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Interaction between two spherical bubbles
rising in a viscous liquid
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The three-dimensional flow around two spherical bubbles moving in a viscous fluid is
studied numerically by solving the full Navier–Stokes equations. The study considers
the interaction between two bubbles for moderate Reynolds numbers (50 � Re � 500,
Re being based on the bubble diameter) and for positions described by the separation
S (2.5 � S � 10, S being the distance between the bubble centres normalised by the
bubble radius) and the angle θ (0◦ � θ � 90◦) formed between the centreline and
the direction perpendicular to the direction of the motion. We provide a general
description of the interaction extending the results obtained for two bubbles moving
side by side (θ = 0◦) by Legendre, Magnaudet & Mougin (J. Fluid Mech., vol. 497,
2003, p. 133) and for two bubbles moving in line (θ =90◦) by Yuan & Prosperetti
(J. Fluid Mech., vol. 278, 1994, p. 325). Simple models based on physical arguments
are given for the drag and lift forces experienced by each bubble. The interaction
is the combination of three effects: a potential effect, a viscous correction (Moore’s
correction) and a significant wake effect observed on both the drag and the transverse
forces of the second bubble when located in the wake of the first one.

Key words: bubble dynamics

1. Introduction
Most of the bubbly flows observed in industrial processes as well as in natural events

can involve locally large concentrations of bubbles. The use of models developed for a
single bubble is not satisfactory since interactions between bubbles are not considered.
The first step in considering hydrodynamic bubble interactions is to understand and
develop models for pair interaction. The objective of this work is to consider bubble
pair interactions for intermediate to large rising bubble Reynolds numbers, typically
Re � O(10).

For this range of Reynolds numbers, the motion of a single bubble has been
extensively studied (see Clift, Grace & Weber 1978; Magnaudet & Eames 2000).
The first significant understanding of the correct derivation of the terminal velocity
was addressed by Levich (1962). Using a global energy balance, Levich (1962)
deduced the drag force FD = −12πµRUb from the dissipation induced by the
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potential flow generated by a rising bubble, the corresponding drag coefficient being
CD = FD/ 1

2
πR2ρU 2

b = 48/Re, where µ is the fluid viscosity, R is the bubble radius, Ub is
its terminal rising velocity and Re =2RρUb/µ is the rising bubble Reynolds number.
This is called viscous potential flow approximation (Joseph & Wang 2004; Joseph
2006a ,b). The potential flow assumption is valid everywhere except at the bubble
surface where the zero-shear stress condition generates an interfacial distribution of
vorticity Ω = O(3Ub/R). The Levich drag force is thus valid in the limit Re → ∞.
Moore (1963) considered the diffusion and transport in the wake of the vorticity
produced at the bubble surface. Considering a weak viscous boundary layer and a
thin wake, he obtained CD∞ = 48/Re[1 − M∞/Re1/2], showing that the induced effect
of vorticity is a drag reduction. The term containing M∞ = 2.211 is the so-called
Moore correction for a single bubble. This expression has been clearly confirmed by
the use of direct numerical simulations, which also indicate that it can be considered
valid for Re > 50 (see Magnaudet & Eames 2000).

In the limit of irrotational flow (Re = ∞), several investigations based on the
pioneering works of Jeffrey (1973) and van Wijngaarden (1976) have considered the
interaction between two spheres (see for example Kok 1993 and references therein).
Following the global kinetic energy balance proposed by Levich (1962), Kok (1993)
used the potential flow solution to derive the viscous drag force for two spherical
bubbles in interaction. The total force acting on the bubble (potential interaction and
viscous drag) is valid in the limit Re = ∞, and was used to show that when a pair of
bubbles rise in a quiescent liquid due to buoyancy, the bubbles are attracted towards
(resp. repelled from) each other when the angle between their centrelines and the
direction of motion is in (resp. out of) the range [θa, 180◦ − θa], θa being a critical
angle ranging from 35.0◦, when the two bubbles are in contact, to 54.7◦, when they
are widely separated. It was also established that only two steady situations can be
observed: the first one is two bubbles rising side by side in contact, their centrelines
being perpendicular to the rise velocity, and the second one is an infinite separating
distance. Note that using the same approach, the case of growing bubbles rising in
line was considered by Harper (2001).

The non-irrotational situation was considered analytically by Harper (1970, 1997)
for two bubbles moving in line. Harper (1997) revisited his first work after the direct
numerical simulations (DNS) of Yuan & Prosperetti (1994) for Re = 20, 50, 100
and 200. In this particular axisymmetric configuration, the potential solution (Kok
1993) predicts a drag increase of the trailing bubble (or second bubble noted using
subscript 2) relative to the drag of the leading bubble (or first bubble noted using
subscript 1):

CD1 =
48

Re
[1 − 2S−3 + 3S−6 + · · · ] − 12S−4 + 24S−7 + · · · , (1.1)

CD2 =
48

Re
[1 − 2S−3 + 3S−6 + · · · ] + 12S−4 − 24S−7 + · · · , (1.2)

where S = d/R is the normalised separating distance. Note that in the present work
the terms ‘drag’ and ‘lift’ are respectively used to design the total force along the
flow direction and perpendicular to the relative motion. This result indicates that the
bubbles are repelled from each other whatever the distance of separation. The DNS
of Yuan & Prosperetti (1994) disagreed. It clearly demonstrated the existence of an
equilibrium distance of separation for a tandem of bubbles moving in line. Considering
the effect of the vorticity produced by the leading bubble and especially its transport
and transverse diffusion in the wake (the latter mechanism being neglected in the first



work of Harper 1970), Harper (1997) calculated Moore’s correction for two bubbles
moving in line at the same velocity Ub:

CD1 =
48

Re

[
1 − 2S−3 + · · · − M1

Re1/2

]
− 12S−4 + · · · , (1.3)

CD2 =
48

Re

[
1 − 2S−3 + · · · − M2

Re1/2

]
+ 12S−4 + · · · , (1.4)

where the Harper–Moore correction coefficients M1 and M2 depend on both
the separating distance and the Reynolds number (note that in Harper 1970
M1 = M∞ =2.211 and M2 = 4.345). The dependence of M1 is noticeable only at small
distances so that in a first approximation M1 ≈ 2.211. The effect of the separating
distance is more pronounced for M2. Note that M2 → 2.211 as d → ∞ for a fixed large
Re and M2 → 4.345 as Re → ∞ for a fixed large d , the latter case being of less practical
use than the former. In all the situations, M2 is found to be larger than M1, so that
the corresponding relative drag decrease can compensate the relative increase induced
by the potential effect for a separating distance larger than a critical value de. In
consequence, de is a stable equilibrium position that depends on the Reynolds number
as shown by the DNS of Yuan & Prosperetti (1994). The existence of an equilibrium
distance has not been observed in the experiments reported by Katz & Meneveau
(1996). They reported the interaction in a chain of nearly spherical air bubbles
rising in line at Reynolds numbers ranging from 0.2 to 140. They observed stable
in-line bubble trajectories and a pairing-off process resulting in pair coalescence. This
difference from the DNS of Yuan & Prosperetti (1994) and the analytical solution
of Harper (1970, 1997) has been attributed to deformation and/or surfactants in
several papers (see Bunner & Tryggvason 2003). According to Harper (1997, 2001),
this pairing-off process, not predicted for two bubbles in line, does occur in the
interaction of three or more bubbles both in the Stokes limit and at high Reynolds
numbers.

