamics of the plasmid-based differentiation
system without any modification of model parameters. Together
with similar findings that have been obtained in the past for other
systems that affect cellular growth rates (11, 13, 19, 20), our results
suggest that the frequently encountered failure of model predic-
tions for composed circuits may in some cases be resolvable with
appropriate component models that are carefully constructed to
track the coupled dynamics of single-cell and population processes
via multiscale stochastic kinetic models.

A Yeast Optogenetic Differentiation System

To be able to study the role of cell-to-cell variability in the
design and functionality of synthetic circuits, we constructed a
yeast optogenetic recombination system whose dynamics can be
well observed at the single-cell level thanks to the simultaneous
presence of four different fluorescent reporters. Concretely, we
started from a circuit design that we recently published (18)
and used a Cre-recombinase (Cre) under control of the EL222
promoter (21) to trigger recombination in controllable population
fractions using global light stimulation patterns (Fig. 1). When
expressed, Cre excises a DNA fragment that is designed such that
upon recombination, cells switch from constitutively producing
blue fluorescent protein (mCerulean) to producing green fluores-
cent protein (mNeonGreen). Furthermore, red fluorescent protein
(mScarlet-I) is produced alongside Cre from a second copy of the
EL222 promoter and provides an observable readout that reports
on Cre expression levels in response to light. Finally, EL222 tran-
scription factor is constitutively expressed from a pTDH3 pro-
moter and fused to a yellow fluorescent protein (EL222:mVenus).
Fusion of EL222 to mVenus leads to significantly reduced gene

expression from the EL222 promoter in response to light (un-
less light intensity or duration is increased), but this does not
impair functionality of our recombination system. In summary,
the system allows one to trigger and monitor recombination in
cells and to observe correlations of the probability for cells to
recombine with cellular amounts of EL222:mVenus. To highlight
functional differences between the two emerging cell types and
the analogy of our system to natural differentiation systems, we
will henceforth refer to cells as differentiated and undifferen-
tiated cells. To test system functionality, we performed experi-
ments using a platform of LED-equipped and fully computer-
controlled parallel bioreactors (22). Single-cell measurements are
automatically taken by flow cytometry with the help of a pro-
grammable pipetting robot (Fig. 1B). Using deconvolution to
extract amounts of the different reporter proteins in cells from
measured spectral signatures (SI Appendix, section S9), we find
that all cells gradually switch from blue to green when sufficient
light is applied. However, exposing cell populations to pulses
of light leads to bimodal mNeonGreen distributions (Fig. 1C
and SI Appendix, Fig. S1), which shows that only a fraction of
the population recombines in response to light pulses. Applying
a threshold in mNeonGreen fluorescence to classify cells into
differentiated and undifferentiated, we can quantify the differen-
tiation dynamics of the system (Fig. 1 C and D). We find that
the system’s response to light can be captured fairly well by a
simplistic population dynamics model that relates differentiated
and undifferentiated cells via a constant differentiation rate in the
presence of light (Fig. 1D and SI Appendix, section S1). To test if
the probability for a cell to recombine is correlated with single-
cell levels of EL222:mVenus and Cre, we analyzed mVenus and
mScarlet-I fluorescence distributions shortly after applied light
pulses. We find only minor differences in EL222:mVenus levels
of undifferentiated cells before and after light induction that are
difficult to distinguish from small inaccuracies in deconvolution
or reactor-to-reactor variability of the experimental platform (Fig.
1C and SI Appendix, Fig. S1). Overall, we are led to conclude that
cell-to-cell variability in EL222:mVenus and Cre can be safely
ignored and that the functionality of the system can readily be
characterized by a simple deterministic model. However, past
experience in synthetic biology has shown that most circuits only
function reliably in tightly constrained operating conditions and
even seemingly good models retain their predictive power only in
the precise context that has been used to construct the model.

Modifying Circuits Leads to Unpredictable
Functionality

To test if functionality of our differentiation system remains
predictable when the circuit is modified, we constructed a variant
of the system in which EL222:mVenus and Cre genes are placed
on a 2-μm plasmid instead of being chromosomally integrated
(Fig. 2A).

