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Introduction

Total dual integral systems were introduced in the late 70's and are strongly connected to min-max relations in combinatorial optimization [START_REF] Schrijver | Theory of linear and integer programming[END_REF]. A rational system of linear inequalities Ax ≤ b is total dual integral (TDI) if the minimization problem in the linear programming duality: max{cx : Ax ≤ b} = min{yb : y ≥ 0, yA = c} admits an integer optimal solution for each integer vector c such that the maximum is nite. Such systems describe integer polyhedra when b is integer [START_REF] Edmonds | A min-max relation for submodular functions on graphs[END_REF]. Schrijver [START_REF] Schrijver | On total dual integrality[END_REF] proved that every full-dimensional polyhedron is described by a unique minimal TDI system Ax ≤ b with A integerits Schrijver system [START_REF] Cook | Linear systems for constrained matching problems[END_REF].

A stronger property is the box-total dual integrality, where a system Ax ≤ b is box-total dual integral (box-TDI) if

Ax ≤ b, ≤ x ≤ u
is TDI for all rational vectors and u (with possible innite components). General properties of such systems can be found in Cook [START_REF] Cook | On box totally dual integral polyhedra[END_REF] and Chapter 22.4 of Schrijver [START_REF] Schrijver | Theory of linear and integer programming[END_REF]. Note that, although every rational polyhedron {x : Ax ≤ b} is described by a TDI system 1 k Ax ≤ 1 k b, for some integer k, not every polyhedron is described by a box-TDI system. A polyhedron described by a box-TDI system is called a box-TDI polyhedron. As proved by Cook [START_REF] Cook | On box totally dual integral polyhedra[END_REF], every TDI system describing such a polyhedron is actually box-TDI.

In the last decade, several new box-TDI systems were exhibited. Chen, Ding, and Zang [START_REF] Chen | A characterization of box-mengerian matroid ports[END_REF] characterized box-Mengerian matroid ports. In [START_REF] Chen | The box-TDI system associated with 2-edge connected spanning subgraphs[END_REF], they provided a box-TDI system describing the 2-edge-connected spanning subgraph polyhedron for series-parallel graphs. Ding, Tan, and Zang [START_REF] Ding | When is the matching polytope box-totally dual integral[END_REF] characterized the graphs for which the TDI system of Cunningam and Marsh [START_REF] Cunningham | A primal algorithm for optimum matching[END_REF] describing the matching polytope is actually box-TDI. Ding, Zang, and Zhao [START_REF] Ding | On box-perfect graphs[END_REF] introduced new subclasses of box-perfect graphs. Cornaz, Grappe, and Lacroix [START_REF] Cornaz | Trader multiow and box-TDI systems in seriesparallel graphs[END_REF] provided several box-TDI systems in series-parallel graphs. Recently, Chervet, Grappe, and Robert [START_REF] Chervet | Principally box-integer polyhedra and equimodular matrices[END_REF] gave new geometric characterizations of box-TDI polyhedra.

As mentioned by Pulleyblank [START_REF] Pulleyblank | Total dual integrality and b-matchings[END_REF], it is not uncommon that the minimal integer system and the Schrijver system of a polyhedron coincide. This is the case of the matching polytope and matroid polyhedra. However, this does not hold in general, as shown by Cook [4] and Pulleyblank [14] for the b-matching polyhedron, and by Seb® [START_REF] Seb® | The schrijver system of odd join polyhedra[END_REF] for the T -join polyhedron.

In this paper, we are interested in TDI, box-TDI, and Schrijver systems for the ow cone of series-parallel graphs. Given a graph G = (V, E), a ow of G is a couple (C, e) with C a circuit of G and e an edge of C. In a ow (C, e), the edge e represents a demand and C \ e represents the path satisfying this demand. The incidence vector of a ow (C, e) is the 0/ ± 1 vector χ C\e -χ e . The ow cone of G is the cone generated by the ows of G and the unit vectors χ e of R E .

