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Abstract

Solid-liquid phase equilibrium modeling of triacylglycerols mixtures is essential for lipids
design. Considering the o polymorphism and liquid phase as ideal, the Margules 2-suffix
excess Gibbs energy model with predictive binary parameter correlations describes the
non ideal B and B’ solid polymorphs. Solving by direct optimization of the Gibbs free
energy enables to predict from a bulk mixture composition the phases composition at a
given temperature and thus the SFC curve, the melting profile and the Differential
Scanning Calorimetry (DSC) curve that are related to end-user lipid properties. Phase
diagram, SFC and DSC curve experimental data are qualitatively and quantitatively well
predicted for the binary mixture 1,3-dipalmitoyl-2-oleoyl-sn-glycerol (POP) and 1,2,3-
tripalmitoyl-sn-glycerol (PPP), the ternary mixture 1,3-dimyristoyl-2-palmitoyl-sn-glycerol
(MPM), 1,2-distearoyl-3-oleoyl-sn-glycerol (SSO) and 1,2,3-trioleoyl-sn-glycerol (O0O),
for palm oil and cocoa butter. Then, addition to palm oil of Medium-Long-Medium type
structured lipids is evaluated, using caprylic acid as medium chain and long chain fatty
acids (EPA-eicosapentaenoic acid, DHA-docosahexaenoic acid, y-linolenic-
octadecatrienoic acid and AA-arachidonic acid), as sn-2 substitutes. EPA, DHA and AA
increase the melting range on both the fusion and crystallization side. y-linolenic shifts the
melting range upwards. This predictive tool is useful for the pre-screening of lipids
matching desired properties set a priori.

Keywords: triacylglycerols, structured lipids, solid-liquid equilibrium, DSC, Solid Fat
Content, melting point, medium chain fatty acid, long chain fatty acid.
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Introduction

The so-called functional foods represent an expanding market and food functionalizing is
a major factor driving the development of new products [1]. Fat-based foods are
composed mainly by triacylglycerols (TAGs), a class of lipids responsible for more than
95% of composition in fats and oils. Such molecules have a large application in the food
industry: they are important sources of energy, essential fatty acids, fat-soluble vitamins
and they impart flavor, texture and palatability to foods [2]. When determining the
suitability of novel lipids for use in food application, physico-chemical properties of fat-
based products such as improved spreadability, a specific melting point, a particular solid
fat content (SFC) at a given temperature, melting profiles (SFC curves), precise
rheological behavior and crystal habit are as fundamental as texture, appearance or
nutritional properties [3]. Acknowledging the expertise of food makers, matching these
physico-chemical end-user properties often remains an empirical recipe in practice and
more systematic (computer-based approaches) as we consider in this manuscript, can be
useful for evaluate triacylglycerols mixtures in a pre-experimental step.

Bulk physiochemical properties and sensory attributes of many fatty foods are determined
by the fraction of the fat phase that is solidified at a particular temperature, namely the
SFC curve [4]. Fat based food products used as bakery shortenings enhancer can be

described mainly by 7 sensory attributes: color, texture, moistness, oiliness, denseness,



taste and aroma and principal component analysis showed that color, SFC, melting
temperature, aroma and denseness are the main factors enabling to discriminate among
products [5].

Taste is strongly correlated with melting temperature and SFC perception in mouth
[3,5]: fats should be completely melted at 36°C and SFC contributes to the cooling
sensations of a product in the mouth. In margarines, a large difference between the SFC
at 15°C and 25°C is correlated to increased cooling sensations [3]. In baking shortening,
optimal performance is achieved with SFC between 15% and 25% at usage temperature
whereas an excess of liquid can cause oiliness sensation decreasing scores of sensorial
attributes [5].

Considering available experimental information, phase diagrams, differential scanning
calorimetry (DSC) curves, SFC melting curves and fatty acid distributions are found,
bringing information of various interest. Rarely found fat phase diagrams report the clear
and softening points. The clear point is the temperature at which the last solid phase
disappears (completely fusion) and the softening point is the temperature at which the
last liquid phase disappears (complete crystallization). On the other hand, DSC curves
are often a readily available measurement that can display solid phase transitions; quite
clearly for simple TAGs or fatty acid systems but hardly readable for oils.

The fat complete melting point gives limited information of the fat consistency. Indeed,
fats with the same final melting point can have widely different consistency at room
temperature. On the other hand, a SFC curve describes the whole melting profile of a fat
and can also be correlated with sensory attributes such as hardness [6,7].