The existence of an equilibrium distance has also been observed using DNS by
Kim, Elghobashi & Sirignano (1993) for two rigid spheres translating side by side
and by Legendre et al. (2003) for two bubbles in the same configuration. Legendre
et al. (2003) clearly showed that for distances larger than an equilibrium distance de,
the bubbles are attracted due to the Venturi effect in the separating gap between the
bubbles as predicted by the potential theory. When the separating distance decreases,
the vorticity produced on each bubble enters an interaction and generates a blocking
effect for the flow in the gap, resulting in an increase in the pressure and the bubbles
being repelled from each other. The numerical simulations also indicate that the drag
of each bubble can be described by simply adding the Moore correction obtained for
a single bubble with the potential viscous contribution:

CD1 = CD2 =
48

Re

[
1 + S−3 − 3S−6/4 + · · · − M∞

Re1/2
+ O(S−3Re−1/2)

]
, (1.5)

while the transverse (or lift) force experienced by the bubbles when normalised as the
drag force by πR2ρU 2

b /2 can be written as

CL1 = −CL2 = 6S−4

[
1 + S−3 + 16S−5/3 + · · · − 40

Re

]
. (1.6)

Using the definition of the present paper, a positive lift coefficient CL1 > 0 for the first
(left) bubble combined with a negative lift coefficient CL2 < 0 for the second (right)
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Figure 1. Sketch of the flow configuration and coordinate system.

bubble corresponds to the attraction between the bubbles. In (1.6), the potential effect
1 + L(S) = 1 + S−3 + 16S−5/3 + · · · (Kok 1993) is balanced by a viscous contribution
(∼Re−1) of opposite sign that is responsible for the stable equilibrium position
(Legendre et al. 2003).

The results reported above outline that the effect of the vorticity produced at the
bubble surface and diffused and transported in its wake plays a crucial role in the
mechanism of interaction for side-by-side and in-line bubbles. The objective of this
work is to consider the general configuration for two bubbles rising in a liquid and to
connect the results for the drag and lift coefficients obtained for the viscous potential
flow condition, for two bubbles rising in line and two bubbles moving side by side.

2. Statement of the problem
We consider a pair of bubbles of radius R rising at the same velocity Ubey in a

plane in an unbounded Newtonian fluid at rest. The Cartesian coordinates (x, y, z)
associated with the Cartesian frame of reference (ex , ey , ez ) are defined in figure 1.

We also introduced the Cartesian frame (ei , ej , ez ) associated with the relative
position of the two bubbles. Here ei is directed along the axis joining the centres
of the bubbles and directed from the left bubble called B1 to the right bubble
called B2 (see figure 1), and ej is normal to the centreline so that ej · ey > 0. We
define the origin O with coordinates (xo, yo, zo) at mid-distance between the two
bubbles and the bubbles’ centres are located at O1 (x1, y1, z1) and O2 (x2, y2, z2),
respectively. The distance of separation d = O1O2 between the two bubbles thus
obeys d2 = (x2 − x1)

2 + (y2 − y1)
2 + (z2 − z1)

2. These two frames enable us to define
the angle θ characterising the relative position of the bubbles’ centreline with respect
to the ex -direction by θ =arccos(ex · ei ) = arccos(ey · ej ). For symmetry reasons, any
configuration can be described with an angle ranging between θ = 0◦ (bubbles side
by side) and θ = 90◦ (bubbles in line). In the (O, ei , ej , ez ) frame, the leading bubble
is located at −d/2ei , the trailing bubble is located at d/2ei and the flow at infinity
is uniform U∞ = −Ubey . We have checked by performing some three-dimensional
simulations in the entire domain that, under the flow conditions studied here, the wake
of the bubbles is not destabilised by the interaction, so the problem remains symmetric
with respect to the plane (O, ei , ej ). Indeed, the induced effect of interaction is not



enough to generate the threshold value of vorticity at the bubble surface necessary for
wake destabilisation (Magnaudet & Mougin 2007). Hence, the governing equations
only need to be solved in one half of the space, say z � 0. Denoting the velocity
and pressure fields by V and P , respectively, the incompressible flow surrounding the
bubble pair is governed by the Navier–Stokes equations

∇ · V = 0, (2.1)

∂V
∂t

+ V · ∇V = − 1

ρ
∇P +

1

ρ
∇ · τ , (2.2)

where τ = µ(∇V + T ∇V ) is the viscous part of the stress tensor Σ = −P I+τ , ρ and µ

being respectively the density and the dynamic viscosity of the liquid. The boundary
condition far from the bubbles is

V → U∞ = −Ubey for r → ∞, (2.3)

where r2 = (x − xo)
2 + (y − yo)

2 + (z − zo)
2. Since there is no mass transfer through

the interface of the bubbles, the normal velocity of the fluid must vanish on these
surfaces. Moreover, the dynamic viscosity of the gas filling the bubbles is generally
negligibly small compared with that of the surrounding liquid. In the absence of
surfactants or contaminants on the bubble surface, the condition for the liquid at the
interface is a shear-free condition due to the matching of the shear stresses across the
bubble surfaces. Therefore, the boundary conditions at the interfaces are{

V · n = 0
n × (τ · n) = 0

on each bubble. (2.4)

The steady solution of this problem depends on three characteristic parameters,
namely the Reynolds number Re, the non-dimensional distance S and the angle θ

defined, respectively, as

Re =
2RρU∞

µ
, S =

d

R
, θ = arccos(ex · ei ). (2.5)

In each simulation reported in this paper, θ , Re and S are fixed and the converged
values of the drag and lift forces are presented.

