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Abstract. Driver assistance systems development remains a technical

challenge for car manufacturers. Validating these systems requires to as-

sess the assistance systems performances in a considerable number of driv-

ing contexts. Groupe Renault uses massive simulation for this task, which

allows reproducing the complexity of physical driving conditions precisely

and produces large volumes of multivariate time series. We present the

operational constraints and scientific challenges related to these datasets

and our proposal of an adapted model-based multiple coclustering ap-

proach, which creates several independent partitions by grouping redun-

dant variables. This method natively performs model selection, missing

values inference, noisy samples handling, confidence interval production,

while keeping a sparse parameter numbers. The proposed model is eval-

uated on a synthetic dataset, and applied to a driver assistance system

validation use-case.

1 Introduction

Advanced driver-assistance systems (ADAS) are automated embedded systems
that bring support to driving tasks (e.g., emergency braking, adaptative cruise
control, automated lighting, navigation, . . . ). Given the high number of differ-
ent vehicles, driving conditions, traffic laws, and given the expected reliability,
it is today impossible to validate ADAS exhaustively only with physical tests
”on tracks”. Groupe Renault has made the technical choice to invest in massive
driving simulation technology to circumvent this issue. For a given use case,
a simulation protocol produces a multivariate time series dataset with varying
dimensions: from 100 to 100 000 observations, and from 10 to 100 variables.
The behavior of the simulated car cannot always be predicted. In consequences,
it is impossible to use supervised methods. Our objective is to provide a syn-
thetic view of the simulated dataset to the ADAS developer, that simultaneously
highlights the driving patterns and discriminates groups of dependent sensors.

The model-based clustering methods [1] are a family of unsupervised prob-
abilistic approaches that natively provide probabilistic estimations of cluster
memberships, confidence intervals for probabilistic outlier detection, can infer
missing values and model sample noise. In addition, they can handle data sets



of varying sizes in opposition to existing Deep Learning clustering approaches
[2, 3] that require massive amounts of data. An instance of such model-based ap-
proach has been used recently in the ADAS validation context [4], but restricted
to univariate time series analysis. In a multivariate context, the possible relations

Fig. 1: Coclustering, Multi-Clustering and Multi-Coclustering, with k, l, h the
row-cluster, correlated cluster and redundant cluster indices (respectively).
Color and pattern designate block membership.

between variables introduces additional difficulties. In most of real-life use cases,
it is likely that each variable is associated to a different partition of the obser-
vation space (called row-partition). In the following, we assume the presence of
a variable partition (called redundant column-partition), such that variables in
a redundant column-cluster share the same row-partition. In our use cases, this
assumption seems rational, as we know that many variables are related (e.g., po-
sition and acceleration, ADAS activation and braking). The Multi-Clustering [5]
designates a set of methods that infers this multiple-partitions representation of
a dataset, as illustrated in Fig. 1 - b). In a parametric model-based context [6, 7],
using these approaches requires to know the partitions sizes a priori (rarely true
in practice), or to perform a model selection step. However, the combinatorial
nature of Multi-Clustering makes the model selection a complex task (there are,
for example, 184755 different multi-clustering models with at most 10 clusters of
variables and 10 clusters of observations). Heuristic approaches could be consid-
ered at the cost of assumptions on model structure (e.g. with greedy strategies).
The non-parametric approach circumvents this issue by natively integrating a
model selection. A non-parametric Bayesian Multi-Clustering model has been
developed by [8] for continuous datasets. In this model, the rows belonging to
a block follow an independent multivariate distribution (c.f. Fig. 1-b)). This
Multi-Clustering method groups variables according to their row partition but
cannot regroup variables with similar distributions. Moreover, estimating the
block distributions parameters becomes problematic when the column cluster
sizes are high (e.g., high dimensional covariance matrices). Each redundant col-



umn cluster is modeled with a coclustering structure to deal with this problem.
The model-based coclustering [9] (Figure 1 - a)) infers one row-partition and

one column partition. This model assumes that all variables share the same
row partition and that there exists groups of variables with common distribu-
tion. This assumption seems also natural, because our simulated variables are
physically correlated (e.g., car speed and wheel rotation speed).

In this paper, we propose a new Non-Parametric Multi Coclustering (MCC)
(c.f. Fig. 1-c) that combines the two previous approaches and produces the best
of both worlds: the redundant partition layer extracts the true sparse number of
row partition while the coclustering layers reduce the parameter set dimension
and regroup correlated variables. To the best of our knowledge, there is only
one comparable work by [10], which does not apply to multivariate time series.

2 Multi Coclustering of multivariate time series

2.1 MCC model definition

As a preprocessing step, the time series are first represented in a common basis,
with a three steps transformations: 1) individual log-periodogram representa-
tion; 2) interpolation of the log-periodogram into a common frequency basis;
3) PCA on the frequency coefficients. This preprocessing outputs a dataset
X = (xi,j,s)n×p×d, with n observations described by p variables, and d the pro-
jection space dimension. We denote v the redundant partition indicator, (wh)h
the correlated partition indicator, and Z the row-partitions indicator matrix.
The model is formally defined by:

xi,j | {vj = h,wh
j = l,zhi = k, θhk,l} ∼ N (θhk,l),

θhk,l ∼ G0, vj ∼ Mult(η), wh
j ∼Mult(ρh), z

h
i ∼ Mult(πh),

ηj(r) = rj

j−1
∏

j′=1

(1− rj′) , rj
i.i.d.
∼ Beta(1, γ) , γ ∼ Gamma(ar, br)

ρhj (s
h) = shj

j−1
∏

j′=1

(

1− shj′
)

, shj
i.i.d.
∼ Beta(1, βh) , βh ∼ Gamma(ac, bc)

πh
j (t

h) = thj

j−1
∏

j′=1

(

1− thj′
)

, thj
i.i.d.
∼ Beta(1, αh), αh ∼ Gamma(al, bl),

where each memberships proportions vector η, (ρh)h and (πh)h follows a stick-

breaking construction scheme [11] with Gamma distribution hyperprior. The
block distributions are multivariate normal and G0 is the associated conjugate
Normal-inverse-Wishart prior. The complete hyperparameter set is noted χ.