A cut δ(W ) is the set of edges having exactly one endpoint in a subset W of V . A bond is an inclusionwise minimal nonempty cut. Note that a nonempty cut is the disjoint union of bonds. The cut cone of G is the cone generated by the incidence vectors of the cuts of G, or, equivalently, by the incidence vectors of bonds of G.

When G has no K 5 -minor, the ow cone of G is the polar of the cut cone and is described by x(C) ≥ 0, for all cuts C of G [START_REF] Seymour | Sums of circuits[END_REF]. Chervet, Grappe, and Robert [START_REF] Chervet | Principally box-integer polyhedra and equimodular matrices[END_REF] proved that the ow cone is a box-TDI polyhedron if and only if the graph is series-parallel. Moreover they provided the following box-TDI system:

1 2
x(B) ≥ 0 for all bonds B of G.

(

) 1 
Quoting them, they leave open the question of nding a box-TDI system with integer coefcients, which exists by [START_REF] Schrijver | Theory of linear and integer programming[END_REF]Theorem 22.6(i)] and [5, Corollary 2.5].

Contribution. The goal of this paper is to answer the question of [START_REF] Chervet | Principally box-integer polyhedra and equimodular matrices[END_REF] mentioned above.

Throughout, the main concept that we use is that of Hilbert basis, whose denition and connection with TDIness are given at the end of the introduction.

We rst prove that

x(M ) ≥ 0 for all multicuts M of G,

January 14, 2020 is a TDI system describing the ow cone if and only if the graph is series-parallel. As the ow cone is a box-TDI polyhedron for such graphs, this implies that System (2) is a box-TDI system if and only if the graph is series-parallel. We then rene this result by providing the corresponding Schrijver system, which is composed of the so-called chordal multicutssee Corollary 3.4.

This completely answers the question of [START_REF] Chervet | Principally box-integer polyhedra and equimodular matrices[END_REF].

Outline. In the next paragraph, we provide denitions and notation. In Section 2, we rst characterize the graphs for which multicuts form a Hilbert basis. It follows that System [START_REF] Chen | The box-TDI system associated with 2-edge connected spanning subgraphs[END_REF] is box-TDI precisely for series-parallel graphs. In Section 3, we provide a minimal integer Hilbert basis for multicuts in series-parallel graphs. This gives the Schrijver system for the ow cone in series-parallel graphs.

Denitions. Given a nite set S and a subset T of S, we denote by χ T ∈ {0, 1} S the incidence vector of T , that is χ T s equals 1 if s belongs to T and 0 otherwise, for all s ∈ S. Since there is a bijection between sets and their incidence vectors, we will often use the same terminology for both.

Let G = (V, E) be a loopless undirected graph. Given a subset U of V , the cut δ(U ) is the set of edges having exactly one endpoint in U . A bond is a cut containing no other nonempty cut. Given a partition {V 1 , . . . , V k } of V , the set of edges having endpoints in two distinct V i 's is called multicut and is denoted by δ(V 1 , . . . , V k ). A set of edges M is a multicut if and only if |M ∩ C| = 1 for all circuits C of Gsee e.g. [START_REF] Cornaz | Max-multiow/min-multicut for G+H series-parallel[END_REF]. The reduced graph of a multicut M is the graph G M obtained by contracting all the edges of E \ M . Note that a multicut of G M is also a multicut of G. We denote respectively by M G and B G the set of multicuts and the set of bonds of G. A subset of edges of G is called a circuit if it induces a connected graph in which every vertex has degree 2. Given a circuit C, an edge of G is a chord of C if its endpoints are two nonadjacent vertices of C. A graph is 2-connected if it remains connected whenever a vertex is removed.

A graph is series-parallel if its 2-connected components can be constructed from the circuit of length two C 2 by repeatedly adding edges parallel to an existing one, and subdividing edges, that is, replacing an edge by a path of length two. Series-parallel graphs are those having no K 4 -minor [START_REF] Duffin | Topology of series-parallel networks[END_REF]. A graph is chordal if every circuit of length 4 or more has a chord.