In the present study, the Reynolds number Re varies between 10 and 500, and the
separation between the bubbles varies between S = 2.5 and 10 (S = 2 corresponds to
bubbles in contact and S =3 to bubbles separated by a gap of one radius). The angle
θ varies between 0◦ and 90◦ with a denser distribution for high angles in order to
improve the description of the interaction when the second bubble B2 is in the wake
of the first bubble B1. We also assume that the bubbles remain spherical i.e. flow
and fluid conditions correspond to Weber and Eötvös numbers, both small compared
to unity. This study is mainly devoted to the understanding of the hydrodynamic
interactions between the two bubbles. The forces acting on the leading bubble and
the trailing bubble are F1 and F2, respectively. They are calculated by integrating the
stress tensor on each bubble:

F1 =

∫
Γ 1

Σ · n dΓ, F2 =

∫
Γ 2

Σ · n dΓ, (2.6)

where Γ 1 and Γ 2 denote the surfaces of bubbles B1 and B2, respectively. The
dynamics can be studied using the components of these forces (FL1, −FD1, F1z = 0)
and (FL2, −FD2, F2z =0) in the Cartesian frame of reference (ex , ey , ez ). As will be
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Figure 2. Interaction effect on bubble motion.

explained in the paper, we also introduce the following decomposition, which provides
a better description of the interaction:

Fv = FD1 + FD2,

Fh = FL1 + FL2,

Fr = F1j − F2j ,

Fa = F2i − F1i ,

⎫⎪⎬
⎪⎭ (2.7)

where F2i =FL2 cos θ +FD2 sin θ , F1i = FL1 cos θ +FD1 sin θ , F2j = FL2 sin θ − FD2 cos θ

and F1j =FD1 sin θ +FL1 cos θ are respectively the ei - and ej -components of the forces
F1 and F2. Note that Fv and Fh describe the ex - and ey -components acting on the
system formed by the bubble pair and they point to the induced motion of its
centre of mass O. By definition, the Fv component is positive. It will be compared
with the drag force magnitude FD∞ acting on a single bubble under the same flow
condition (same Re). If Fv < 2FD∞ (resp. Fv > 2FD∞), the centre of mass moves faster
(resp. slower) than a single bubble. The effects of the three other components are
summarised in figure 2. If Fh > 0, the centre of mass of the two bubbles drifts from the
left to the right. The component Fa points to the relative attraction. If Fa > 0 (resp.
Fa < 0), the two bubbles are repelled (resp. attracted). Finally, the component Fr gives
information on the evolution of the relative orientation of the two bubbles. If Fr > 0,
the bubbles rotate increasing the angle θ (evolution towards the in-line position),
while for Fr < 0, the angle between the bubbles is decreased (evolution towards the
side-by-side position).

All the force components introduced above are normalised by πR2ρU 2
∞/2 (resp.

πR2ρU 2
∞) in order to define the dimensionless coefficients CD1, CL1, CD2 and CL2

(resp. Cv , Ch, Cr and Ca) associated with the force components FD1, FL1, FD2 and FL2

(resp. Fv , Fh, Fr and Fa). We also note CD∞ =FD∞/(πR2ρU 2
∞/2), the drag coefficient

of a single isolated bubble in an unbounded situation. By definition, CD1, CD2 and Cv

tend to CD∞ and CL1, CL2, Ch, Ca and Cr vanish when S → ∞. Knowing the value of
the coefficients Cv , Ch, Cr and Ca , it is straightforward to calculate the drag and lift
of each bubble:

CD1 = Cv − Cr cos θ − Ca sin θ,

CD2 = Cv + Cr cos θ + Ca sin θ,

CL1 = Ch + Cr sin θ − Ca cos θ,

CL2 = Ch − Cr sin θ + Ca cos θ.

⎫⎪⎬
⎪⎭ (2.8)

3. Numerical procedure
The simulations presented below were carried out using the JADIM code described

in previous works devoted to bubble dynamics studies (Magnaudet, Rivero & Fabre



Figure 3. Partial view of the grid near the bubbles for S = 5.

1995; Legendre & Magnaudet 1998; Legendre et al. 2003; Merle, Legendre &
Magnaudet 2005; Figueroa-Espinoza, Legendre & Zenit 2008). The reader is referred
to Legendre et al. (2003), where the code is used to study the hydrodynamic
interaction of two bubbles moving side by side. Briefly, the JADIM code solves
the three-dimensional unsteady Navier–Stokes equations written in velocity–pressure
variables in a general system of orthogonal curvilinear coordinates. The discretisation
involves a staggered mesh and the equations are integrated in space using a finite
volume method with second-order accuracy. All spatial derivatives are approximated
using second-order centred schemes. The time advancement is realised through a
Runge–Kutta/Crank–Nicolson algorithm which is second-order accurate in time, and
incompressibility is satisfied at the end of each time step by using an auxiliary
potential determined by solving a Poisson equation.

The grid used in this study is presented in detail by Legendre et al. (2003). The
grid is based on a two-dimensional mesh obtained from the streamlines (η = const.)
and equipotential lines (ξ = const.) of the potential flow generated by two circular
cylinders moving in line along the (ei ) axis. Then, the final three-dimensional grid
is obtained by a rotation of the plane grid about the (ei ) axis with an angle φ. An
example of the grid is shown for S = 5 in figure 3.

Many numerical tests presented by Legendre et al. (2003) concerning the node
distributions have been performed to prove that numerical results are grid-
independent. Since these tests concern situations corresponding to θ = 0◦, we have
performed additional tests in order to make sure that these grids can also be used
for any value of θ between 0◦ and 90◦. The same tests have been reproduced for
the angle θ =90◦ and especially θ =45◦, corresponding to the more crucial situation
in which the flow velocity observes most of the cells with an angle of 45◦, which is
known to be the worst situation for numerical accuracy. These tests have confirmed
the choice of the numerical parameters for the grid presented in Legendre et al.
(2003). Two examples are presented in tables 1 and 2. Table 1 reports numerical
tests for the effect of the distance δ from the bubble surface to the first node
above the surface, which is crucial for an accurate description of the interaction in
the high-Reynolds-number regime (see Legendre et al. 2003). Table 2 reports the
effect of the number of nodes N between the two bubbles. For all the simulations
reported in this study, we have chosen δ/R =0.002 and N =20 for 2.5 � S � 4.5,
N = 30 for 6 � S � 10 and N = 40 for S � 12. Note that the same tests have been
performed with the same conclusions for the potential results presented in the next
section.



δ/R Cv Ch Ca Cr

0.001 0.112 0.0179 0.0224 0.109
0.002 0.111 0.0175 0.0222 0.110
0.004 0.111 0.0164 0.0217 0.112
0.01 0.108 0.0167 0.0240 0.115

Table 1. Effect of the relative size δ/R of the cell located on the bubble surface
for S =3, θ = 45◦ and Re = 300.

N Cv Ch Ca Cr

20 0.1111 0.01752 0.02218 0.1097
30 0.1112 0.01753 0.02221 0.1098
40 0.1112 0.01754 0.02222 0.1098

Table 2. Effect of the number of nodes between the two bubbles for S = 3, θ = 45◦

and Re = 300.