The fatty acid distribution is often measured but it is not straightforward to relate it to the
SFC and therefore to end-user properties. A reason is that oils are mixtures of
triacylglycerols, with each of the triacylglycerol (TAG) bearing three fatty acids, and that
each TAG can crystallize in several polymorphic forms, each with its own melting point.

So-called Structured Lipids (SLs) are defined as lipids restructured by chemical or
enzymatic processes to change their fatty acid composition and/or the stereochemical
positions of fatty acids on the glycerol backbone. Among the possible improvements
sought are specific metabolic effects, nutritive or therapeutic purposes, physical and/or

chemical characteristics of lipids [8]. MLM (medium-long-medium) and CLA (conjugated



linoleic acids) triacylglycerols are recognized for their improved nutritional characteristics
[9]. MLM has medium chain fatty acids (MCFA) (C6-C12) in stereo positions sn-1 and sn-
3 of the glycerol backbone and functional long-chain polyunsaturated fatty acids (PUFA)
in position sn-2. The CLA is a general term for the positional and geometric isomers of
octadecadienoic acid with conjugated double bonds at carbon atoms 9/11 or 10/12 [9].

MLM molecules utilize the benefits of the fast energy provided by the medium-chain
fatty acid (specially caprylic, capric, caproic and lauric acids) and the nutritional effects of
long-chain fatty acid, especially EPA (5,8,11,14,17-eicosapentaenoic acid — C20:5), DHA
(4,7,10,13,16,19-docosahexaenoic acid - C22:6), vy- linolenic acid (6,9,12-
octadecatrienoic acid — C18:3) and AA (arachidonic acid — C20:4) [9].

MCFA have several desired features such as high oxidative stability (due to their
saturation), low viscosity and melting points and high solubility in water. They also
provide quick energy and fast absorption without significant tendency to accumulate in
the fat tissues [8]. As MCFA alone cannot provide essential fatty acids, they are
combined with long chain fatty acids (LCFA) for better nutritional purposes, not achieved
by physical mixture of long chain and medium chain fatty acids [10].

The LCFA, like the famous omega-3, polyunsaturated fatty acids have been recognized
for their important role in health: EPA can reduce the level of very low density lipoprotein
(VLDL) and low-density lipoprotein (LDL) cholesterol in humans and can help to prevent
arteriosclerosis and thrombosis. DHA is important for brain development and retina
[11,12].

Therefore, positioning medium-chain fatty acids in the sn-1 and sn-3 position of the
glycerol backbone imparts fast absorption of these acids in the body while unsaturated
long-chain fatty acids in the sn-2 position may increase the nutritional value of the
molecules involved.

The number of possible tailor-made TAGs rapidly increases with the number of fatty
acids considered (see Fig.1), as different sets composed by 3 fatty acids can be used
and, for a given set, many positional isomers can be formed. Together with the
consideration of the final mixture composition and number of TAGs present as variables,
the problem size becomes impossible to handle experimentally.

Insert figure 1 here



The present work concerns the validation of a predictive solid-liquid equilibrium
algorithm by direct minimization of Gibbs Free Energy. It enables to evaluate how
molecular structure and mixture composition affect final properties such as SFC and
melting profiles suitable for hinting at the recipe directions that must be investigated to
achieve enhanced chemical structures for nutritional purposes while satisfying consumers
sensorial requirements. This work fits in our scope of computer aided product design
(CAPD) for structured lipids where target properties of various kinds (SLE-related
properties like here, nutritious power, viscosity properties,etc..) are set as the objective of
a reverse engineering problem and many candidate mixtures of oils and value added
TAGs are evaluated by predictive tools with respect to these target properties [13].

First the solid — liquid equilibrium principles are described in the light of TAGs
application and former modeling works are recalled before selecting a model suitable for
a predictive tool. Second, the solving scheme based on optimization is presented along
with a synthesis of robustness and numerical issues. Third, the predictive model is
validated, without any fitting, on selected systems for which experimental data is
available, first on binary and ternary TAGs mixtures, then on multi-component vegetable
oils (palm oil and cocoa butter). Finally, structured lipids for which there are no
experimental data as mixtures of palm oil supplemented with value-added MLM TAGs are
considered, in order to investigate how the added TAG affects their melting curves. Table
1 summarizes the mixtures used in this work.

Insert table 1 here

Methods

Background on fat thermodynamic equilibrium modeling

Due to their high molecular weight, TAGs tend to crystallize in a solid network with
different crystals packing called polymorphisms. The most common are the unstable a-
form (least dense crystal packing), the metastable p’-form and the stable B-form (most

dense crystal packing) [14]. Polymorphic forms are distinguished by their own



temperature of fusion and enthalpy of fusion and they impact SFC and DSC curves which
are indeed used experimentally to explore the polymorphic behavior of fats.