Since plasmid copy numbers vary between cells, we expect this
change to lead to significant differences in EL222:mVenus and
Cre average levels and additional cell-to-cell variability. Indeed,
growing cells in the dark, we find that EL222:mVenus distribu-
tions are very different from the integrated system version and
characterized by much heavier tails and a mode that is shifted
to lower levels (Fig. 2B). Taken together, these two features
imply that on average, cells in the population contain more
EL222:mVenus (almost sixfold), but at the same time more cells
contain less EL222:mVenus compared to the integrated system
version (which notably falsifies the a priori expectation that all
cells would have higher EL222:mVenus levels due to the presence
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Fig. 1. A yeast optogenetic differentiation system. (A) EL222:mVenus is constitutively produced from a pTDH3 promoter. In the dark, the LOV domain binds
the HTH domain and inhibits dimerization and DNA binding. Upon exposure of cells to blue light, this inhibition is disrupted, and EL222:mVenus dimerizes,
binds to the pEL222 promoter, and triggers the expression of mScarlet-I and Cre-recombinase. Cre excises a DNA fragment placed between two target
LoxP sites that is designed such that cells switch from producing mCerulean to mNeonGreen from a second pTDH3 promoter. (B) Yeast cells harboring the
differentiation system are grown in parallel, fully automated bioreactors that are equipped with controllable blue LEDs. Average optical density of cultures is
maintained constant, and flow cytometry measurements are taken at regular intervals via a custom-programmed pipetting robot. (C) Upon exposure of the
population to short light pulses, some cells recombine as indicated by increasing mNeonGreen levels in a part of the population (Top). Cells are classified
as differentiated when they exceed 300 arbitrary units (a.u.) mNeonGreen fluorescence after deconvolution of signals from the four fluorescent proteins
(blue line; SI Appendix, section S9). EL222:mVenus is constitutively expressed in all cells, and there are no clearly noticeable differences in EL222:mVenus levels
between differentiated and undifferentiated cells (Bottom). Dots show median fluorescence (black, all cells; cyan, undifferentiated cells; orange, differentiated
cells). The applied light sequence is shown at the bottom (two times five 1-h pulses with 2 h between subsequent pulses). The data of all four fluorescent
reporters are visualized as fluorescence histograms in SI Appendix, Fig. S1. (D) A simple model is capable of capturing population dynamics of differentiated and
undifferentiated cells very well. The applied light sequence is shown at the bottom.

of multiple plasmids in cells). We may therefore wonder if and
how these differences impact functionality of the circuit and if
emerging dynamics of the population composition can still be
predicted by the simple model in Fig. 1D. Exposing cells to
different light patterns, we find that the same amount of light leads
to differentiation of more cells for the plasmid-based version of the
system (SI Appendix, Fig. S3), which is in line with higher average
levels of EL222:mVenus in the population and the presumable
presence of multiple plasmids in cells, each carrying a copy of the
promoter driving Cre. Adjusting the differentiation rate parameter
in the simple deterministic model to account for the on-average
presence of multiple copies of the system, however, does not
lead to agreement of model predictions and data, nor is it at all
possible to obtain any precise fit of this model to the population
dynamics that emerge from the plasmid-based differentiation
system (Fig. 2C ). Analyzing EL222:mVenus distributions, we find
that differentiated cells shortly after applied light pulses are charac-
terized by high EL222:mVenus levels, whereas the EL222:mVenus
distribution of the undifferentiated subpopulation is shifted to
lower levels compared to the total EL222:mVenus population
distribution (Fig. 2D). Since EL222:mVenus is constitutively
expressed from the same promoter and plasmids in all cells,
we conclude that these differences must be caused by selective
differentiation of cells with high amounts of EL222:mVenus.

Differences between subpopulations gradually disappear over time
but are still noticeable up to days after the last application of
light to the population (Fig. 2D). This is quite remarkable as it
is difficult to comprehend, at a first glance, how a constitutively
expressed gene can display a cellular memory of a stimulus that is
retained over several tens of cell generations. In conclusion, cell-
to-cell variability in EL222:mVenus, which previously seemed to
be negligible for the characterization of the system, suddenly ap-
pears to be of key importance for understanding how population
dynamics emerge from the differentiation system. We may thus
ask ourselves if a dedicated characterization of the system with a
multiscale stochastic kinetic model that takes into account both
single-cell and population processes would have allowed us to
retain predictable functionality.

Single-Cell Modeling of the Differentiation
System

To test if consequences of changes in the system can be understood
and predicted, we constructed a multiscale stochastic kinetic
model of the integrated differentiation system and a model of
plasmid copy number fluctuations and asked if the models can be
composed to predict emerging single-cell and population dynam-
ics when the differentiation system is expressed from plasmids.
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Fig. 2. Expressing the differentiation system from plasmids breaks straight-
forward predictability. (A) To analyze consequences of changes in cell-to-cell
variability, a new strain was constructed in which Cre and EL222:mVenus
genes are placed on 2-μm plasmids instead of being chromosomally in-
tegrated. (B) Measuring stationary EL222:mVenus distributions in the dark
for the plasmid-based version of the system (orange) shows that cell-to-cell
variability in the amount of EL222:mVenus is strongly increased compared
to the integrated version of the system (blue). (C) The simple model of
Fig. 1D fails to capture population dynamics for the plasmid-based version
of the system. Crosses indicate measured differentiated population fractions.
Solid line indicates model predictions using the same parameter values as
in Fig. 1D for the integrated system. Dashed line indicates model predictions
after adjusting the differentiation rate parameter to account for the presence
of multiple copies of the system. Dash-dotted line shows that refitting the
model to match final stationary differentiated fractions (30 to 40 h after first
light induction) leads to significant model mismatch during early transient
dynamics. The applied light sequence is shown at the bottom (three 5-min
pulses with 55 min between subsequent pulses). (D) Cell-to-cell variability in
EL222:mVenus is strongly increased with some cells displaying much higher
fluorescence compared to the integrated system version (Bottom; fivefold in-
creased scale on y axis compared to Fig. 1C). Using mNeonGreen fluorescence
(Top) to classify cells into differentiated and undifferentiated (blue line) shows
that light causes a transient split in EL222:mVenus distributions of the two
subpopulations. The applied light sequence is shown at the bottom. The data
of all four fluorescent reporters are visualized as fluorescence histograms in
SI Appendix, Fig. S5.