4. Additional numerical validations
4.1. Interaction in irrotational flow

Solutions for the force acting on two spheres of identical radius moving in an
irrotational flow at an arbitrary angle with respect to their centrelines have been
reported by Endo (1938) and by several other studies (Biesheuvel & van Wijngaarden
1982; Kok 1993). Following the global kinetic energy balance approach (Levich
1962), Kok (1993) evaluated the modification of the viscous drag force due to the
hydrodynamic interaction between the two bubbles and proposed the forces acting
on the bubbles in an irrotational viscous flow (given here up to O(S−9) terms):

Cv pot =
48

Re
[1 + G∗ + H ∗ cos(2θ)], (4.1)

Ch pot = − 48

Re
H ∗ sin(2θ), (4.2)

Ca pot = 2M∗ − 2N∗ cos(2θ), (4.3)

Cr pot = 2L∗ sin(2θ), (4.4)

with

2G∗ = −S−3 +
15

4
S−6 + 8S−8 − 7

2
S−9 + · · · , (4.5)

2H ∗ = 3S−3 − 9

4
S−6 − 4S−8 +

9

2
S−9 + · · · , (4.6)

2M∗ = 3S−4 − 15S−7 − 64S−9 + · · · , (4.7)

2N∗ = 9S−4 − 9S−7 − 32S−9 + · · · , (4.8)

2L∗ = −6S−4 + 3S−7 + 8S−9 + · · · . (4.9)

It can be noted that the contributions Cv and Ch are zero in an inviscid flow. To
check our code against these predictions, we considered the results obtained during
the first time steps after the flow has been initialised with a uniform velocity profile far
upstream. As vorticity is generated at the bubble surface by the shear-free condition
and is then diffused in the boundary layer and shed in the wake, its influence is
expected to be negligible during the very first time steps (typically over a period
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of time T such that T � R2/ν). Indeed, by choosing a very small time step �t , we
observed quasi-constant values of the coefficients over several tens of time steps. The
results obtained for two different time steps �t = 10−6R/U and �t = 10−5R/U are
very close. Figure 4 presents a comparison with the irrotational solution (4.1)–(4.4) at
Re = 20 and Re = 200 for S =3 and S = 4.5, respectively. These comparisons confirm
the results presented by Legendre et al. (2003) for side-by-side bubbles concerning the
ability of our code to properly capture the irrotational mechanisms of interaction.

4.2. In-line bubbles (θ = 90◦)

As discussed in the Introduction, the in-line interaction between two bubbles has been
studied analytically and numerically (Yuan & Prosperetti 1994; Harper 1997). From
the relation (4.1)–(4.4), it is possible to express the viscous potential solution for two
bubbles moving in line as

CD1 pot =
48

Re
(1 + G∗ − H ∗) − 2M∗ − 2N∗, (4.10)

CD2 pot =
48

Re
(1 + G∗ − H ∗) + 2M∗ + 2N∗. (4.11)

The solution (1.3)–(1.4) is consistent with the first terms of the expansion reported in
(4.10–4.11), since 2M∗ + 2N∗ = 12S−4 − 24S−7 − 96S−9 + · · · and G∗ − H ∗ = −2S−3 +
3S−6+6S−8+· · · . Our numerical simulations are compared with the analytical solution
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(1.3)–(1.4) and the DNS reported by Yuan & Prosperetti (1994). Figures 5(a) and
5(b) report a comparison at S = 3 for various Re and at Re =200 for various S,
respectively. Since for two bubbles moving side by side the drag evolution is very
well described by simply adding the full potential solution and the Moore correction
(Legendre et al. 2003), the results are also compared with the following expressions
deduced from the potential solution (4.10)–(4.11) and the Moore correction derived
by Harper (1997):

CD1 =
48

Re

(
1 + G∗ − H ∗ − M1

Re1/2

)
− 2M∗ − 2N∗, (4.12)

CD2 =
48

Re

(
1 + G∗ − H ∗ − M2

Re1/2

)
+ 2M∗ + 2N∗. (4.13)

Figure 5(a) shows that for Re = 200 our results are in good agreement with expressions
(4.12)–(4.13) and (1.3)–(1.4) for all the separating distances covered by the study.
Note that the difference between (4.12)–(4.13) and (1.3)–(1.4) is very small since it is
proportional to terms of order O(S−7, Re−1S−6). The agreement with the simulations
of Yuan & Prosperetti (1994) is very good for Re = 200 if S > 4. Figure 5(b) indicates
that for S =3 the agreement is satisfactory with relations (4.12)–(4.13) for Re � 100.
For S =3, the agreement with Yuan & Prosperetti (1994) is very good for Re = 100,
acceptable for Re = 200 and not satisfactory for Re = 20 and Re = 50. The main
reason could be attributed to the grid used in both studies, especially in the gap
between the bubbles, which is crucial when the distance between the two bubbles
is small (Legendre et al. 2003). To check the origin of the discrepancy, additional
simulations to prove grid independence of our results were performed. We have
tested the effect of (i) the distance δ from the bubble surface to the first node
(table 3a), (ii) the number of nodes N between the two bubbles (table 3b) and (iii)
the number of nodes Nb used to describe the bubble surfaces (table 3c). These tests
confirm that our results are grid-independent for the case of two bubbles moving



(a) (b) (c)

δ/R CD1 CD2 N CD1 CD2 Nb CD1 CD2

0.001 0.0745 0.272 10 0.744 0.272 20 0.0773 0.272
0.002 0.0745 0.272 20 0.745 0.272 30 0.0745 0.272
0.004 0.0744 0.271 30 0.745 0.272 40 0.0735 0.272
0.01 0.0743 0.270 40 0.745 0.272

Table 3. Effect of the grid parameter for two bubbles moving in line (θ = 90◦) at S =3 and
Re = 200. (a) Effect of the relative size δ/R of the first cell located on the bubble surface for
N = 20 and Nb = 30. (b) Effect of the number of nodes N between the bubbles for δ/R =0.002
and Nb = 30. (c) Effect of the number of nodes Nb on the bubble surface for δ/R = 0.002 and
N = 20.

2

3

4

5

6

7

8

9

S

101 102 103

Re

Figure 6. Equilibrium distance between two bubbles moving in line. Symbols: �, attracted
bubbles; �, repelled bubbles (this study); —, relation (4.14) for 50< Re < 200 (Yuan &
Prosperetti 1994); − − −, relation (4.14) 30<Re < 500; �, solution of (4.16).

in line. Following the procedure presented in the previous section, we have also
done additional simulations for θ = 90◦, which confirms that the potential effect is
properly reproduced up to smaller separation distances. The comparison is reported
for Re = 200 and S = 3 using black symbols in figures 5(a) and 5(b), respectively.

The equilibrium distances Se = de/R deduced from our simulations are reported in
figure 6 and compared with the relation

Se = 4.40 log Re − 4.38, (4.14)

deduced by Yuan & Prosperetti (1994) from their numerical simulations for
50 <Re < 200. The equilibrium distance is found to be in very good agreement
between the two numerical studies in the range covered by Yuan & Prosperetti
(1994). Our simulations show that this correlation can be extended to larger Reynolds
numbers but it cannot predict the asymptotic behaviour in the limit of lower Reynolds
numbers, since the separating distance seems to evolve as

Se → 2 when Re → O(1). (4.15)
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and (6.12) for CD1, CL1, CD2 and CL2; . . . , drag and lift coefficients for a single bubble in an
unbounded fluid.