SFC computation until 1990 was mainly empirical, partially based on curve fitting [15].
After 1990, the literature mostly published experimental studies [16-18] and some
equilibrium modeling issues [19, 20-22]. Won [20] used iterative methods to compute
softening and clear points with no considerations about computing activity coefficients on
solid and liquid phases and applied it to cocoa butter.

There are mainly three solid-liquid equilibrium models that have been used in the
current literature for fatty mixtures: Bragg—Williams approximation [23], Slaughter and
Doherty model [24] and Margules-isomorphism correlations [15,19]. Bragg—Williams
approximation assumes non-ideal mixing in both liquid and solid phases and attributes
the non-ideality of mixing to the enthalpy term of the free energy of mixing, supposing that
the entropy term is like in the ideal mixing. It uses parameters which are the energy
difference between molecules pairs in solid and liquid phases, fitted to experimental
binary data [25,26]. Slaughter and Doherty model deals with solid compound-forming
systems, like stoichiometric peritectic compound in the solid phase and considers that the
solid phases are almost immiscible. Seven binary fatty acid mixtures were also studied
with Slaughter and Doherty model for the solid phase while testing Margules-2-suffix,
Margules-3-suffix, UNIFAC modified Dortmund 93, and NRTL thermodynamic excess
Gibbs free energy models to compute the liquid activity coefficients [22]. Fitting those
model parameters to experimental data, the authors concluded that the combination of
the Slaughter—Doherty model for solid and Margules-3-suffix model for liquids achieved
the best reproduction of the experimental data. Concerning the Margules-isomorphism
model, a large experimental data collection was examined and noticed that Margules
interaction parameters in the B’ and B solid phases were reasonably correlated to the
degree of isomorphism between 2 molecules [15]. Application of Flory Huggins theory led
them to consider the liquid phase as ideal in most cases, except when large difference in
molecular size (differences in carbon number greater than 15-20) occurs among the
TAGs [15]. Besides they concluded that solid non ideality comes from substantial

distortion in the regular crystal lattice of a pure component by adding a molecule of



another size and that distortion is non significant in a disordered state as a polymorph but
must be accounted for the denser packed B’ and 8 systems.

After analysis of these previous works, we selected the Margules model [27] in the
present work, as it is well-suited for mixtures whose components have similar molar
volumes, shape and chemical nature . Also, the isomorphism correlation for the Margules
binary interaction parameters will be used because they serve to our goal of running
predictive simulations without fitting any parameter on experimental data within the
context of CAPD reverse formulation.

Despite the occurrence of other fat solid polymorphism such as y and of sub-forms such
as B2 and B3 [15], we only consider the a, p and P’ solid phases possibly in equilibrium
with a liquid phase, as there are no predictive models to calculate melting temperature
and melting enthalpy in other forms and experimental data are very scarce.

The Margules model and the isomorphism correlations are detailed in appendix A.

Solid —liquid equilibrium modeling of fats

The condition for thermodynamic equilibrium is that the chemical potential of each
component i in each phase must be equal to that in any other phase. For a liquid phase in

equilibrium with at least one solid phase j,

199 501 ()) (1)
or
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For the chemical potential of molecule i in the reference state:

d,uf0 = —S,.f’odT + V,.%dP (3)
where:
AS,.,O = AH,.,o /T and AH,.yO = AHmy,.,o +ACP; o(T~Tp,;) (4)

The effect of pressure in condensed phases such as solids and liquid can be neglected
at pressures not too high. Assuming ACp; to be independent of temperature, after some

rearrangements Equation (1) can be rewritten as:
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Solid — liquid equilibrium can also be formulated in terms of Gibbs free energy that must
be minimal at equilibrium. The intensive Gibbs free energy for a phase p is:
nc
9P =D xP(u” +RTInyx!) (6)
i-1
For TAG systems ACp = 0.2 kdJ/mol and the difference (T,, — T) is never greater than
70K (usually between 0-20) [15]. Together with setting the chemical potential in the pure
liquid reference state to zero, this enables to simplify Eq.(6) and write for the liquid phase
molar Gibbs free energy:
liquid R liquid |- liquid
gl = RTizzl:(xi In xjid @)
and for p being one of the possible solid phases (a, ' or B):

p—RTZ P( —-—)+/n7 P) (8)

ml

Solving the solid — liquid equilibrium by direct minimization of Gibbs
Free Energy

Computing phase equilibrium is the solution of a nonlinear programming problem
searching for the global minimization of the Gibbs Free Energy G, subject to material
balance constraints written as an equivalent set of nonlinear equations:

nc np

min G(n) = ZZn ul (n) Zn g’

i=1 j=1
s.t.