Concretely, since variability in EL222:mVenus appeared to be of
key importance, we deployed a model of bursty production of
EL222:mVenus (EL222) and cell differentiation to represent the
differentiation system:

∅ a−−−−→ Z · EL222 EL222 λ−−−−→ ∅

undifferentiated
us ·u(t)·f (EL222)−−−−−−−−−−−−−→ differentiated, [1]

where us is the maximal single-cell differentiation rate for given
fixed light intensity, u(t) is equal to one in the presence of light
and equal to zero otherwise, λ is the cells’ growth rate, and a is the

rate at which protein bursts occur. Protein production bursts are
of size Z and assumed to be geometrically distributed with average
burst size b, Z ∼ Geo( 1b ), as dictated by classical results for mod-
eling stochastic gene expression (23, 24). Since there is no active
degradation, EL222:mVenus levels are only reduced by dilution
due to cell growth and division, which we incorporated in the
model following the standard simplifying approach to represent
dilution as a continuously occurring reaction instead of explicitly
tracking cell growth and division (see ref. 25 for a comparison of
continuous dilution models to more complex models that aim to
explicitly represent random distribution of molecules upon cell
division). To keep the model as simple as possible, we neglected
possible delays or noise caused by the production and action of
recombinase or the experimental detection of recombined cells.
Instead, we assumed that the probability per unit time for a cell
to differentiate in the presence of light is directly a function of
the amount of EL222:mVenus, f (EL222), in the cell. When
u(t) = 0, the stochastic model in Eq. 1, is a standard model of
bursty gene expression (23), and the EL222:mVenus distribution
follows the master equation

d

dt
p(x , t) =− (a + λx )p(x , t) + λ(x + 1)p(x + 1, t)

+ a
x∑

y=1

1

b

(
1− 1

b

)y−1

p(x − y , t),

where p(x , t) := P (EL222(t) = x | EL222(0) = x0). Truncat-
ing the state space at some maximal number of proteins xm
and collecting the probabilities of all states in a vector p(t) :=
[p(0, t) · · · p(xm, t)]

T , the master equation can be written in
vector form as

d

dt
p(t) = Ap(t), where

Ax+1,y+1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−(a + λx ) if y = x < xm ,

−λx if y = x = xm ,

λ(x + 1) if y = x + 1,
a
b (1−

1
b )

x−y−1 if y < x < xm ,∑∞
z=x−y

a
b (1−

1
b )

z−1 if y < x = xm .

If u(t) remains zero for sufficiently long, the EL222:mVenus
distribution converges to a negative binomial distribution that is
determined by average burst size and frequency (23, 24). Growing
cells in the dark and measuring their mVenus fluorescence by flow
cytometry then allows one to determine burst size and frequency
(up to a fluorescence scaling factor) from mean and coefficient of
variation of measured fluorescence distributions (Fig. 3A, Left).

When light is applied to the population, u(t) = 1, the dy-
namics of the EL222:mVenus distribution of the undifferentiated
cell population are not captured anymore by the plain bursty
protein production model. However, Eq. 1 can be augmented
with an absorbing state, D, that represents differentiation and
transitions to which occur at a rate us · u(t) · f (EL222). De-
noting this new absorbing state by D and its probability by
p(D , t) and defining a new vector of all probabilities ps(t) :=

[p(D , t) p(0, t) · · · p(xm, t)]
T , we obtain the augmented mas-

ter equation
d

dt
ps(t) =

[
0 c1
0 C

]
ps(t),

where c1 = us · u(t) · [f (0) f (1) · · · f (xm)] and matrix C
is the same as matrix A except that the outflow terms due
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A

B

Fig. 3. (A) Characterization of the differentiation system. (Bottom) Extract-
ing mean (=50.6 arbitrary units [a.u.]) and coefficient of variation (=0.35)
from measured stationary EL222:mVenus distributions before light induc-
tion allows one to determine burst frequency and average burst size of
the EL222:mVenus production model up to a fluorescence scaling factor
(SI Appendix, section S2). (Right) Exposing cell populations to light pulses and
measuring dynamics of the resulting population composition (crosses indi-
cate data, line indicates model fit, and applied light sequence is shown at
the bottom) then allows one to determine parameters of the differentiation
function us · f(EL222) (SI Appendix, section S2). (B) Dynamics in continuous
light. (Right) Exposing cells to continuous light eventually leads to differ-
entiation of the entire population. (Left) Cells that remain undifferentiated
after light induction (light blue) seem to be characterized by slightly lower
EL222:mVenus levels compared to initial levels (dark blue) according to both
model predictions (dashed) and data (solid). Data from further time points are
provided in SI Appendix, Fig. S2.

to differentiation in c1 are subtracted from the diagonal of
A. We can now define conditional probabilities pc(x , t) :=
P (EL222(t) = x | cell �=D ,EL222(0) = x0) for cells to contain
x EL222:mVenus molecules at time t given that differentiation has
not occurred yet and deduce that the EL222:mVenus distribution
in the subpopulation of undifferentiated cells follows a nonlinear
master equation that can be stated in vector form as

d

dt
pc(t) = Cpc(t) + pc(t) ·

(
c1pc(t)