This limit is in agreement with the Stokes flow solution, since it can be deduced from
the solution for two solid spheres (Happel & Brenner 1965) that two bubbles moving
in line are attracted at low but non-zero Reynolds number. Indeed, using analytical
arguments first presented in Legendre & Magnaudet (1997), the drag expression for
two solid spheres moving in line can be extended to bubbles using the prefactor (2/3).

From expression (4.12)–(4.13), the equilibrium distance Se is reached when
CD1 =CD2:

12 (M2 − M1) = Re3/2(M∗ + N ∗). (4.16)

Since M2 and M1 are both complex functions of Re and S (see Harper 1997), the
equilibrium distance Se for a given Reynolds number or the equilibrium Reynolds
number Ree for a given distance are determined from (4.16) using an iterative
procedure. The corresponding equilibrium distance Se is thus reported for comparison
in figure 6 for Re = 50, 100 and 200 using black stars. The agreement is very good
for Re > 100, which confirms the range of validity of relation (1.3).

5. Description of the interaction between the two bubbles
The hydrodynamic interaction between the two bubbles is first mentioned for

Re =200 and S = 3.75. The drag coefficients CD1, CD2 and lift coefficients CL1, CL2 are
reported in figure 7 versus the orientation angle θ . These coefficients are compared
with the potential solution deduced from (4.1)–(4.4). We observe that the evolution
of the drag coefficients seems to be deduced from the potential solution by a simple
translation except for CD2 when θ � 75◦. For the lift coefficient, the evolution is close
to the potential one except for CL2 when θ � 75◦. This specific change of behaviour
for both the drag and the lift of the second bubble is due to the interaction with
the wake of the first bubble. Note that CD1 and CD2 are compared with the drag
coefficient CD∞ experienced by a single bubble moving in an unbounded fluid at the
same Reynolds number. When the bubbles are side by side (θ = 0◦), they experience
a drag which is slightly higher than that of a single bubble. When θ increases, the
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Figure 8. (a–d ) Coefficients Cv , Ch, Ca and Cr for Re = 200 and S =3.75. Lines: − − −,
potential solution; —, evolutions deduced from expressions (6.3), (6.6), (6.7) and (6.12); . . . ,
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θv = 37◦, θh =58◦ and θa = 37◦, respectively.

drag of the first (left) bubble first starts to increase while the drag of the second
(right) bubble decreases, so that CD1 >CD2 for θ � 53◦. This means that the bubbles
are attracted along the ey-direction. For θ � 28◦, the lift coefficient of the first bubble
is larger than that of the second bubble, CL1 >CL2, corresponding to an attraction
along the ex-direction. The combination of the simultaneous attraction along the ex-
and ey-directions indicates that the two bubbles are attracted for θ � 28◦. The drag
difference between the two bubbles is maximum for θ ∼ 30◦ and is then reduced. The
two bubbles again experience the same drag for θ ∼ 53◦, which is nearly the drag of a
single bubble. For θ � 53◦, CD1 <CD2 and CL1 <CL2, so that the bubbles are repelled.
The behaviour is similar to the one observed in potential flow where the bubbles are
attracted for 0 <θ <θa and repelled for θa < θ < 90◦, as presented in the Introduction
(Kok 1993). This classic force decomposition (drag and lift) does not allow the value
of θa to be known, i.e. whether the bubbles are attracted for 28◦ � θ � 53◦ or not.

In order to make precise the angle of transition θa between attraction and repulsion
as well as the direction of the torque acting on the tandem, we use the force
decomposition introduced in § 2. The four coefficients Cv , Ch, Ca and Cr are plotted in
figure 8 for Re =200 and S =3.75. The plot of the attraction coefficient Ca indicates
that θa ∼ 37◦, the two bubbles being attracted (Ca � 0) for 0 <θ � θa but repelled for
θa � θ < 90◦. The plot of the coefficients Cv and Ch also reveals two other critical
angles θv ∼ θa ∼ 37◦ and θh ∼ 58◦. Indeed, the centre of inertia of the tandem moves
slower than a single bubble (Cv � CD∞) for 0 <θ � θv , while it moves faster for larger
angles. The bubble tandem drifts from the right to the left (Ch � 0) for 0 � θ � θh. For
larger angles, the drift changes direction. The coefficient Ch reaches a maximum for
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Figure 9. (a–d ) Effect of the Reynolds number on the coefficients Cv/CD∞, Ch, Ca and Cr for
S = 3. Symbols: �, Re = 500; �, Re = 300; 	, Re = 200; 
, Re = 100; �, Re = 50; �, Re = 20.
Vertical dashed lines show θv = 37◦, θh = 55◦ and θa = 37◦, respectively.

θmax ∼ 80◦. Finally, the rotation coefficient Cr is negative for all the angles, showing a
torque action on the tandem that tends to organise the bubbles side by side. Thus, for
Re =200 and S = 3.75, the in-line motion is unstable while the side-by-side position
is stable. The maximum torque is also observed at θ = θmax ∼ 80◦, indicating a similar
origin for both behaviours. The significant change observed for the drag and lift of
the trailing bubble for θ � 75◦ is also very clear for the four interaction coefficients.

Using these four non-dimensional coefficients, the Reynolds number effect on bubble
interaction is shown for S =3 in figure 9. To make the comparison between different
Reynolds numbers easier, the coefficient Cv is normalised by the drag coefficient
of a single bubble CD∞. Note that Cv/CD∞ is found to have a similar evolution
for the different Reynolds numbers until the second bubble enters in the wake
of the first bubble. The corresponding drag decrease is then significantly dependent
on the Reynolds number because the velocity wake decay depends on Re as shown
in the Appendix. The plot shows that the critical angle θv ∼ 37◦ is found to be nearly
independent of the Reynolds number for S =3.

Concerning the ex - or drift coefficient Ch, the same evolution is observed with a
change of drift direction at a nearly constant angle θh ∼ 55◦ except at Re = 20. At
this Reynolds number, Ch < 0 for all the angles. We also observe that for θ < θh, the
magnitude of the drift force of the tandem decreases when increasing the Reynolds
number, in agreement with the potential solution. After the change of drift direction,
we observe that the combined influence of the potential contribution and the wake
of the first bubble makes the behaviour more complex.