9)

0<n! <n;i=1..nc;j=1...np

The solution of the solid liquid equilibrium gives the number of phases, the fraction of
each phase and their composition. When spanning a temperature range, the total solid
content, SFC and DSC curves can be computed.

One of the main difficulties associated with minimizing the Gibbs free energy is the a

priori determination of the number of phases. If too few phases are allowed, then



convergence to constrained minima can occur; if too many are assumed, then numerical
problems may arise like Jacobian matrix singularities in Newton-based methods, or
convergence to trivial or local extrema may occur [28]. In a previous work, we succeeded
to solve the SLE for several 9 TAGs mixtures in a two step approach: first solving the
stability tests and second computing the equilibrium compositions [29]. The Michelsen’s
method [30] for stability analysis was adapted to cope with polymorphisms and was
successful for phase-split detection but revealed to be initialization dependent and failed
in detecting phase split for some mixtures. To overcome this limitation, the present work
deals with direct minimization of Gibbs Free Energy using a Generalized Reduced
Gradient (GRG) method available in the GAMS software [31] considering a priori a
sufficient number of phases to be present, namely 9 solid phases plus a liquid in our
case. After some initial evaluations of the performance of the available optimizers, one
has chosen CONOPT3 among six others as it showed the best relation time / accuracy in
finding exact solutions for selected mixtures of known results. Solving 10 times the palm
oil example with 17 TAGs over 79 temperatures (2370 optimization problems) was
achieved in 31 seconds with 0/79 failures. The second best available optimizer based on
a branch-and-cut method, had a mean failure of 8/79 and required more than a 300 times
more time, whereas its accuracy in terms of minimum Gibbs free energy value was 0.01%
higher than those obtained with CONOPTS3.

To summarize the calculation section, the bulk mixture composition in TAGs is an input
as well as the temperature of calculation. Then 9 solid phases + 1 liquid phases are
supposed initially to co-exists with TAGs splitted randomly between the initial phases.
The Gibbs free energy optimization predicts the number of coexisting phases and their
TAG composition along with their Gibbs free energy value and the total Gibbs free energy
value. The SFC curve is then readily computed from this information by sequentially

increasing the temperature of the mixture until there is no more solid present.

Differential scanning calorimetry curve simulation

A DSC curve is related to apparent heat capacity which can be computed from the

following equations [32]:

oH
ap _
Cp _Cp+(a7—jn (10)



Also, the Excess enthalpy and Excess Gibbs energy are given by:
np nc

E=H->">nlH, an

j=1i=1
GE =HE -TSE (12)
Setting reference enthalpy to zero on liquid state, H, for any i specie on phase j in

equation 11 becomes the melting enthalpy of that solid phase. Thus:
Hly =AH] (13)
Assuming that triacylglycerols solid mixtures are regular solutions (excess entropy
equals to zero), Hf = GF and an expression for H can be put from equation 11 into
equation 10 to compute the apparent heat capacity taking into account the solid

transitions:

nc

E
Cpap 8G 2121 m, aT (14)

Equation 14 shows that for each point on the DSC curve, the apparent heat capacity
can be calculated by using two derivatives, which in turn can be obtained by numerical
differentiation of SLE results (Excess Gibbs energy and number of moles) at two
different temperatures (Ti and Ti + AT).

The DSC simulated curves are then calculated with the hypothesis that chemical
equilibrium has been reached; which may rarely be the case for all experimental DSC
curves that are cooling/heating rates dependent.

Pure component properties needed for computing SFC curves from SLE are the melting
temperature (Tm), the melting enthalpy (Hm) to which is added the heat capacity (Cp) for
DSC curves. Whenever possible, the experimental data bank for Tm and Hm for different
polymorphism for different TAGs was used [15]. But in the context of CAPD reverse
formulation, we have also used temperature and enthalpy of fusion correlations based on
carbon number, number of double bounds, position of fatty acids in the molecule and
asymmetry [15] or a group interaction contribution model for saturated TAGs that
accounts for isomerism [33]. For heat capacity, we used a recent published group
contribution method regressed over 1395 values for 86 types of fatty compounds

(saturated and unsaturated FA, fatty esters, fatty alcohols, saturated and unsaturated
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TAGs and hydrocarbons) [34]. The reader should consult the references cited for further

details.