The cone C generated by a set of vectors {v 1 , . . . ,

v k } of R n is the set of nonnegative combinations of v 1 , . . . , v k , that is, C = k j=1 λ j v j : λ 1 , . . . , λ k ≥ 0 . A set of vectors {v 1 , . . . , v k } is a
Hilbert basis if each integer vector in their cone can be expressed as a nonnegative integer combination of v 1 , . . . , v k . A Hilbert basis is integer if it is composed of integer vectors, and it is a minimal integer Hilbert basis if it has the smallest number of vectors among all integer Hilbert basis generating the same cone. Each pointed rational cone has a unique minimal integer Hilbert basis [START_REF] Schrijver | On total dual integrality[END_REF]Theorems 16.4]. The link between Hilbert basis and TDIness is in the following result. Theorem 1.1 (Corollary 22.5a of [START_REF] Schrijver | Theory of linear and integer programming[END_REF]). A system Ax ≥ 0 is TDI if and only if the rows of A form a Hilbert basis. [START_REF] Seymour | Sums of circuits[END_REF] 2. When Do Multicuts Form a Hilbert Basis?

A Characterization

The following result characterizes the graphs for which the multicuts form a Hilbert basis.

Theorem 2.1. The multicuts of a graph form a Hilbert basis if and only if the graph is series-parallel.

Proof. First, let us show that the incidence vectors of the multicuts of a non series-parallel graph do not form a Hilbert basis. Suppose that G = (V, E) has K 4 as a minor. Then, V can be partitioned into four sets {V 1 , . . . , V 4 } such that V i induces a connected subgraph and at least one edge connects each pair V i , V j for i, j = 1, . . . , 4. We subdivide δ(V 1 , V 2 , V 3 , V 4 ) into E 1 , . . . , E 6 as in Figure 1.

E 1 E 2 E 3 E 4 E 5 E 6 V 3 V 1 V 2 V 4
Figure 1: Edges in the gure represent sets of edges of G having endpoints in distinct V i 's.

Let Ê = {e 1 , . . . , e 6 } where e i ∈ E i for all i = 1, . . . , 6, and let w ∈ Z E be as follows:

w e =    2 if e ∈ E 1 , 1 if e ∈ E 2 , . . . , E 6 , 0 otherwise. Since w = 1 2 δ(V 1 ) + 1 2 δ(V 2 ) + 1 2 δ(V 1 ∪ V 3 ) + 1 2 δ(V 1 ∪ V 4
), it belongs to the cut cone of G. Moreover, w χ Ê = 7. Any conic combination of multicuts yielding w involves only multicuts contained in δ(V 1 , . . . , V 4 ). Each of these multicuts contains between 3 and 6 edges of Ê. Hence, if w is an integer combination of such multicuts, it is the sum of two multicuts containing 3 and 4 edges of Ê, respectively. This means that w is the sum of δ(V i ) and δ(V i , V j ) for some i = j. Since w e 1 = 2, we have i ∈ {1, 2} and j ∈ {3, 4}. But then δ(V i ) ∩ δ(V i , V j ) contains an edge among e 2 , . . . , e 5 , a contradiction with w e 2 = w e 3 = w e 4 = w e 5 = 1.

Therefore, w is not an integer combination of multicuts, implying that the set of multicuts of G is not a Hilbert basis. [START_REF] Seymour | Sums of circuits[END_REF] 
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For the other direction, remark that each multicut of a series-parallel graph is the disjoint union of multicuts of its 2-connected components. Since they belong to disjoint spaces, if the set of multicuts of each 2-connected component forms a Hilbert basis, then so does their union. Hence, it is enough to prove that the multicuts of a 2-connected series-parallel graph form a Hilbert basis. From now on, assume the graph to be 2-connected.

We prove the result by induction on the number of edges of G. When G = ({u, v}, {e, f }) is the circuit of length two, the only nonempty multicut is {e, f }, and its incidence vector forms a Hilbert basis. Now, let G = ( Ṽ , Ẽ) be obtained from a 2-connected series-parallel graph G = (V, E) by either adding a parallel edge or subdividing an edge. By the induction hypothesis, M G is a Hilbert basis.