For Re > 50, the evolution of the attractive coefficient Ca with the angle looks
similar whatever the Reynolds number, so that θa is nearly independent of Re: the
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bubbles are attracted for 0 < θ < θa and repelled for larger angles. We have θa ∼ 37◦

from figure 9. As observed for Cv and Ch, a noticeable change of behaviour is observed
when the trailing bubble interacts with the wake of the leading bubble. The region of
wake influence increases when Re decreases due to a stronger diffusion of the wake
at lower Reynolds numbers. Completely different behaviour is observed for Re = 20.
Indeed, it can be noticed that for Re = 20 and S = 3, the sign of Ca is the opposite of
that for larger Reynolds numbers: for 0 <θ < 60◦, the two bubbles are repelled, but
attracted for 60◦ <θ < 90◦. This is in agreement with figure 6, where the equilibrium
distance for θ = 0◦ is Se(Re = 20) ∼ 2.6 < 3.

Concerning the rotation coefficient, figure 9 clearly shows that Cr is negative
whatever the Reynolds number, indicating that the side-by-side configuration is
the only stable position. For Re > 50, the magnitude of the torque is found to be
independent of the Reynolds number for 0 < θ < 40◦ and close to the potential value
(see figure 8). Again, when the second bubble is influenced by the wake of the first
bubble, Cr is significantly influenced by the Reynolds number.

The effect of the separating distance is reported in figure 10 at Re =200. The
same trend is observed for the four coefficients, but their magnitude is significantly
influenced by the separation. Obviously, the magnitude of the interaction becomes
stronger when the separation decreases. For S = 6 and S = 8, only the wake effect
seems to contribute towards bubble interaction. We also observe that the critical
angles θa , θv and θh are nearly independent of the separation for Re = 200.

The description of both the effect of the Reynolds number and separation distance
has been presented in this section. We have shown that the interaction can be
characterised by three critical angles that are nearly constant for Re � 50 and for



the separation considered here (2.5 � S � 10). The bubbles are attracted for 0< θ < θa

with θa ∼ 37◦ and repelled for larger angles; the tandem experiences a drag larger
than that of a single bubble for 0 <θ <θv with θv ∼ θa ∼ 37◦, the drag Cv being lower
for larger angles; the centre of inertia drifts from the right to the left (Ch < 0) for
0 < θ < θh. The critical angle θh is significantly affected by the separating distance.
The torque applied on the system always has the same effect whatever S and Re,
and tends to form the side-by-side configuration. It is also clear that the wake of
the leading bubble induces a significant effect compared with what the potential flow
solution describes. This particular wake effect is analysed in detail in the next section.
For this purpose, the characterisation of the wake of a single bubble is reported in
the Appendix. The velocity is described in the near wake and a simple model based
on the far-wake velocity profile is proposed.

6. Drag and lift forces
The aim of this section is to propose simple expressions based on physical arguments

to describe the forces experienced by each bubble. The discussion is conducted using
the drag and lift coefficients. The corresponding expression for the coefficients Cv ,
Ch, Ca and Cr can be directly obtained using relations (2.7), and are shown for
comparison with numerical results in figure 8.

6.1. Leading bubble

In the side-by-side configuration, Legendre et al. (2003) showed that the drag of the
bubbles can be satisfactorily described by simply superposing the potential viscous
drag and the Moore correction. Expression (1.5) can also be written as

CD1(θ = 0◦) = CD1 pot − M∞
48

Re3/2
(1 + S−3), (6.1)

where CD1 pot is given by (4.10). In the in-line configuration, we have shown in § 4.2
that the drag coefficient of the leading bubble can be expressed as

CD1(θ = 90◦) = CD1 pot − M1

48

Re3/2
, (6.2)

where a good approximation consists in considering M1 	 M∞ = 2.211 (Yuan &
Prosperetti 1994; Harper 1997). Considering these two expressions, it is therefore
attractive to propose the following very simple relation for any tilt angle:

CD1 = CD1 pot − M∞
48

Re3/2
(1 + S−3 cos θ). (6.3)

This model is found to describe correctly the simulations for Re � 50. An example
of comparison is reported in figure 7. Consequently, the main difference between the
potential solution and the simulations for CD1 is due to the Moore correction. It can
be noticed that a small discrepancy is observed for very small separations and θ 	 90◦

when using M1 	 M∞ =2.211, since this value is slightly lower than the analytical
value (Harper 1997). The agreement is improved if the value of M1 obtained by
Harper (1997) is used in (6.3). Note that the S−3 correction is a small contribution to
the total drag coefficient.

In the side-by-side configuration, Legendre et al. (2003) found the lift coefficient to
be given by (1.6). This expression is also written as

CL1(θ = 0◦) = CL1 pot − 240

ReS4
, (6.4)



where CL1 pot is given by (2.8), (4.2) and (4.3). In the in-line case, the two bubbles
experience no lift force, so that

CL1(θ = 90◦) = 0. (6.5)

A simple extension of these two limit relations is to propose the following expression
for the lift coefficient experienced by the first bubble:

CL1 = CL1 pot − 240

ReS4
f1(θ), (6.6)

where f1(θ) is a function that satisfies f1(90◦) = 0 and f1(0
◦) = 1. The expression

f1(θ) = cos θ[1 − (1 − 0.00053ReS3) sin(2θ) cos3(θ)] makes possible the description of
the numerical values for any tilt angle. This relation is reported for comparison in
figure 7, where the agreement with numerical data is very good.

6.2. Trailing bubble

As shown before, the effect of interaction is more pronounced on the trailing bubble
when it enters an interaction with the wake of the first bubble. The objective is again
to connect the drag force expression when the two bubbles are rising side by side
(1.5) and when they are moving in line (4.12). For this purpose, we propose writing
the drag coefficient as

CD2 = CD2 pot − 48
M∗

2

Re3/2
, (6.7)

where M∗
2 → M∞ when θ → 0◦ and M∗

2 → M2 when θ → 90◦. The objective is to correctly
reproduce the induced wake effect on the Moore correction. This effect is maximum
when the bubbles are in line and vanishes when the second bubble is not influenced by
the wake of the first bubble. The idea is to introduce in the Moore term a correction
based on the wake characteristics as

M∗
2 = M∞F (ũrot ), (6.8)

where ũrot is the rotational part of the wake of a single bubble given by (A 4) in the
Appendix, with X̃ = S sin θ and Ỹ = S cos θ . An inspection of our results reveals that
the expression

F (ũrot ) =
(
1 − α2

α
ũrot

)−3/2

, (6.9)

with α2 = (0.085S + 0.124), makes possible a very satisfactory description of the drag
decrease of the trailing bubble when located in the wake of the first bubble, as shown
in figure 7. The comparison is reported in figures 11 and 12 for (Re = 200, S ∈ [2.5; 8])
and (Re ∈ [20; 500], S =3), respectively. This result indicates that the induced wake
effect is correctly described using a Moore correction by considering a modified
Reynolds number 2RρU∞(1 − ũ)/µ based on the rotational part of the wake
ũ= α2/αũrot seen by the trailing bubble. Thus, the wake velocity defect needs to
be corrected by α2/α since the second bubble is not completely embedded into the
wake of the first bubble and the velocity is not uniform at the bubble scale. The wake
width is thinner than the bubble size when close to the first bubble and larger when
located far downstream. In addition, the width of the wake depends on the Reynolds
number, as shown in the Appendix.