Results and Discussions

Binary mixture (Palmitic-Oleic-Palmitic/ Palmitic- Palmitic- Palmitic)

Solid-liquid T,x,y phase diagram experimental data [35] for the binary mixture Palmitic-
Oleic-Palmitic (POP) and Palmitic- Palmitic- Palmitic (PPP) are compared in Fig.2 with
the simulated results. The TAGs crystals are in the  form (no submodifications 31 or 2
of the B class are considered in this work). The solid line (softening points) and liquid line
(clear points) with a large region of coexistence solid-liquid for the whole range of POP
fraction can be seen.

Insert figure 2 here

Predictions agree better with the liquid phase line than with the solid phase line,
especially for POP-lean mixtures. Although deceptive, these results are in accordance
with previous literature results [15]: according to those authors, this is related to the fact
that the visual observations of clear and specially softening points are very inaccurate.
Also, impurities can increase the melting points and incomplete stabilization due to
extremely low diffusion rates in solid phase can lead to imprecision in determine the initial
temperature of fusion and thus the solid phase line location.

In the POP-rich region, the increasing presence of the unsaturated oleic chain, well

known for its very low melting point near 14°C, lowers the TAG mixture melting range.

Ternary Mixture (Myristic-Palmitic-Myristic/Stearic-Stearic-
Oleic/Oleic-Oleic-Oleic)

The SFC-temperature curve is computed for the ternary-mixture Myristic-Palmitic-
Myristic (MPM), Stearic-Stearic-Oleic (SSO) and Oleic-Oleic-Oleic (OOQO) with mass
composition 25%, 25% and 50% respectively (Fig.3a). Then the DSC curve is computed
from equations (14) and compared in Fig.3b with experimental data in the B’ modification
obtained at 1.25°C/min after a 3 day stabilization time [15]. They are in good quantitative
and qualitative agreement.

Insert figure 3 here
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In this mixture, the triolein (OOO) TAG (melting point -10°C), is used as a “liquid
solvent” to increase the diffusion rates of MPM and SSO in solid phase. The model
correctly detected that at the start temperature of 17°C all the OOO TAG (50% of the
mixture composition) is in the liquid phase, in agreement with the experimental
observation It must be highlighted that at the initial temperature, the computer tool
randomly distribute the molecules in the phases, and then the solver converges to a
solution. In the MPM/SSO/O0O0 case, despite an initial random amount of OOO in solid
phase being non-zero, the method correctly converged to zero amount of solid OOO.

The DSC curve displays two peaks. The first one is the endothermic peak caused by
fusion of SSO (experimental T,,=41.9°C) and the second one is due to the MPM fusion
(experimental T,=59.5°C). That curve with distinct melting peaks is typical for mixtures
where the molecules are well-distinguished one from another in shape and size. The low
isomorphism (0.77) of such a mixture is responsible for its non ideal behavior. One also
notes that the transition temperatures in the mixture (Fig.3b) do not correspond to the

pure compound temperature transitions as the mixture deviates from ideal behavior.

Pure Palm Oil

Computation for palm oil is another step in the computer tool validation. Palm oil
currently accounts for 13% of the total world production of oils and fats and is expected to
overtake soybean oil as the most important vegetable oil. AlImost 90% of the world palm
oil production is used as food [36].

Insert Table 2 here

In this work, the palm oil is modeled by 17 TAGs corresponding to 91.56 % in weight of
palm oil composition (Table 2). Data about the TAGs type and composition was taken
from literature [36] and minor components (TAGs and other molecules) with very low
fraction or not available/computed pure properties were discarded. None of these minor
components are responsible for more than 0.83% of overall composition. Only the TAG
explicited in table 2 were considered in the calculations, after renormalization.

Lin [37] recorded the SFC at seven temperatures for 244 samples of palm oils of

various origins. The SFC computed from the renormalized composition of Table 2 is
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compared to the mean experimental points [37] in Fig.4a. Fig.4b shows the related DSC
simulation for this vegetable oil. We do not compare to other models for palm oil as we
found no other melting range calculation by using modeling in the literature.

Insert figure 4 here

Fig.4a shows that despite some discrepancy, the SFC curve shape agrees with the
experimental data: the final melting points are alike; from 10 °C to 20 ° C both simulated
and experimental data display a steep slope, while from 25° C to 40° C the slope is
softer. Overall, the mean difference over the 10 to 40°C range between the calculated
and experimental SFC value is 8.2%. The predicted SFC curve also indicates that there
is only solid at -20°C. It can also determine the solid fraction at any intermediate
temperatures, giving useful information for product design requirements.