)
, [2]

where pc(t) := [pc(0, t) · · · pc(xm, t)]
T . Eq. 2 couples the

variability generating process at the single-cell scale (stochastic
production of EL222:mVenus) to a population process that se-
lectively differentiates cells with high levels of EL222:mVenus.
We thus expect that upon light exposure, the EL222:mVenus
distribution of the undifferentiated cell population gradually shifts
to lower levels. However, this population process is counteracted
by the fact that the same variability generating process is operating
in all cells and that this process will always drift to the original
EL222:mVenus distribution in both subpopulations at a time
scale that is determined by the cells’ growth rate. In the absence
of light, we therefore expect distributions to trend toward the
stationary negative binomial distribution of the bursty protein
production model while the continuous presence of light should
lead to a quasi-stationary condition in which single-cell and
population process are dynamically balanced until eventually all

cells will have differentiated. Solving Eq. 2 (numerically) allows us
to determine these distribution dynamics in response to varying
light inputs u(t). The net population differentiation rate can then
be obtained from the solution of Eq. 2 according to

k(t) := c1pc(t) =

m∑
i=0

f (xi) · pc(xi , t).

Using the data for the light pattern in Fig. 1D, we find that
choosing f (EL222) as a steep Hill function with a threshold
significantly larger than average amounts of EL222:mVenus
leads to good agreement of model and data (Fig. 3A, Right, and
SI Appendix, section S2A).

According to this model, we find that the maximum possible
shift in EL222:mVenus distributions of undifferentiated cells
that can potentially be observed in experiments (in continuous
presence of light) is fairly small and of similar size as experimental
errors due to inaccurate deconvolution or reactor-to-reactor vari-
ability. To test whether such a shift can nevertheless be detected,
we exposed cells to continuous light and collected measurements
at time points early enough after induction such that sufficiently
many cells remain undifferentiated to allow for reliable quantifi-
cation of EL222:mVenus distributions. We find that experimental
EL222:mVenus distributions of undifferentiated cells indeed seem
to show a small shift toward lower levels in response to continuous
light (SI Appendix, Fig. S2). This shift is in good agreement with
distribution dynamics predicted from the model (Fig. 3B, Left,
and SI Appendix, Fig. S4). As a side note, the model provides a
very good prediction of the increase in the differentiated fraction
in response to continuous light (Fig. 3B, Right). Despite the
possible presence of small selection effects, we can overall conclude
that sufficiently low noise in EL222:mVenus production coupled
to sufficiently fast fluctuations implies that cell-to-cell variability
has only small consequences for emerging population dynamics.
It is now clear, however, that this conclusion will change if
either noise levels or time scales of the single-cell process are
modified.

Consequences of Plasmid Copy Number
Fluctuations

In addition to a single-cell model of the differentiation system,
we require a model that captures cell-to-cell variability in plasmid
copy numbers. Many, often detailed, models of plasmid copy
number fluctuations exist in the literature (26, 27). In order to
keep the system characterization as simple as possible, we decided
to omit any detailed mechanistic description of processes such
as replication failure or unequal division of plasmids between
mother and daughter cell (28). Instead, we chose to represent
plasmid copy number fluctuations by a simple stochastic birth–
death process with both birth rate (representing replication) and
death rate (representing dilution due to cell growth) being linear
in the plasmid copy number:

P
ap−−−−→ P + P P

λ−−−−→ ∅

cell
μ·1{P=0}−−−−−−−−−→ removed, [3]

where ap is the plasmid replication rate, λ is the growth rate
of cells, and μ is the rate at which cells that have lost the
plasmid (1{P=0}) are removed from the population when cells are
growing in selective media. Replication failure can be implicitly
incorporated by choosing the replication rate smaller than the
cells’ growth rate, which is in any case a necessary feature of a
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birth–death process model since expected plasmid copy numbers
in cells would diverge to infinity if plasmids are replicated faster
than cells divide. For ap < λ (and μ= 0), however, the process
will eventually reach zero plasmids with probability 1. The rate at
which cells in the population lose the (last copy of the) plasmid
is then determined by the difference between replication and
growth rate. When selective media is used for growth, μ > 0,
cells that have lost the plasmid will either die or be outgrown,
and the plasmid copy number distribution of the population will
remain stable. However, this neither implies that there exist no
cells without plasmids in the population nor do plasmid copy
numbers remain constant from the perspective of single cells.
Instead, we should expect a dynamic equilibrium and a quasi-
stationary plasmid copy number distribution in which the single-
cell plasmid loss process is balanced with selective removal of cells
without plasmids (SI Appendix, section S3B). From a mathemati-
cal perspective, this result is equivalent to what was obtained pre-
viously for EL222:mVenus distributions in the undifferentiated
cell population. In both cases, a variability generating process at
the single-cell scale (EL222:mVenus fluctuations vs. plasmid copy
number fluctuations) is coupled to a state-dependent removal
process at the population scale (differentiation vs. removal of cells
that have lost the plasmid) and leads to the same type of nonlinear
master equation for the cells that have not been removed yet
(compare SI Appendix, sections S2B and S3B).