As observed in figure 7, the second bubble experiences a significant transverse or
lift force when interacting with the wake of the first bubble. Out of the wake, the
lift effect can be described by simply superposing the potential contribution and a
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viscous correction of the form 240S−4Re−1f2(θ), as done for the leading bubble with
f2(θ) = cos θ[1 + (1 − 0.00053ReS3) sin(2θ) cos3(θ)]. The combined contributions of
CL1 and CL2 make possible a good description of the transverse motion of the bubble



pair as shown in figure 8 by the evolution of Ch = (CL1 + CL2)/2 for 0 <θ < 40◦. In
the wake, the direction of the additional wake effect is in agreement with the classical
lift force experienced by an isolated spherical bubble in a uniform unbounded linear
shear flow (Auton 1987; Legendre & Magnaudet 1998):

FL = CL

4πR3

3
ρ(u − v) × (∇ × u), (6.10)

where v is the velocity of the bubble, u is the unperturbated flow evaluated at
the centre of the bubble and CL is the lift coefficient. For a perfect fluid, Auton
(1987) showed that CA

L = 1/2 in the limit of weak shear flow. Legendre & Magnaudet
(1998) extended this result to viscous fluid and moderate shear rate and proposed the
relation CLM

L = CA
L (Re + 16)/(Re + 29) to describe the lift coefficient for Re � 5. The

lift coefficient is found to be lower than 1/2 for moderate Reynolds numbers.
In the frame of reference fixed with the bubbles, one has u = −U∞(1 − ũwake)ey and

v = 0, so that using relation (A 4) the corresponding lift effect is

FL = CL

πR3

3
ρU 2

∞βRe
Ỹ

X̃
(1 − ũwake)ũrot ex , (6.11)

with X̃ = S sin θ and Ỹ = S cos θ . The total transverse lift coefficient is then given by

CL2 = CL2 pot +
240

ReS4
f2(θ) +

2

3
CL wakeβRe

cos θ

sin θ
(1 − ũwake)ũrot . (6.12)

Note that the wake contribution to CL2 vanishes for a given separating distance
when θ → 0. The lift coefficient is reported in figures 13 and 14 for various Reynolds
numbers and separations (see also figure 7). The transverse effect is shown to be
satisfactorily reproduced by relation (6.12). In particular, it is possible to correctly
describe the location of the peak of lift in the wake as well as the region of the wake
influence (see also Ch and Cr in figure 8). This additional transverse wake effect can
clearly be attributed to a shear-induced lift force. The corresponding shear-induced lift
coefficient CL wake varies between 0.05 and 0.35. The lift coefficient is found to depend
on both the distance between the two bubbles and their Reynolds number. This can
be attributed to the wake characteristics: the width of the rotational region increases
with the distance to the bubble while the magnitude of the vorticity decreases. In
addition, the second bubble cannot be considered as embedded in an unbounded
linear shear flow since the lift effect is induced by a vorticity region corresponding
to the wake of the first bubble. The corresponding wake width is thinner than the
bubble size when close to the first bubble and larger when located far downstream.
At a given position (fixed S), the width of the wake also decreases when the Reynolds
number increases. The local size of the wake δw can be characterised by twice the
distance from the axis where the velocity is half of the axis velocity. From the velocity
profile in the wake given by (A 4), one has

δ2
w

R2
= 32 ln(2)

S

βRe
, (6.13)

where β is calculated by considering that X̃ ∼ S in the bubble wake. Figure 15 reports
the evolution of CL wake as a function of δw/R. This plot clearly shows that the induced
lift effect strongly depends on the relative size between the wake (that contains the
vorticity of the flow) and the bubble. We observe that CL wake increases with δw/R

with values lower than CA
L = 1/2, while CL wake decreases to zero as the relative size of

the wake decreases. Figure 15 also reveals that the induced shear lift force remains
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Figure 14. Lift coefficient CL2 of the trailing bubble at S = 3. (a) Re = 20, (b) Re = 50,
(c) Re = 100, (d ) Re = 300, (e) Re = 400 and (f ) Re = 500. Symbols: �, numerical results; - - -,
analytical potential lift; —–, relation (6.12).

significant even if the size of the vorticity region and the size of the bubble have
the same order of magnitude. This is consistent with the results of Merle et al.
(2005), who showed that the shear-induced Auton lift force also correctly describes
transverse fluctuations in a turbulent flow for bubble size comparable with the Taylor
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micro-scale of the flow. The decrease of CL wake appears to be very sharp and suggests
a characteristic value δc corresponding to the vanishing of CL wake . The inset of figure
15 reveals that it is possible to find for each Reynolds number a value for δc such
that all the evolutions of CLM

L − CL wake collapse on the same curve:

CL wake = CLM
L − 0.2

δw − δc

. (6.14)

The characteristic size corresponding to the vanishing of CL wake is found to be well
described by δc = 6.8Re−1/2. This result indicates that the induced shear lift effect
vanishes when the size of the vorticity region is about the size of the vorticity
boundary layer at the bubble surface.

7. Concluding remarks
This study has focused on the interaction between two spherical bubbles rising in

a liquid. The interaction has been described and characterised for a large range of
Reynolds numbers (20 � Re � 500) and separating distances (2.5 � S � 10) between
the two bubbles. The relative position has also been described by changing the angle
θ formed between the centreline and the ex -direction in order to connect previous
studies performed for two bubbles rising in line (Yuan & Prosperetti 1994; Harper
1997) and for two bubbles rising side by side (Legendre et al. 2003). The drag and
transverse (lift) forces have been analysed for each bubble and described using some
simple models based on a physical description of the interaction. Note that in the
present work a model of velocity field in the wake of the leading bubble was built
from the results of numerical experiments and used to determine the forces exerted
on the bubbles, whereas the opposite approach of assuming the external forces



on each bubble determine velocities can also be employed (e.g. Voinov & Golovin
1970; Harper 2001). The study was conducted for fixed values of θ , Re and S. The
application to a real system where θ , Re and S would however vary due to the
interaction forces between the two bubbles is made possible by adding to the force
balance the added mass force (see Kok 1993) and by neglecting the history force that
is a reasonable approximation for a spherical clean bubble moving at large Reynolds
number (Magnaudet et al. 1995).

The interaction is the combination of three effects: the potential effect, a viscous
correction (Moore’s correction) and a significant wake effect observed on both the
drag and the transverse forces of the second bubble when located in the wake of the
first bubble. The maximum drag reduction is observed for the in-line configuration,
and the maximum wake-induced lift corresponds to the maximum of (u−v) × (∇ × u).
Both effects have been satisfactorily described using the velocity defect, which has
been characterised in the near wake of a single bubble.

