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MATRIX MULTIPLICATION IN MULTIWORD ARITHMETIC:
ERROR ANALYSIS AND APPLICATION TO GPU TENSOR CORES∗

MASSIMILIANO FASI† , NICHOLAS J. HIGHAM‡ , FLORENT LOPEZ§ , THEO MARY¶,

AND MANTAS MIKAITIS‡

Abstract. In multiword arithmetic, a matrix is represented as the unevaluated sum of two or
more lower-precision matrices, and a matrix product is formed by multiplying the constituents in low
precision. We investigate the use of multiword arithmetic for improving the performance–accuracy
tradeoff of matrix multiplication with mixed precision block fused multiply–add (FMA) hardware,
focusing especially on the tensor cores available on NVIDIA GPUs. Building on a general block FMA
framework, we develop a comprehensive error analysis of multiword matrix multiplication. After
confirming the theoretical error bounds experimentally by simulating low precision in software, we
use the cuBLAS and CUTLASS libraries to implement a number of matrix multiplication algorithms
using double-fp16 (double-binary16) arithmetic. When running the algorithms on NVIDIA V100
and A100 GPUs, we find that double-fp16 is not as accurate as fp32 (binary32) arithmetic despite
satisfying the same worst-case error bound. Using probabilistic error analysis, we explain why this
issue is likely to be caused by the rounding mode used by the NVIDIA tensor cores, and propose a
parameterized blocked summation algorithm that alleviates the problem and significantly improves
the performance–accuracy tradeoff.

Key words. matrix multiplication, numerical linear algebra, rounding error analysis, floating-
point arithmetic, multiword arithmetic, reduced precision, mixed precision, GPUs, NVIDIA V100,
NVIDIA A100, tensor cores, rounding modes, blocked summation, FABsum

AMS subject classifications. 65G50, 65Y04, 65Y10, 68M07

1. Introduction. The NVIDIA tensor cores in the Volta microarchitecture [30]
perform the mixed precision operation D = AB + C, where A and B are 4 × 4 fp16
matrices and C and D have same size but can have either fp16 or fp32 entries. Here,
fp16 and fp32 denote the binary16 and binary32 formats, respectively, as defined in
the last two revisions of the IEEE standard for floating-point arithmetic [22], [23].
GPUs based on the newer NVIDIA Ampere microarchitecture [8], [31] are equipped
with updated versions of the tensor cores which support other floating-point formats:
bfloat16 [24] (hereinafter bf16), TensorFloat-32 (hereinafter tf32), and binary64 (here-
inafter fp64). The upcoming NVIDIA Hopper microarchitecture [32] adds yet more
formats to the tensor cores (quarter precision): fp8-E5M2 (5 exponent and 2 signifi-
cand bits) and fp8-E4M3 (4 exponent and 3 significand bits). Tensor cores provide a
significant performance boost compared with standard floating-point units, and have
been used with great success to accelerate numerical linear algebra algorithms [1], [5],
[13], [14] [25]; see [20] for a survey of these algorithms. Other vendors also incorporate
matrix arithmetic in their devices: for example, the accelerators in the AMD MI200
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series contain units that can perform vector and matrix operations faster than their
scalar counterparts [2], [3], [4].

Tensor cores are instances of what we have called block fused multiply–add (FMA)
units [6]. Block FMAs are attractive not only because of their high performance,
but also because they are intrinsically mixed precision units: while their inputs A
and B must be low precision matrices, the internal computations are performed in
high precision, and the output can be accumulated in high precision if C is a high
precision matrix. As a result, block FMAs significantly reduce the negative impact
of the accumulation of rounding errors and can often provide more accurate results
than standard low precision units [6]. Because of the need to convert A and B to low
precision, however, computations with tensor cores still carry an error term of order
the unit roundoff of the low precision (fp16 or bf16), which might be unacceptable in
applications that require high accuracy.

The goal of this work is to investigate how multiword arithmetic [29, sec. 14.1]
can allow us to extend the use of tensor cores to applications that cannot tolerate
the loss of precision produced by the conversion of the input matrices A and B to
fp16 or bf16. In multiword arithmetic, A and B are represented as the unevaluated
sum of low precision matrices that, when added together, approximate the original
A and B. It is important to point out that by using this technique we can extend
the available precision, but not the range of representable floating-point values: the
dynamic range of a multiword format remains that of the low precision format used
to represent each individual word. Therefore, multiword arithmetic does not alleviate
issues due to underflow and overflow and may in fact exacerbate them. Floating-point
numbers that have exponent very close to the smallest exponent available in the low
precision format may end up being less accurate than one would otherwise expect, as
some of the less significant words may underflow to 0 and therefore lose all precision.
Issues with overflow and underflow can be addressed by resorting to a data type with
a wider dynamic range (such as bf16 instead of fp16) or to a suitable scaling strategy
[21].