To characterize the full multiscale dynamics of plasmid copy
numbers and cell populations, we switched cells from selec-
tive to nonselective media and measured how the average abun-
dance of a constitutively expressed protein decays over time.
We found that average fluorescence decays approximately expo-
nentially with a rate that is 15% of the cells’ growth rate λ
(Fig. 4A, Bottom). Mathematical analysis of the single-cell model
(SI Appendix, section S3B) shows that this is a direct consequence
of the plasmid replication rate, ap , being 15% smaller than the
cells’ growth rate ap = 0.85λ. Somewhat counterintuitively, the
net population growth rate in selective media is independent of
μ. Faster removal of cells that have lost the plasmid means faster
reduction (or slower increase) in the total number of cells, but this
is compensated by the fact that in stationary growth conditions,
the population fraction of cells without plasmids becomes smaller
when their removal rate is increased. Therefore, to determine μ,
stationary growth rate measurements are insufficient. Instead, it is
necessary to directly measure what fraction of the population has
plasmids in stationary growth conditions since it can be shown
(SI Appendix, section S3A) that this fraction must be equal to
μ−λ+ap

μ for ap < λ (plasmid numbers do not diverge) and μ >

λ− ap (cells with plasmids can be maintained in the population).
Correspondingly, we performed a colony counting experiment
(SI Appendix, section S3A) and observed that approximately one-
third of all cells do not contain plasmids in stationary growth con-
ditions (Fig. 4A, Right), which allowed us to determine that the
removal rate of cells without plasmids, μ, must be approximately
45% of the growth rate, μ= 0.45λ. Together, the parameters
ap , μ, and λ completely characterize the multiscale dynamics of
plasmid copy number fluctuations and growth in selective media.

To test the model and to better understand possible conse-
quences of plasmid copy number fluctuations, we experimentally
determined effective population growth rates of our cells in se-
lective and nonselective media. We found that after preculture
in selective media, populations of cells carrying the plasmid-
based differentiation system quickly adopt the same growth rate
as populations of cells carrying the integrated system version
when transferred to nonselective media. Subsequently, the pop-
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Fig. 4. (A) Characterization of plasmid copy number dynamics. (Bottom) After
switching cells from selective to nonselective media, the rate of exponen-
tial decay of average levels of a protein that is constitutively expressed
from plasmids (here EL222:mVenus) can be measured to determine the
population plasmid loss rate and to fix the plasmid replication rate in the
model. Mean fluorescence (normalized by its maximum) of two replicates
is shown. (Right) Stationary fractions of cells without plasmids determine
the removal rate in selective media of cells that have lost the plasmid.
These fractions can be measured by a colony counting experiment as de-
scribed in SI Appendix, section S3A. (B) Consequences of plasmid copy number
fluctuations. Expressing the differentiation system from plasmids leads to
modified population distributions of EL222:mVenus (Right) as well as changes
in the effective population growth rate (Left). Violin plots are composed of
growth rate estimates based on cell density averaged over all reactors of the
turbidostat and multiple experiments (in total 19 reactors for the strain with
the integrated system, 12 for the strain with the plasmid-based system in
selective media, and 6 in nonselective media).

ulation growth rate remained constant, and no dependence on
the fraction of cells that still carry plasmids was detected. When
grown in selective media, however, populations of cells carry-
ing the plasmid-based differentiation system display an effective
growth rate that is reduced by approximately 15% (Fig. 4B, Left).
Analyzing the model, we find that the reduction in growth is a
consequence of removal of cells that have lost the (last copy of ) the
plasmid and that the observed reduction by 15% is in quantitative
agreement with model predictions and another consequence of the
plasmid replication rate, ap , being 15% smaller than the single-
cell growth rate λ. Overall, we should expect that placing the dif-
ferentiation system on plasmids will significantly alter variability
in EL222:mVenus levels (Fig. 4B, Right) and also modify effective
population growth.

Having constructed single-cell models of the differentiation
system and plasmid copy number fluctuations, we are now in a
position to ask the central question of this manuscript: is it pos-
sible to quantitatively predict functionality of the plasmid-based
differentiation system without having to change the model or even
just to reidentify model parameters for the new conditions?

Prediction of Circuit Functionality

To test if the dynamics of the plasmid-based differentiation system
can be predicted by combining models calibrated on parts of
the system, we coupled the single-cell model of the integrated
differentiation system, Eq. 1, to the model of plasmid copy
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number fluctuations, Eq. 3, to obtain a composed model that can
be stated in reaction network form as

P
ap−−−−→ P + P P

λ−−−−→ ∅

P
a−−−−→ P + Z · EL222 EL222 λ−−−−→ ∅

undifferentiated
uint ·u(t)·f (EL222)−−−−−−−−−−−−−−→ differentiated

undifferentiated
μ·1{P=0}−−−−−−−−−→ removed

differentiated
μ·1{P=0}−−−−−−−−−→ removed. [4]

We highlight that the coupling of the two models is very natural
and does not introduce any new parameters: the protein burst
rate is now scaled by the plasmid copy number since production
can occur from any copy of the plasmid, while all other model
parts are exactly the same as previously characterized. To test if
complex functionalities of our circuit such as population dynamics
emerging from single-cell stochastic biochemical processes can be
predicted without any adjustment of model parameters, we used
the composed model to predict the dynamics of the plasmid-
based version of the differentiation system for the light stimulation
pattern in Fig. 2D and compared the results to data. We find
that population dynamics of differentiated and undifferentiated
cells are very well predicted without any adjustment of model
parameters (Fig. 5B).