Suppose rst that G is obtained from G by adding an edge f parallel to an edge e of E. A subset of edges M of G containing (respectively not containing) e is a multicut if and only if M ∪ f (respectively M ) is a multicut of G. Thus, the incidence vector of each multicut of G is obtained by copying the component associated with e in the component of f . Since the incidence vectors of the multicuts of G are a Hilbert basis, so are the incidence vectors of the multicuts of G.

Suppose now that G is obtained from G by subdividing an edge ē ∈ E. We denote by u the new vertex and by f and g the edges adjacent to it. A multicut M of G can be expressed as the half-sum of the bonds of G. Moreover, as each bond is a multicut, bonds and multicuts of G generate the same cone: the cut cone. Since System (1) is TDI in seriesparallel graphs [3, end of Section 6.4], the set of vectors { 1 2 χ B : B ∈ B G} forms a Hilbert basis.

Let v be an integer vector in the cut cone. There exist λ B ∈ 1 2 Z + for all B ∈ B G such that v = B∈B G λ B χ B . The vector v is an integer combination of multicuts of G if and only if v -λ δ(u) χ δ(u) is, thus we may assume that λ δ(u) ∈ {0, 1 2 }. Dene w ∈ Z E by:

Remark that (B \ē)∪f and (B \ē)∪g are bonds of G whenever B is a bond of G containing ē. Moreover, a bond B of G which does not contain ē is a bond of G. Since δ(u) is the unique bond of G containing both f and g, we have:

Thus, w belongs to the cut cone of G. Moreover, as λ δ(u) is half-integer, w is integer. By the induction hypothesis, M G is a Hilbert basis, hence there exist

Consider the family N of multicuts of G where each multicut M of G appears µ M times. Suppose rst that λ δ(u) = 0. Then, v f + v g multicuts of N contain ē. Let P be a family January 14, 2020

Hence v is a nonnegative integer combination of multicuts of G. (ii.⇔iii.) If G is series-parallel, then System (1) is box-TDI [3, end of Section 6.4]. Hence, the ow cone of G is box-TDI. Since a TDI system describing a box-TDI polyhedron is a box-TDI system [START_REF] Cook | On box totally dual integral polyhedra[END_REF], point ii. implies point iii.. A box-TDI system being TDI by denition, point iii. implies point ii.. A multicut is chordal when its reduced graph is 2-connected and chordal. Note that bonds are chordal multicuts. [START_REF] Seymour | Sums of circuits[END_REF] Theorem 3.1. The chordal multicuts of a series parallel graph form a minimal integer Hilbert basis.

Proof. Let G = (V, E) be a series-parallel graph. By Theorem 2.1, the multicuts of G form an integer Hilbert basis. Hence, the minimal integer Hilbert basis is composed of the multicuts which are not disjoint union of other multicuts. These multicuts are characterized in the following lemma, from which stems the desired theorem. Lemma 3.2. A multicut of a series-parallel graph G is chordal if and only if it can not be expressed as the disjoint union of other nonempty multicuts.

Proof. Let M be a multicut of G. Recall that every multicut of G M is a multicut of G.

Beside, since the disjoint union of multicuts is a multicut, a disjoint union of nonempty multicuts is actually the disjoint union of two nonempty multicuts.

We rst prove that, if G M is 2-connected and chordal, then M is not the disjoint union of two nonempty multicuts. By contradiction, suppose that G M is 2-connected and chordal, and M = M 1 ∪ M 2 where M 1 , M 2 are disjoint multicuts of G M . If C is a circuit of length at most three in G M , then C ⊆ M i for some i = 1, 2. Indeed, the edges of C are partitioned by M 1 and M 2 , and a multicut and a circuit intersect in either none or at least two edges.