The best known example of multiword arithmetic is double-fp64 (commonly re-
ferred to as double-double) arithmetic, which achieves nearly binary128 (hereinafter
fp128) precision by representing each number as the unevaluated sum of two fp64 num-
bers and by relying on error-free fp64 transformations for computation of arithmetic
operations [29, sec. 14.1.1]. Double-fp64 arithmetic is thus an effective alternative to
fp128 on hardware where fp64 is much faster than fp128.

The emergence of block FMA hardware supporting low precision matrix multipli-
cation with high precision accumulators provides new perspectives into the potential
of multiword arithmetic: reducing the precision of the input dramatically increases the
throughput of these hardware units compared with the use of standard fp32 arith-
metic (tensor cores are up to 8× faster on Volta GPUs and up to 16× faster on
Ampere GPUs, for example). This suggests a simple strategy for accelerating the
computation of the matrix product C = AB, where A and B are fp32 matrices: one
can first approximate A ≈ A1 + A2 and B ≈ B1 + B2 as sums of fp16 matrices, and
then compute C to nearly fp32 accuracy as C ≈ A1B1 +A1B2 +A2B1 +A2B2, where
each AiBj term is evaluated using a block FMA. Since there are only four terms, this
approach can potentially be much faster than standard fp32 arithmetic. Moreover,
double-fp16 addition and multiplication operations with error-free transformations
are not required in this setting, because fp16 products are maintained as fp32 and
additions in tensor cores are carried out in fp32 arithmetic. We refer to this approach
as double-fp16 arithmetic.
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The use of double-fp16 arithmetic with tensor cores was first proposed by Markidis
et al. [26], who call this technique precision refinement. Sorna et al. [34] adopted a
similar approach to accelerate the fast Fourier transform. Mukunoki and Ogita [27]
investigated how to use multiword arithmetic to increase the accuracy of fp32 and
fp64 matrix multiplication. Henry et al. [15] considered block FMA units modelled on
future Intel hardware, and proposed the use of triple-bf16 arithmetic (which represents
an fp32 value as the sum of three bf16 numbers). Mukunoki et al. [28] implemented
a correctly rounded fp32/fp64 matrix multiplication algorithm using tensor cores on
NVIDIA V100 GPUs. The authors note that on the V100 GPUs their method is
slower than simply using the available fp64 units, but their goal is to enable the
use of fp64 arithmetic on future GPUs where only lower precision will potentially
be available. Pisha and Ligowski [33] similarly used a double-tf32 representation to
compute Fourier transforms on A100 GPUs.

In section 2 we begin by developing a rigorous rounding error analysis of a general
multiword matrix multiplication (MMM) algorithm based on the block FMA framework
of Blanchard et al. [6]. In order to be as general as possible, our study considers
the use of multiword arithmetic with an arbitrary number of words and with two
parameterized precisions. The analysis provides a unified framework that encompasses
all the approaches mentioned above and also includes some new cases. One goal of this
work is to determine what level of accuracy can be expected from a given multiword
arithmetic implemented using block FMAs. In section 3, we confirm the predictions of
the analysis by means of simulations: we test an implementation of the MMM algorithm
using emulated low precision and find that the experiments are in good agreement
with the theoretical error bounds.

In section 4 we implement our MMM algorithm on NVIDIA V100 and A100 GPUs
with tensor cores using the cuBLAS library and make a surprising discovery: we
observe that multiword matrix multiplication is significantly less accurate than ma-
trix multiplication performed using only fp32 arithmetic, although the two algorithms
have the same theoretical worst-case error bound. This is especially true for matrices
with elements of nonzero mean: this may explain why this issue was not observed in
previous work, which mostly focused on matrices with entries drawn from a distribu-
tion with zero mean, such as the uniform distribution over the interval [−1, 1]. To
understand this behavior, we make use of recent results in probabilistic error analy-
sis [18], [19], and show that the MMM algorithm implemented on GPUs yields an error
that is on average very close to its worst-case bound, unlike the standard fp32 algo-
rithm which benefits from the statistical distribution of rounding errors. We relate
this difference to the fact that inside the block FMA computation the current ten-
sor cores use a rounding mode other than round-to-nearest [11], [16]. We cure this
numerical issue by reducing the worst-case error bound of the MMM algorithm. We
achieve this by using mixed precision blocked summation, an instance of the recently
proposed FABsum algorithm [7]. We develop a high performance implementation of
FABsum based on the CUTLASS library, and show that this new algorithm can achieve
a much better performance–accuracy tradeoff than the cuBLAS-based algorithm.

