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Introduction

Advanced driver-assistance systems (ADAS) are automated embedded systems that bring support to driving tasks (e.g., emergency braking, adaptative cruise control, automated lighting, navigation, . . . ). Given the high number of different vehicles, driving conditions, traffic laws, and given the expected reliability, it is today impossible to validate ADAS exhaustively only with physical tests "on tracks". Groupe Renault has made the technical choice to invest in massive driving simulation technology to circumvent this issue. For a given use case, a simulation protocol produces a multivariate time series dataset with varying dimensions: from 100 to 100 000 observations, and from 10 to 100 variables. The behavior of the simulated car cannot always be predicted. In consequences, it is impossible to use supervised methods. Our objective is to provide a synthetic view of the simulated dataset to the ADAS developer, that simultaneously highlights the driving patterns and discriminates groups of dependent sensors.

The model-based clustering methods [START_REF] Arthur P Dempster | Maximum likelihood from incomplete data via the em algorithm[END_REF] are a family of unsupervised probabilistic approaches that natively provide probabilistic estimations of cluster memberships, confidence intervals for probabilistic outlier detection, can infer missing values and model sample noise. In addition, they can handle data sets of varying sizes in opposition to existing Deep Learning clustering approaches [START_REF] Sai Madiraju | Deep temporal clustering: Fully unsupervised learning of time-domain features[END_REF][START_REF] Forest | An invariance-guided stability criterion for time series clustering validation[END_REF] that require massive amounts of data. An instance of such model-based approach has been used recently in the ADAS validation context [START_REF] Goffinet | Autonomous driving validation with model-based dictionary clustering[END_REF], but restricted to univariate time series analysis. In a multivariate context, the possible relations between variables introduces additional difficulties. In most of real-life use cases, it is likely that each variable is associated to a different partition of the observation space (called row-partition). In the following, we assume the presence of a variable partition (called redundant column-partition), such that variables in a redundant column-cluster share the same row-partition. In our use cases, this assumption seems rational, as we know that many variables are related (e.g., position and acceleration, ADAS activation and braking). The Multi-Clustering [START_REF] Hu | Subspace multi-clustering: a review[END_REF] designates a set of methods that infers this multiple-partitions representation of a dataset, as illustrated in Fig. 1 -b). In a parametric model-based context [START_REF] Marbac | A tractable multi-partitions clustering[END_REF][START_REF] Vandewalle | Multi-partitions subspace clustering[END_REF], using these approaches requires to know the partitions sizes a priori (rarely true in practice), or to perform a model selection step. However, the combinatorial nature of Multi-Clustering makes the model selection a complex task (there are, for example, 184755 different multi-clustering models with at most 10 clusters of variables and 10 clusters of observations). Heuristic approaches could be considered at the cost of assumptions on model structure (e.g. with greedy strategies). The non-parametric approach circumvents this issue by natively integrating a model selection. A non-parametric Bayesian Multi-Clustering model has been developed by [START_REF] Yue Guan | Variational inference for nonparametric multiple clustering[END_REF] for continuous datasets. In this model, the rows belonging to a block follow an independent multivariate distribution (c.f. Fig. 1-b)). This Multi-Clustering method groups variables according to their row partition but cannot regroup variables with similar distributions. Moreover, estimating the block distributions parameters becomes problematic when the column cluster sizes are high (e.g., high dimensional covariance matrices). Each redundant col-umn cluster is modeled with a coclustering structure to deal with this problem.

The model-based coclustering [START_REF] Govaert | Co-clustering: models, algorithms and applications[END_REF] (Figure 1 -a)) infers one row-partition and one column partition. This model assumes that all variables share the same row partition and that there exists groups of variables with common distribution. This assumption seems also natural, because our simulated variables are physically correlated (e.g., car speed and wheel rotation speed).

In this paper, we propose a new Non-Parametric Multi Coclustering (MCC) (c.f. Fig. 1-c) that combines the two previous approaches and produces the best of both worlds: the redundant partition layer extracts the true sparse number of row partition while the coclustering layers reduce the parameter set dimension and regroup correlated variables. To the best of our knowledge, there is only one comparable work by [START_REF] Tokuda | Multiple co-clustering based on nonparametric mixture models with heterogeneous marginal distributions[END_REF], which does not apply to multivariate time series.

Multi Coclustering of multivariate time series

MCC model definition

As a preprocessing step, the time series are first represented in a common basis, with a three steps transformations: 1) individual log-periodogram representation; 2) interpolation of the log-periodogram into a common frequency basis; 3) PCA on the frequency coefficients. This preprocessing outputs a dataset X = (x i,j,s ) n×p×d , with n observations described by p variables, and d the projection space dimension. We denote v the redundant partition indicator, (w h ) h the correlated partition indicator, and Z the row-partitions indicator matrix. The model is formally defined by:

x i,j | {v j = h, w h j = l,z h i = k, θ h k,l } ∼ N (θ h k,l ), θ h k,l ∼ G 0 , v j ∼ M ult(η), w h j ∼M ult(ρ h ), z h i ∼ M ult(π h ), η j (r) = r j j-1 j ′ =1 (1 -r j ′ ) , r j i.i.d. ∼ Beta(1, γ) , γ ∼ Gamma(a r , b r ) ρ h j (s h ) = s h j j-1 j ′ =1 1 -s h j ′ , s h j i.i.d. ∼ Beta(1, β h ) , β h ∼ Gamma(a c , b c ) π h j (t h ) = t h j j-1 j ′ =1 1 -t h j ′ , t h j i.i.d. ∼ Beta(1, α h ), α h ∼ Gamma(a l , b l ),
where each memberships proportions vector η, (ρ h ) h and (π h ) h follows a stickbreaking construction scheme [START_REF] Sethuraman | A constructive definition of dirichlet priors[END_REF] with Gamma distribution hyperprior. The block distributions are multivariate normal and G 0 is the associated conjugate Normal-inverse-Wishart prior. The complete hyperparameter set is noted χ.