Since G M is 2-connected and M i is nonempty for i = 1, 2, there exists at least a circuit containing edges of both M 1 and M 2 . Let C be such a circuit, of smallest length. Then, C has length at least 4, as otherwise it would be contained in one of M 1 and M 2 . Since G M is chordal, there exists a chord c of C. Denote by P 1 and P 2 the two paths of C between the endpoints of c. For i = 1, 2, the circuit P i ∪ {c} is strictly shorter than C. Since C is the shortest circuit intersecting both M 1 and M 2 , we get that P i ∪ {c} ⊆ M i for i = 1, 2. But then c ∈ M 1 ∩ M 2 , a contradiction.

To prove the other direction, rst suppose that G M is not 2-connected. Then, the set of edges of each 2-connected component of G M is a multicut of G, and M is the disjoint union of these multicuts. Now, suppose that G M is not chordal, that is, G M contains a chordless circuit C of length at least 4. We will apply the following. Claim 3.3. Let C be a circuit of length at least 4 in a series-parallel graph G. Then, there exists a pair of vertices nonadjacent in G[V (C)] whose removal disconnects G.

Proof. We can assume that there are two nonadjacent vertices u and v of G[V (C)] such that there exists a path P between u and v that has no internal vertex in C. Indeed, otherwise, removing any two nonadjacent vertices of G[V (C)] would disconnect G.

Let us show that removing u and v disconnects G. Denote by Q and R the two paths of C between u and v. By contradiction, suppose that G \ {u, v} is connected. Then, there exists a path containing neither u nor v between an internal vertex of R and an internal vertex of either P or Q. Let S be a minimal path of this kind. Then, no internal vertex of S belongs to P , Q, or R, and the subgraph composed of P , Q, R and S is a subdivision of K 4 . This contradicts the hypothesis that G is series-parallel. [START_REF] Seymour | Sums of circuits[END_REF] By Claim 3.3 there exist two vertices u and v of C, nonadjacent in G[V (C)], whose removal disconnects G. Denote by V 1 , . . . , V k the sets of vertices of the connected components of G \ {u, v}, and let G i = G[V i ∪ {u, v}], for i = 1, . . . , k. Note that, since C is chordless, E(G i )∩E(G j ) = ∅ for all distinct i and j. Thus, M is the disjoint union of E(G 1 ), . . . , E(G k )

Let us prove that E(G i ) is a multicut of G M , for i = 1, . . . , k. Consider a circuit D of G M . If D is contained in one of the G i 's, then |D ∩ G j | = 1 for j = 1, . . . , k. Otherwise, D is the union of two paths from u to v, these paths being contained in two dierent G i 's. Without loss of generality, let these paths be P 1 ∈ G 1 and P 2 ∈ G 2 . Then, we have D ∩ G i = P i if i = 1, 2, and ∅ otherwise. Since C has no chord, the shortest path from u to v in each G i is of length at least two, hence

Therefore, E(G i ) is a multicut of G M , and hence of G, for i = 1, . . . , k. Hence, M is the disjoint union of multicuts of G.

The Schrijver System of the Flow Cone in Series-Parallel Graphs

Theorem 2.2 provides an integer box-TDI description of the ow cone in series-parallel graphs. However, this box-TDI description is not minimal: there are redundant inequalities whose removal preserves box-TDIness. Here, we provide the minimal integer box-TDI system for this cone. This completely answers the question of [3, end of Section 6.4].

Corollary 3.4. The Schrijver system for the ow cone of a series-parallel graph G is the following:

x(M ) ≥ 0 for all chordal multicuts M of G.

(3) Moreover, this system is box-TDI.

Proof. By Theorems 1.1 and 3.1, System (3) is TDI. Since every bond is a chordal multicut, this system describes the ow cone for series parallel graphs. Therefore, by [START_REF] Cook | On box totally dual integral polyhedra[END_REF]Corollary 2.5] and by the ow cone being box-TDI for series-parallel graphs, System (3) is box-TDI.

We mention that, by planar duality, Corollary 3.4 provides the Schrijver system for the cone of conservative functions [START_REF] Schrijver | Combinatorial optimization: polyhedra and eciency[END_REF]Corollary 29.2h] in series-parallel graphs.