2.2 Inference

We propose an iterative two-steps inference: 1) update of v given Z; 2) update of
Z and w given v. In the first step, each membership vj is sampled sequentially



according to:

p(vj | v−j , Z,x.,j , χ) ∝











ph

p− 1 + γ
p(x.,j | z

h, χ), existing cluster h, (1)

γ

n− 1 + γ
p(x.,j | χ), new cluster, (2)

with v−j = {vi : i 6= j} and p(x.,j | z
h) the distribution of x.,j in zh. In Eq. (1),

the predictive distributions p(x.,j | zh, χ) reduces to a product of multivariate
t-student densities [12] thanks to an appropriate choice of conjugate prior G0.
In Eq. (2), p(x.,j | χ) is estimated with an univariate Dirichlet Process Mixture
(once per variable, prior to the inference of the MCC), which also produces the
optimal ẑj row partition associated with the new cluster. After v’s update, the
concentration parameter γ is updated based on [13]. In the second step, an
NPLBM [14] is inferred on each sub-dataset (Xh)h defined by the partition v

with a Gibbs algorithm that simulates p(zh,wh | v, Xh, χ) (c.f. [14]).

3 Applications

3.1 Experiments on synthetic data

We compare the MCC’s performances to other methods adapted to the use case
constraints. The experiments dataset is composed of observations generated
from a ground truth row-partition, that we seek to estimate. This ground truth
information is ”corrupted” by adding a proportion of other variables, uninfor-
matives (generated from a one-cluster partition) or misleading (generated from
another row-partition than the ground truth), noted pu and pm. The base-
lines methods are non-parametric model-based approaches to Multi-Clustering:
Dirichlet Process Mixture model (DPM) that infers a row-partition with only
one column-cluster, non-parametric coclustering method (CC) [14] displayed in
Fig. 1, decoupled Multi-Clustering based on a two-layers nested DPM (NDPM)
and non-parametric Multi-clustering (MCD) equivalent to MCC without the co-
clustering layer. The results, displayed in Table 1, shows the interest of using
MCC in the presence of uninformatives or misleading variables.

3.2 Emergency lane Keeping assist use case

After validating MCC on a synthetic dataset, we apply it on a real ADAS valida-
tion dataset. In a straight lane scenario, the vehicle under test is drifting towards
an oncoming car on the other lane. The ELK system is expected to detect the
drifting, the oncoming car and put it back to its lane center with an emergency
maneuver. The simulation generates a dataset of n = 500 described by p = 150
temporal variables, totalling 75000 time series. The objective is to find driving
patterns, to discriminate relevant groups of sensors and to isolate the ADAS
activation context. The Fig. 2-a) represents the row partitions overlaid on the
dataset, with color representing redundant column clusters, and transparency
indicating block partitions. Fig. 2-b) shows the car trajectories (surrounded



Table 1: Row-partition quality described by ARI, RI and row-cluster number K̂
pu pm Scores DPM CC NDPM MCD MCC
0 0

RI

0.84 1.0 0.57 1.0 1.0
0 100% 0.73 0.85 0.64 0.99 1.0
0 200% 0.79 0.85 0.76 0.88 1.0

100% 0 0.80 1.0 0.71 0.99 1.0
200% 0 0.51 1.0 0.60 0.98 1.0
0 0

ARI

0.67 1.0 0.27 1.0 1.0
0 100% 0.34 0.61 0.27 0.97 1.0
0 200% 0.47 0.61 0.39 0.70 1.0

100% 0 0.56 1.0 0.44 0.99 1.0
200% 0 0.13 1.0 0.27 0.96 1.0
0 0

K̂

3 3 2 3 3
0 100% 7 6 3 3 3
0 200% 6 6 5 6 3

100% 0 3 3 2 3 3
200% 0 3 3 2 3 3

Fig. 2: a) MCC results. b) Car trajectories in the highlighted clusters

by a red rectangle in Fig. 2-a)) distributed in the row-clusters, where several
scenarios are represented: the sub-graph I shows a late ADAS activation sce-
nario, sub-graph II regroups cases when ELK did not activate. In sub-graph III,
the systems correctly change the car trajectory and prevent the collision. The
last graph IV shows several outlier simulations detected using the probability
density of the MCC model. In addition to discriminating the non-informative
variables (leftmost columns in red color), the Fig. 2-A) shows a hierarchical
structure between several row partitions (leftmost ”green”, ”ochre” and ”blue”
columns). These partitions are linked to the vehicle orientation (e.g., road angle
or steering wheel angle), lane position and ADAS activation indicators. Based
on these results, the next steps for the ADAS system developer consists in relat-
ing the partitions to the input simulation parameters and assessing the ADAS
compliance with its specifications.



4 Conclusion

This paper describes a new Bayesian non-parametric based method designed for
the exploration of multivariate time series datasets produced by driving simu-
lations. This solution infers a multi-level dependency structure that highlights
the relationships between sensors and discriminates driving simulations patterns.
This method can be used in other domains, as long as the corresponding struc-
ture dependency assumptions hold. In the future we consider combining the
multivariate time-series multi-coclustering with the classification of the simula-
tion parameters in order to identify ADAS failure and success contexts.
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