Looking at the DSC curve, its shape is typical for mixtures with a high number of
molecules. The number of peaks is different from the number of molecules (17) because
peaks for molecules with close transition temperatures overlap. As pointed out in the
literature [38], these peaks are not easily interpretable, depend on heating/cooling rates
and on entire thermal history of the sample. Experimental DSC curves are scan rate,
temperature programming and stability procedure dependent (which leads to
experimental curves with different shapes) and numerous thermal transitions and
thermal lag can occur [38]. Thus, it is difficult to choose what experimental curve must be
considered. Actually, comparing simulated DSC generated by ESL results and
experimental DSC curves are not suitable, unless experimental data were judiciously
conducted in order to achieve equilibrium, as in the case for Fig3b. However, simulated
DSC curve reveals the heat capacity change of the sample due to state transitions,

indicating the temperatures where the most accentuated changes occurs.

Cocoa Butter

Cocoa butter is the only natural fat melting sharply just below mouth temperature,
leaving a clean, cool, non-greasy sensation on the palate [6]. Its unique and specific TAG
composition (Table 2) is responsible for these high desired sensory properties. In
chocolates, a sharp melting point is a sign of intense cooling sensations in the mouth [3].

Therefore, reducing the tail of the SFC vs temperature curve is a must sought feature in
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industry to improve mouth feel in cocoa butter equivalents (CBE), cocoa butter replacer
(CBR) and cocoa butter substitutes (CBS).

Cocoa butter SFC experimental data was taken from literature [20] and TAG
composition was taken from another source [39]. The composition reported in Table 2
shows that 12 saturated and unsaturated TAGs are used to represent cocoa butter (97.2
% weight), discarding minor components accounting for 2.8% weight. Compositions are
renormalized before calculation.

Insert figure 5 here

Fig.5 shows that the model predictions are consistent with experimental data in terms of
melting profile shape, but the final melting temperature is overpredicted by more than
10°C. Overall, quantitative agreement is achieved within less than 15%, a fair value
considering that we do not perform any fitting. Other causes of discrepancy are the fact
that the experimental data are not obtained by the authors who provided the
compositions used for the prediction; the compositions for prediction discard 2.8% in
weight of the measured composition.

Comparing cocoa butter and palm oil, cocoa butter has a melting range around 30°C,
half that of palm oil around 60°C. The Cocoa butter DSC predictions shows broader and
less numerous peaks, corresponding to more solid-liquid molecular transitions over

similar temperatures.

Prediction of Palm Oil enriched with Structured Lipids (SLs)

The aim of the present algorithm is to be used in a predictive manner and we simulate
the effects of adding highly unsaturated MLM molecules on the melting profile of pure
palm oil.

First, the molecule Caprylic-EPA-Caprylic (caprylic - eicosapentaenoic acid — caprylic),
a structured lipid of type MLM is added to palm oil in 6 different concentrations (5, 10, 20,
30, 40 and 50%). Fig.6 represents the melting curves for these mixtures whereas Fig.7
shows the related DSC curves

Insert figure 6 here
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Fig.6 shows that the addition of Caprylic-EPA-Caprylic affects strongly the palm oil
melting curve even at low concentrations. Pure palm oil is solid at — 20 °C, but 5%
Caprylic-EPA-Caprylic already imposes some liquid content at — 20 °C. This is expected
as Caprylic-EPA-Caprylic has a very low melting point due to its five unsaturations. As
Caprylic-EPA-Caprylic concentration increases, the SFC decreases significantly at —
20°C, reaching 65% SFC for 50 % of Caprylic-EPA-Caprylic. However, the benefit of
lowering the SFC of palm oil is not kept for the whole melting range. Indeed, the Caprylic-
EPA-Caprylic enriched curves cross the pure palm oil curve and pure palm oil becomes
completely melted before the Caprylic-EPA-Caprylic enriched oil. As a whole, the
enriched oils have an extended melting range on both sides, with a final melting point
increased about 11°C (T,,=51°C) for all concentrations between 5 and 50%.

Fig.7 shows the DSC simulations for the enriched palm oil mixtures of Fig.6. It can be
noted that the Caprylic-EPA-Caprylic enriched palm oil curves are similar whatever the
concentration but are very different from the pure palm oil curve. This is expected as the
chemical structure of the mixture molecules is changed but it is meaningful because a
single 5% Caprylic-EPA-Caprylic concentration shifts the DSC peaks significantly. But as
a whole these curves are difficult to interpret in terms of properties.

Insert figure 7 here

Now, we compare the addition of 30% of four MLM structured lipids, Caprylic — X —
Caprylic, with X being a LCFA: EPA (eicosapentaenoic acid - C20:5) as before, DHA
(docosahexaenoic acid - C22:6), AA (arachidonic acid — C20:4) and y - linolenic acid (6,
9,12-octadecatrienoic acid — C18:3). Fig.8 represents the melting curves for these
mixtures whereas Fig.9 shows the related DSC curves.