Comparing EL222:mVenus distributions in the two subpop-
ulations between model and data shows that the high quality
of population-level predictions is a consequence of the fact that

the model predicts correctly how single-cell processes will operate
in union with population-level processes to shape the full dy-
namics of EL222:mVenus distributions in undifferentiated cells
(Fig. 5 C and D and SI Appendix, Fig. S5). In particular, the
heavy tails of EL222:mVenus distributions for cells growing in
darkness (observed already in Fig. 2B) emerge naturally from
the fact that plasmid copy numbers can fluctuate significantly
in the model. These heavy tails imply that significantly more
cells have EL222:mVenus levels above the threshold of the dif-
ferentiation Hill function f (EL222) and will recombine quickly
upon light induction. Shortly after light induction, the remaining
undifferentiated cell population is therefore shifted to signifi-
cantly lower EL222:mVenus levels (fivefold to sixfold reduction
of the median; Fig. 5C ), while the differentiated cell population
inherits the heavy tail of the original distribution (Fig. 5D).
While not experimentally measurable, it can be deduced that
according to the model the same holds true for plasmid copy
number distributions in subpopulations (SI Appendix, Fig. S6).
As a consequence, the population differentiation rate spikes very
high upon first light induction but is significantly reduced when
subsequent light pulses are applied before the EL222:mVenus
distribution of the undifferentiated cell population has converged
back to its initial condition (SI Appendix, Fig. S7). When the light
stimulus is maintained for some time, fluctuations in plasmid copy
numbers create larger fluctuations in EL222:mVenus amounts
compared to the integrated version of the system, which leads
to more frequent threshold crossing events and therefore larger
population differentiation rates.

Eventually, the plasmid-based version of the system reaches
differentiated population fractions close to 100% very quickly
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Fig. 5. Prediction of emerging population dynamics for the plasmid-based differentiation system. (A) Sketch of the plasmid-based differentiation system. (B)
Emerging dynamics of the differentiated fraction according to the composed model (red) for the same light input as in Fig. 2D are compared to experimental
data (blue). According to the model, late increases in the differentiated fraction are due to varying subpopulation growth rates and not caused by active
differentiation. (C) Upon light induction, median EL222:mVenus levels of undifferentiated cells drop fivefold to sixfold as predicted by the composed model.
a.u., arbitrary units. (D) In the first panel, the model-predicted EL222:mVenus distribution in the dark agrees very well with experimental data even though
these data were not used to parametrize the model. According to the model, the peak of the distribution close to zero corresponds to the ∼ 33% of cells
without plasmids (Fig. 4A). In the second and third panels, shortly after the application of light, cells with EL222:mVenus levels above the threshold parameter
of the differentiation Hill function (dashed line) are enriched in the differentiated population while the undifferentiated population contains more cells without
plasmids (increased peak close to zero). In the fourth panel, when cells are subsequently kept in the dark, EL222:mVenus distributions converge back to the
initial condition. Model predictions show remarkable agreement with measured EL222:mVenus distribution dynamics, except for seemingly lower numbers
of differentiated cells without plasmids in the data (in particular after 34 h). This small mismatch is presumably caused by inaccuracies in deconvolution (the
presence of mNeonGreen in cells makes it difficult to precisely quantify low mVenus levels in cells; SI Appendix, section S9). Full time-varying distribution data of
all fluorescent reporters for this experiment are displayed in SI Appendix, Fig. S8.
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when light is maintained (SI Appendix, Fig. S10) despite the fact
that a large part of the population (around a third) displays
EL222:mVenus levels that are close to zero at all time points.
According to the model, these are cells that have lost the plasmid
(SI Appendix, Fig. S6), cannot differentiate, but are likely to be
removed at subsequent time points due to growth in selective
media (see SI Appendix, section S7.2 for experimental results in
nonselective media). The coupling of plasmid loss dynamics and
selective media with the differentiation system therefore leads to
unintuitive population dynamics in which seemingly the entire
population can recombine despite a continuous presence of many
cells that are not carrying any copy of the differentiation system.
Another complex consequence of the coupling of single-cell and
population processes is that the split in plasmid copy numbers
between subpopulations that follows from selective differentiation
of cells with high EL222:mVenus levels leads to different sub-
population growth rates in selective media (SI Appendix, Fig. S7)
since cells that have lost the plasmid (or are close to losing it)
are enriched in the undifferentiated subpopulation. This implies
that the differentiated population fraction will continue to in-
crease even if light is removed and no more active differentiation
takes place, which explains why the assumption of the simple
deterministic model in Fig. 1D, that the differentiated population
fraction can only increase due to active differentiation, led to
structural incapacity of the model to explain the slow transient dif-
ferentiation dynamics and significantly increasing differentiated
fractions up to 10 h after last light induction (Fig. 5B). If the light
stimulus is removed, EL222:mVenus subpopulation distributions
converge back to the original distribution (Fig. 5D) but remain
noticeably different for at least a day after last light induction.
This experimental observation is in good agreement with slow
convergence of subpopulation plasmid copy numbers to their
quasi-stationary distribution in selective media, which creates a
surprisingly long subpopulation memory of applied light stimuli
(SI Appendix, Fig. S6).