The results reported indicate that the stable final position for two bubbles rising in
interaction is the side-by-side configuration. The in-line configuration is thus unstable
according to the negative torque whatever θ , Re and S. This agrees with the theories
of Harper (1970) and Auton (1987) for the vorticity-induced lift effect on spherical
bubbles with clean surfaces and with the experiments of Cartellier & Rivière (2001) at
Reynolds numbers of order 10 in which there was a strong deficit in the pair density
at the rear of bubbles. Nevertheless, stable lines of bubbles are often seen both in
glasses of various drinks such as Champagne and in controlled experiments (Katz &
Meneveau 1996; Sanada et al. 2005). This stability may be an effect of deformation
from a spherical shape (Bunner & Tryggvason 2003; Adoua, Legendre & Magnaudet
2009) or of surface contamination (which need only be very slight; Harper 1970,
2008). Both effects are beyond the scope of this paper.

One piece of information given by the simulations reported in this paper is that, for
spherical bubbly flow, the vorticity-induced lift effect experienced in wakes reinforces
the potential effect that tends to form stable horizontal clusters as observed when
simulating the motion of a large number of spherical bubbles in potential flow
(Sangani & Didwania 1993; Smereka 1993; Yurkovetsky & Brady 1996). Such
effects are not observed in three-dimensional experiments (Lance & Bataille 1991;
Cartellier & Rivière 2001; Roig & Larue de Tournemine 2007; Riboux, Risso &
Legendre 2010) and direct numerical simulations (Esmaeeli & Tryggvason 1998;
Bunner & Tryggvason 2002). Bubbly flows are known to generate an induced
agitation produced by wake interaction. Such agitation is responsible for bubble
dispersion. Consequently, two mechanisms are in competition: one is the potential
and wake ejection that tends to form horizontal clusters and the second is the bubble-
induced agitation. Note that when the bubbly flow is forced to be two-dimensional
due to wall confinement (Zenit, Koch & Sangani 2001) or because of bubble
accumulation near a wall (Takagi, Ogasawara & Matsumoto 2008), some tendencies
to generate clusters are observed. One possible explanation of this modification is
that bubble dispersion is reduced due to the two-dimensional geometry. A criterion
for bubble clustering could be proposed by comparing wake ejection and induced
agitation.

Appendix. Wake of a single bubble
As described in this paper, the behaviour of the second bubble is significantly

affected when located in the wake of the first bubble. The objective of this appendix



is to characterise the wake of a single bubble for the range of Reynolds number
covered by this study. Here, we denote Y the radial distance from the wake axis, X

the distance downstream and r2 = X2 + Y 2. A tilde denotes dimensionless quantities,
R and U∞ being used as the length and velocity scales, respectively.

At large distances downstream, the flow is known to follow the standard far-wake
behaviour and the velocity deficit profile is parallel to the X-direction and is given by
(Batchelor 1967):

uwake ∼ U∞Q

4πνX
exp

[
−U∞

Y 2

4νX

]
, (A 1)

where Q =FD∞/ρU∞ =CD∞πR2U∞/2 is determined by integration over the wake and
is directly related to the total drag FD∞ of the body.

In the present paper, we are considering a bubble located in the near wake of
another bubble. For the distances studied (2.5 � X̃ � 10), the far wake cannot be
considered as established. At distances close to the leading bubble, the potential
contribution also has a significant contribution. Following Moore’s decomposition
(Moore 1963), the streamwise velocity in the wake uwake is expressed using the
potential solution upot and a rotational perturbation urot :

ũwake = ũX pot + ũrot , (A 2)

where ũX pot = X̃2/r̃5 − Ỹ 2/2r̃5 is the streamwise component of the potential flow.
Neglecting X gradients and viscous terms, Moore (1963) showed that there is a

region of length O(RRe1/2), in which the wake is of thickness O(RRe−1/4) and where
the solution for the streamwise component of the perturbation velocity is

ũrot = − 12

Re1/2
[π−1/2 exp(−σ 2) − σerfcσ ], (A 3)

where σ = Ỹ 2Re1/2/8.
Discussing the numerical results of Yuan & Prosperetti (1994) for the in-

line interaction, Harper (1997) showed that the diffusion of vorticity in the
near wake cannot be neglected, and has to be considered to give a satisfactory
description of the drag experienced by a second bubble, located in the wake
of the first bubble. Indeed, Harper (1997) indicated that neglecting diffusion in
the near wake is valid if Re−1/2X̃ � 1. For the Reynolds numbers (Re = O(100))
and the separations (X̃ =O(10)) considered in our study, one has Re−1/2X̃ = O(1),
showing that the assumption of Moore cannot be satisfied. This is confirmed in
figure 16, where Moore’s solution (A 3) is compared with the numerical simulations
performed for a single bubble. Several downstream distances from X̃ = 3 to X̃ = 20
are reported for Re =50 and Re = 500. The simulations clearly indicate that the
rotational contribution to the wake (i.e. the perturbation velocity) is dependent on
X, so that Moore’s assumption is not satisfied for the range of Reynolds number
considered here. We also observe that the agreement with relation (A 3) is improved
when increasing the Reynolds number. For Re = 500, we observe that ũrot is reduced
by 30% between X̃ = 3 and X̃ = 6 and divided by 3 between X̃ = 3 and X̃ = 20.
Moore’s solution overestimates the magnitude of the velocity and underestimates the
width of the wake (by a factor almost 2 at Re = 50 and by 30% at Re = 500).

In order to have a simplified near-wake description that tends to the far-wake
evolution given by (A 1), we propose describing the perturbation velocity of the
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wake as

ũrot =
CD∞Re

16

α

X̃
exp

[
−β

Re

8

Ỹ 2

X̃

]
, (A 4)

where CD∞ is the drag coefficient of the single bubble, which can be described using
the analytical solution CD∞ = 48/Re(1 − 2.211Re−1/2) for Re > 50 (Moore 1963) or
using the correlation CD∞ = 16/Re(16 + 3.315Re1/2 + 3Re)/(16 + 3.315Re1/2 + Re) for
all Re (Mei, Klausner & Lawrence 1994). In expression (A 4), we have introduced
two adjustable parameters α and β to fit the velocity defect of the near wake. The
comparison with the numerical solution is reported in figure 16. This figure shows
that at any position downstream X̃, it is possible to find a pair (α, β) of order unity
to fit the wake profile with very good agreement. A simple fit of α and β is given by

α = 1 − 1 − 41.8Re−0.9 + 48Re−1

1 + X̃(1.95Re−0.476 − 4.5Re−1)
, (A 5)

β = 1 − 1.03 − 13.1Re−1.2

1 + X̃(1.33Re−0.409 − 3.5Re−1)
, (A 6)

where (α, β) are found to tend to unity when increasing the distance, in agreement
with the standard far-wake behaviour given by expression (A 1).
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