Insert figure 8 here

The results indicate that the structured lipids with EPA, DHA and AA lower the melting
points at -20°C compared to pure palm oil, whereas the addition of y-linolenic acid
increases the melting point by +18°C. Among these 4 fatty acids, the y- linolenic has 3
double bonds (C18:3) while EPA, DHA and AA have 5, 6 and 4 double bonds

respectively, resulting in very low melting points (-54°C, -44°C and -49°C, respectively).
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As a result, EPA, DHA and AA are all in liquid phase at the beginning of the computation
and the three relevant curves overlap. Therefore, the effect of decreasing SFC is more
pronounced in the last ones. But pure palm oil still exhibits the lowest crystallization
temperature. Therefore one notes that EPA, DHA and AA expand the melting range on
both sides whereas y-linolenic acid shifts up upwards.

Insert figure 9 here

Fig.9 shows the corresponding DSC simulations for the mixtures of Fig.8. As in the
previous case, the shape of the curves for the palm oil mixtures + SLs are very different
from that of the pure palm oil and also there are differences among them, as the chemical

structure of the mixtures is different for each curve.

Conclusions and Future Works

Crystallization and melting behavior play an important role in the fat-based products
acceptance and quality requirements. These phenomena are modeled using a solid —
liquid equilibrium framework coping with TAG polymorphism. Following literature we
consider the liquid phase and the unstable o solid phase as ideal whereas the  and 3’
non ideal behavior is modeled with Margules activity coefficient model where the binary
interaction parameter are predicted by using an isomorphism model. Solving is done by
direct minimization of Gibbs free energy using a generalized reduced gradient algorithm
which robustness has been assessed.

Such a modeling has been used earlier but on simple binary or ternary mixtures and
always with parameter fitting of experimental data. Within the context of computer aided
product design reverse engineering of new lipid based applications, the computer tool
was used in a predictive manner to compute the melting range, the solid fat content vs
temperature and the DSC curve from the knowledge of the TAGs blends composition.

The tool was validated on experimental data available for a binary POP/PPP mixture, on
a ternary MPM/SSO/O0O0 mixture, on pure palm oil and cocoa butter. There is a close
qualitative agreement between predictions and experimental data available. In all cases
the solid fat content quantitative agreement is achieved within 15%. It was pointed that

some experimental data lacked uncertainty information, likely to exist as clear and
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softening points are sometimes difficult to assess when recording phase diagrams, or as
DSC curves are heating rate dependent. Concerning palm oil, no comparison with other
models was possible because none was found in the literature. Then the tool was used to
predict the property changes when adding caprylic acid — X — caprylic acid to pure palm
oil, with X being EPA (eicosapentaenoic acid - C20:5) as before, DHA (docosahexaenoic
acid - C22:6), AA (arachidonic acid — C20:4) and y- linolenic acid(C18:3). Those
structured TAGs belong to the important MLM class where the long chain fatty acids in
position sn-2 may bring benefits for the health.

Results showed that the lipid addition affected the SFC and the melting range even at
5% concentration. At 30% concentration, EPA, DHA and AA expand the palm oil melting
range on both sides whereas y-linolenic acid shifts up upwards

Works in preparation are heading in two directions. First the complete prediction of SFC
and melting range from the fatty acid distribution instead of the TAGs composition, with
underneath the generation of the TAGs themselves, using statistical models. Second, the
development of a computer aided mixture and blend design framework for finding new
structured lipids coping with target property values set a priori. In that case, the solid —
liquid equilibrium tool can be supplemented with rheological behaviour prediction model,
detailed nutritional power evaluation model and many other properties that qualify a

specific application.
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Appendix A. Margules model and Binary Interaction
Parameter models.

The definition of the activity coefficient is given by the following equation [27]:

— ong®
RTIny,(T,P,x)=Gf = [%] (A1)
i J)TpPn

A ji

The two-suffix Margules model for multicomponent mixtures is given by:
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nc nc

gt :Z ZAIJ-X,-X/- (A2)

i=1 j=i+1

Where

A; =2qa (A3)

The term q is a measure of the size of the molecules in the pair and a; are interaction

parameters between molecules i and j. In the Margules equations is assumed that

g=9d;=9 (molecules with similar size). However, it is used frequently for all sorts of

mixtures, regardless the relative sizes of the different molecules [27].