To provide further experimental backup for these model-based
results, we constructed a third version of our differentiation system
where the system components are expressed from more tightly
regulated centromeric plasmids. Regulation of plasmids copy
numbers leads to less cell-to-cell variability in the population and
an effectively decreased time scale of fluctuations and plasmid loss
(SI Appendix, Fig. S14). As expected based on the modeling and
theory, we observe that the centromeric strain displays a reduc-
tion of EL222:mVenus levels in undifferentiated cells that is less
pronounced but sustained for longer (SI Appendix, Fig. S17B).
Since subpopulation plasmid copy number distributions require
more time to reequilibrate to initial conditions after the applica-
tion of light, growth rate differences between differentiated and
undifferentiated cells are sustained for even longer compared to
the 2-μm version of the system, and the differentiated popula-
tion fraction continues to increase in the dark for several days
(SI Appendix, Fig. S17A). Switching the media of the bioreactor
to nonselective stops the gradual increase of the differentiated
fraction but leads to cells without plasmids accumulating in the
population (SI Appendix, Fig. S18). We conclude that deploying
multiscale stochastic chemical kinetics models for understanding
the interplay of single-cell and population processes allows us to
understand and predict complex emerging dynamics when the
differentiation system is placed on plasmids and cells are grown
in selective media. Population dynamics for plasmid strains, de-
spite being shaped by cell-to-cell variability, are deterministically
reproducible (SI Appendix, Fig. S12). Thus, the capacity to pre-
dict such dynamics implies that the interplay of single-cell and
population processes can be exploited for creating features of

microbial community dynamics that would otherwise be difficult
to engineer.

Optogenetic Control of Constitutive Gene
Expression

In the previous section, we demonstrated that coupling of single-
cell and population processes may lead to outcomes that are
fairly unintuitive such as dynamically changing distributions
of a constitutively expressed gene or increasing fractions of
differentiated cells in the absence of active differentiation. In
practice, such couplings will often be seen as a nuisance, but we
may also ask if the interplay of stochastic single-cell processes
and population dynamics can be exploited to create and control
features of cell populations that would otherwise be impossible
to engineer. For instance, in light of the results of this paper,
we may ask if it is possible to use light to regulate constitutive
gene expression, plasmid copy numbers, and growth rates of
subpopulations via targeted differentiation of cells with high
EL222:mVenus levels. Since neither plasmid copy numbers
nor subpopulation growth rates are directly measurable on our
experimental platform, we set ourselves the goal to regulate the
constitutively expressed EL222:mVenus. Concretely, according
to our theoretical results (convergence to a quasi-stationary
distribution; SI Appendix, sections S2B and S3B), it should be
possible to maintain EL222:mVenus levels in the undifferentiated
cell population at reduced constant levels by applying continuous
light for sufficiently long. Indeed, we find that EL222:mVenus
distributions in undifferentiated cells quickly reach a distribution
that remains invariant when the population is exposed to
continuous light (Fig. 6C, Top). However, this distribution is

A C

B

Fig. 6. Optogenetic control of constitutive gene expression. (A) Regularly re-
peated short light pulses (shown at the bottom) lead to a slow steady increase
in the differentiated population fraction while the differentiated fraction
increases fairly quickly in response to continuous light. (B) Over intermediate
time periods, repeated selective differentiation and reversion to the mean
balance each other, which leads to approximately constant EL222:mVenus
medians in all cases. (C) After transient dynamics in response to the start of
the light sequence, EL222:mVenus distributions in undifferentiated cells reach
a quasi-stationary form that remains invariant for extended time periods (see
also SI Appendix, Fig. S13). Color coding of distributions labels corresponds to
the light sequences and data in A and B.
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characterized by a median of almost zero (Fig. 6B), which indicates
that only cells that have no EL222:mVenus (and presumably no
plasmids) remain undifferentiated. Furthermore, 15 to 20 h after
the start of light application, almost all cells are differentiated,
and the population displays a slightly reduced net growth rate,
presumably due to toxicity of DNA-bound EL222:mVenus
(SI Appendix, section S8 and refs. 11, 13). To test if also low
but nonzero EL222:mVenus levels in undifferentiated cells can be
stably maintained, we exposed cells to a number of different light
sequences that mimic continuous light with short pulses that are
regularly repeated with an interpulse duration that is short in com-
parison to the duration of the experiment. We find that applying
light for 2 min every 4 h or for 1 min every 1 h leads to approx-
imately halved median EL222:mVenus levels in undifferentiated
cells (Fig. 6B). In both cases, the full EL222:mVenus distribution
of undifferentiated cells remains approximately invariant after
around 12 h have passed from first light application (Fig. 6C,
Middle; see also SI Appendix, Fig. S13). Finally, we applied a light
sequence with only half-minute light pulses applied every 4 h
and found that in this case, the EL222:mVenus distribution of
undifferentiated cells differs only very moderately from the initial
population distribution at all time points (Fig. 6C, Bottom) despite
the fact that the differentiated population fraction increases
(Fig. 6A).

To conclude, understanding and characterizing the conse-
quences of cell-to-cell variability allowed us to optogenetically
regulate the (subpopulation) expression level of a constitutively
expressed gene, a feat that seems quite counter intuitive at a first
glance and that is not realizable in any obvious way by other
means.