Inference

We propose an iterative two-steps inference: 1) update of v given Z; 2) update of Z and w given v. In the first step, each membership v j is sampled sequentially according to:

p(v j | v -j , Z, x .,j , χ) ∝      p h p -1 + γ p(x .,j | z h , χ), existing cluster h, (1) 
γ n -1 + γ p(x .,j | χ), new cluster, (2) 
with v -j = {v i : i = j} and p(x .,j | z h ) the distribution of x .,j in z h . In Eq. ( 1), the predictive distributions p(x .,j | z h , χ) reduces to a product of multivariate t-student densities [START_REF] Gelman | Bayesian data analysis[END_REF] thanks to an appropriate choice of conjugate prior G 0 . In Eq. ( 2), p(x .,j | χ) is estimated with an univariate Dirichlet Process Mixture (once per variable, prior to the inference of the MCC), which also produces the optimal ẑj row partition associated with the new cluster. After v's update, the concentration parameter γ is updated based on [START_REF] West | Hyperparameter estimation in Dirichlet process mixture models[END_REF]. In the second step, an NPLBM [START_REF] Meeds | Nonparametric bayesian biclustering[END_REF] is inferred on each sub-dataset (X h ) h defined by the partition v with a Gibbs algorithm that simulates p(z h , w h | v, X h , χ) (c.f. [START_REF] Meeds | Nonparametric bayesian biclustering[END_REF]).

Applications

Experiments on synthetic data

We compare the MCC's performances to other methods adapted to the use case constraints. The experiments dataset is composed of observations generated from a ground truth row-partition, that we seek to estimate. This ground truth information is "corrupted" by adding a proportion of other variables, uninformatives (generated from a one-cluster partition) or misleading (generated from another row-partition than the ground truth), noted p u and p m . The baselines methods are non-parametric model-based approaches to Multi-Clustering: Dirichlet Process Mixture model (DPM) that infers a row-partition with only one column-cluster, non-parametric coclustering method (CC) [START_REF] Meeds | Nonparametric bayesian biclustering[END_REF] displayed in Fig. 1, decoupled Multi-Clustering based on a two-layers nested DPM (NDPM) and non-parametric Multi-clustering (MCD) equivalent to MCC without the coclustering layer. The results, displayed in Table 1, shows the interest of using MCC in the presence of uninformatives or misleading variables.

Emergency lane Keeping assist use case

After validating MCC on a synthetic dataset, we apply it on a real ADAS validation dataset. In a straight lane scenario, the vehicle under test is drifting towards an oncoming car on the other lane. The ELK system is expected to detect the drifting, the oncoming car and put it back to its lane center with an emergency maneuver. The simulation generates a dataset of n = 500 described by p = 150 temporal variables, totalling 75000 time series. The objective is to find driving patterns, to discriminate relevant groups of sensors and to isolate the ADAS activation context. The Fig. 2-a) represents the row partitions overlaid on the dataset, with color representing redundant column clusters, and transparency indicating block partitions. Fig. 2-b) shows the car trajectories (surrounded Fig. 2: a) MCC results. b) Car trajectories in the highlighted clusters by a red rectangle in Fig. 2-a)) distributed in the row-clusters, where several scenarios are represented: the sub-graph I shows a late ADAS activation scenario, sub-graph II regroups cases when ELK did not activate. In sub-graph III, the systems correctly change the car trajectory and prevent the collision. The last graph IV shows several outlier simulations detected using the probability density of the MCC model. In addition to discriminating the non-informative variables (leftmost columns in red color), the Fig. 2-A) shows a hierarchical structure between several row partitions (leftmost "green", "ochre" and "blue" columns). These partitions are linked to the vehicle orientation (e.g., road angle or steering wheel angle), lane position and ADAS activation indicators. Based on these results, the next steps for the ADAS system developer consists in relating the partitions to the input simulation parameters and assessing the ADAS compliance with its specifications.

This paper describes a new Bayesian non-parametric based method designed for the exploration of multivariate time series datasets produced by driving simulations. This solution infers a multi-level dependency structure that highlights the relationships between sensors and discriminates driving simulations patterns. This method can be used in other domains, as long as the corresponding structure dependency assumptions hold. In the future we consider combining the multivariate time-series multi-coclustering with the classification of the simulation parameters in order to identify ADAS failure and success contexts.
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 1 Fig. 1: Coclustering, Multi-Clustering and Multi-Coclustering, with k, l, h the row-cluster, correlated cluster and redundant cluster indices (respectively). Color and pattern designate block membership.

Table 1 :

 1 Row-partition quality described by ARI, RI and row-cluster number
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