The work of Wesdorp [15] showed that there is a great correlation between the degree

of isomorphism (coefficient of geometrical similarity) and the parameter AJ- . The degree

of isomorphism between two TAGs can be described by the following expression:
"4
e=1--"" (A4)

Vion IS the sum of the absolute differences in carbon number of each of three chains and

for v, the sum of the carbon numbers of the smallest chain on each glycerol position.

Linear regression of experimentally determined Aij parameters vs the calculated

isomorphism as defined by Eq. A4 led to the following correlations [15]:

AP

£>0.93: # =0 (high molecular similarity, complete miscibility) (AS)
AP

£<0.93: —L =-19.5:+18.2 (AB)
RT
AP

£>0.98: R_UT =0 (high molecular similarity, complete miscibility) (A7)
AS

£<0.98: —L =-358:+35.9 (A8)
RT

The primary value of the Margules equations lies in their ability to serve as simple
empirical equations for representing experimentally determined activity coefficients with
only a few constants and when, as is often the case, experimental data are scattered and
scarce, they serve as an efficient tool for interpolation and extrapolation with respect to

composition [27].
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Fig. 1: Number of triacylglycerols that can be formed from fatty acids (including optical

and positional isomers).
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Fig. 2: Experimental and predicted phase diagram for mixture POP-PPP.

70
65 n
~60 f
(@)
£
o 551 , . - :
5 s o experimental softening points
‘@' 50K N, o + experimental clear points > B
g \\ ---calculated solid line
g4 —calculated liguid line 7
[i}] Ay
|— 40, \\ 777777777777777777777777 __ —
] |
35* © © o < e
30 | | | | | | | | |
0 0.1 02 0.3 0.4 05 0.6 0.7 0.8 09 1

X (POP)

Fig. 3: Simulated SFC vs Temperature and simulated and experimental DSC for mixture

MPM/SSO/O000.
0.5 1400
—simulated
1200 + experimental
04
S 1000
“6 —
g03 X 500
§, 0.2 8— 600
8 400
@41
200
%0 30 40 50 60 %0 30 40 50

Temperature (°C)

Fig. 4. Melting profile and DSC curve of palm oil.. Calculated: full lines. Experimental

data: symbols [37].

Temperature (°C)

60

21



1
=08 o
S
© v
Soe S
) £
o i 3f
©
£04 =
O O
[T
wo2 4l
95 0 20 40 99 0 20 40
Temperature (°C) Temperature (°C)

Fig. 5: Melting profile and DSC curve of cocoa butter. Calculated: full lines. Experimental
data: symbols [20].

1 10
=08 8t
L
B <
o« 06 o5 6
9 g
o] 2

0.4 2 4l

E o
O (@]
L
no2 2t

Y% 20 30 40 50 £l 20 30 40 50

Temperature (°C) Temperature (°C)

Fig. 6: Simulated melting curves for palm oil enriched with Caprylic-EPA-Caprylic
structured lipid (different concentrations) compared with the melting curve for pure palm
oil.
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Table 1: Type of mixtures used.

Binary
Mixture

Multicomponent
Mixtures
(vegetable oils)

Ternary Mixture

Blends of Vegetable Oils and
Structured Lipids

POP/PPP MPM/SSO/O00

Palm Oil

Palm Qil + (Caprylic — EPA —
Caprylic)

Cocoa Butter

Palm Qil + (Caprylic - DHA —
Caprylic)

Palm QOil + (Caprylic — vy linolenic
— Caprylic)

Palm QOil + (Caprylic — AA —
Caprylic)

P: palmitic acid (C16:0) O: oleic acid (18:1) M: myristic acid(C14:0) S: stearic acid (18:0)
EPA: eicosapentaenoic acid (C20:5) DHA: docosahexaenoic acid (C22:6)
AA:arachidonic acid (C20:4) y- linolenic acid: 6,9,12-octadecatrienoic acid (C18:3).

Table 2: Weight fraction of Pure Palm Oil and Cocoa Butter.

Palm Qil [36] Cocoa Butter [39]
Mass Fraction Mass Fraction

TAG (%) TAG (%)
POO 20.54 POS 40.2
POP 20.02 SOS 21.7
PPO 716 POP 13.9
PPP 6.91 SO0 6.7
PLO 6.59 POO 5.8
PLP 6.36 PLS 3.9
000 5.38 PLP 1.7
POS 35 PLO 0.9
POL 3.39 000 0.7
OPO 1.86 PPS 0.6
SO0 1.81 SSS 0.6
ooL 1.76 PSS 0.5
oLO 1.71 - -

PPS 1.21 - -

PPL 1.17 - -

PLS 1.11 - -

PLL 1.08 - -

Others 8.44 2.8
Total 100 - 100

P: palmitic; O: oleic; L: linoleic; S: stearic
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