Discussion

Quantitatively predicting the dynamics of complex synthetic cir-
cuits before the circuit is constructed is the key challenge that
needs to be mastered to turn synthetic biology into a true engi-
neering discipline. Yet, while our capacity to construct complex
circuits is continuously increasing, our capability to predict circuit
functionality from supposedly known and characterized circuit
components remains, at best, limited to very tightly constrained
operating conditions and qualitative and/or stationary outputs
(29). We exemplified this problem for the case of our optoge-
netic differentiation system by showing that predictions obtained
from a simple deterministic model break down as soon as the
context in which the system is used (plasmid-based expression
of proteins and growth in selective media) is modified (Fig. 2).
The concrete reasons for the failure of model predictions may be
manifold and caused by unexpected component-to-component
interactions [e.g., retroactivity (30) or resource competition (31)]
or couplings of the circuit to processes of the host [e.g., burden
(12), growth (32, 33), or saturation of the host’s degradation
machinery (4)]. Eventually, however, all these reasons are but
different facets of a common problem: our incapacity to fore-
see the consequences of complex interdependencies of a circuit
in vivo.

For our optogenetic differentiation system, expressing proteins
from plasmids led to unforeseen couplings of plasmid copy num-
ber fluctuations, growth in selective media, and selective differen-
tiation, which, for instance, created seemingly slow differentiation
dynamics that remained mysterious (even to us) in the absence
of an explanatory model (Fig. 2D). We thus set out to construct
dedicated multiscale stochastic kinetic models of the circuit’s
components in their population context (Figs. 3 and 4). Since the

CME in its standard form does not capture population processes,
it was necessary to augment the CME and to derive a nonlinear
version for conditional probabilities to correctly capture dynamics
of population distributions (SI Appendix, sections S2B and S3B).
We then used our theoretical results to determine experiments
that can be used to readily extract parameters of the two com-
ponent models from data (Figs. 3A and 4A). Merging the so-
obtained models to construct a model of the plasmid-based dif-
ferentiation system (Eq. 4), we found that the composed model
does not only resolve the previously not understood features but
quantitatively predicts the consequences of complex component
interactions without any adjustment of model parameters (Fig. 5).
This is a particularly encouraging finding as it demonstrates
that, at least for the system studied in this paper, our incapac-
ity to foresee the consequences of complex interdependencies
of circuit components and couplings of single-cell and popula-
tion processes can be remedied by appropriate characterization
of circuit components. Importantly, with the ability to foresee
consequences comes the possibility to exploit such couplings
in the design (34). This is evidenced by our result that the
circuit allows one to modulate constitutive gene expression (and
presumably plasmid copy numbers and net growth rates) in
subpopulations via the application of light (Fig. 6), a feat that
seems impossible upon a first glance at the circuit’s wiring diagram
(Fig. 1A).

To conclude, we highlight that for the application considered
in this paper, the crucial ingredient for obtaining a faithful model
was to augment the CME to incorporate population processes
in addition to single-cell dynamics that are classically tracked in
stochastic models. It is to be expected that the same will hold true
for many other applications where couplings of single-cell and
population processes are likely to be at play (35–39). This is no-
tably the case for synthetic circuits that are constructed to produce
proteins in large quantities since this creates a burden for cells that
may lead to growth rate variability between cells and a dynamical
enrichment of low-producing cells upon induction of protein
production. Furthermore, similar couplings between scales are
likely also present in many natural systems such as selective
killing of cancer cells with particular states of internal processes
in response to treatments that induce the apoptotic pathway (40)
or differential responses of bacteria to antibiotic treatments (41),
to name but two possible examples. We therefore expect that our
approach for calculating with multiscale stochastic kinetic models
will be of use far beyond the particular case study considered here.
It needs to be noted, however, that for cases where the single-
cell model is more high-dimensional than the fairly small models
considered here, tracking the entire solution of the correspond-
ing master equation will be computationally infeasible. Further
work is thus necessary to develop and test approaches for ap-
proximately calculating with multiscale stochastic kinetic models
(17, 42).

Data Availability. Raw data and software are publicly available as CSV and
MATLAB files in Zenodo (DOI: 10.5281/zenodo.5155290).
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31. Y. Qian, H. H. Huang, J. I. Jiménez, D. Del Vecchio, Resource competition shapes the response of

genetic circuits. ACS Synth. Biol. 6, 1263–1272 (2017).
32. S. Klumpp, Z. Zhang, T. Hwa, Growth rate-dependent global effects on gene expression in bacteria. Cell

139, 1366–1375 (2009).
33. M. Kheir Gouda, M. Manhart, G. Balázsi, Evolutionary regain of lost gene circuit function. Proc. Natl.

Acad. Sci. U.S.A. 116, 25162–25171 (2019).
34. J. Hasty, J. Pradines, M. Dolnik, J. J. Collins, Noise-based switches and amplifiers for gene expression.

Proc. Natl. Acad. Sci. U.S.A. 97, 2075–2080 (2000).
35. C. Tan, P. Marguet, L. You, Emergent bistability by a growth-modulating positive feedback circuit. Nat.

Chem. Biol. 5, 842–848 (2009).
36. V. Shahrezaei, S. Marguerat, Connecting growth with gene expression: Of noise and numbers. Curr.

Opin. Microbiol. 25, 127–135 (2015).
37. K. R. Ghusinga, J. J. Dennehy, A. Singh, First-passage time approach to controlling noise in the timing

of intracellular events. Proc. Natl. Acad. Sci. U.S.A. 114, 693–698 (2017).
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