Finally, we introduce some notation. A hat indicates a quantity computed in
floating-point arithmetic. We denote by u the unit roundoff of a given floating-point
arithmetic, and refer to that arithmetic as being of precision u.

2. Error analysis of multiword matrix multiplication with block FMAs.
In this section we develop a rigorous error analysis that applies to previously pro-
posed multiword algorithms for matrix multiplication and suggests new variants of
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interest. We use the general block FMA framework of Blanchard et al. [6], in which a
block FMA unit uses two arithmetics of precisions ulow and uhigh. For two matrices
A ∈ Rm×n and B ∈ Rn×q given in precision ulow, we can use [6, Alg. 3.1] to evaluate

C = AB using a block FMA so that the computed Ĉ satisfies [6, Thm. 3.1]

Ĉ = C +∆C, |∆C| ≤ γhighn |A||B|, (2.1)

where γhighn = nuhigh/(1 − nuhigh) for nuhigh < 1. (This assumes we have taken
ū = uhigh in the analysis of [6], which corresponds to what is called there the “TC32
variant” in the case of the tensor cores.)

Let f llow denote the operator that rounds to precision ulow. For any x ∈ R, we
have that x1 = fllow(x) = x(1 + δ1), where |δ1| ≤ ulow, and by using the fact that
x2 = fllow(x− x1) = −xδ1(1 + δ2), where |δ2| ≤ ulow, we obtain

x1 + x2 = x− xδ1δ2 = x(1 + δ), |δ| ≤ u2low.

We can apply this idea recursively and elementwise to A and B by computing, for
i, j = 1, . . . , p, the matrices

Ai = fllow

(
A−

i−1∑
k=1

Ak

)
, Bj = fllow

(
B −

j−1∑
k=1

Bk

)
. (2.2)

Barring underflow in the conversion to low precision, we get

A =

p∑
i=1

Ai +∆A, |∆A| ≤ uplow|A|, (2.3)

B =

p∑
j=1

Bj +∆B, |∆B| ≤ uplow|B|. (2.4)

We note in passing that for large enough p, terms ∆A and ∆B in the multiword
decompositions (2.3) and (2.4) can be equal to zero. Then the product C = AB is
given by

C =

p∑
i=1

p∑
j=1

AiBj +A∆B +∆AB −∆A∆B.

If the p2 products Gij = AiBj are computed with a block FMA, by (2.1) the computed

Ĝij satisfy

Ĝij = Gij +∆Gij , |∆Gij | ≤ γhighn |Ai||Bj |.

If the Ĝij are accumulated in precision uhigh, then the computed Ĉ satisfies

Ĉ =

p∑
i=1

p∑
j=1

Ĝij ◦ (1 + Θij), |Θij | ≤ γhighp2−1

=

p∑
i=1

p∑
j=1

(Gij +∆Gij) ◦ (1 + Θij)

=

p∑
i=1

p∑
j=1

(AiBj +∆Gij) ◦ (1 + Θij)

= AB −A∆B −∆AB +∆A∆B +

p∑
i=1

p∑
j=1

(AiBj) ◦Θij +∆Gij ◦ (1 + Θij),
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where ◦ denotes the Hadamard (elementwise) product. Overall we have

Ĉ = AB + E, |E| ≤
(
2uplow + u2plow

)
|A||B|+ γhighn+p2−1

p∑
i=1

p∑
j=1

|Ai||Bj |, (2.5)

where we have used the fact that γhighn +γhighp2−1 +γhigh
n

γhighp2−1 ≤ γ
high
n+p2−1 [17, Lem. 3.3].

Note that we cannot directly replace
∑p

i=1

∑p
j=1|Ai||Bj | by |A||B|, because a given

entry does not necessarily have the same sign in all Ai (or Bj) terms.
Clearly, for practical choices of ulow and uhigh a small value of p is sufficient to

make the two terms in the bound (2.5) of similar size. For fp16 (ulow = 2−11) and
fp32 (uhigh = 2−24), for example, setting p = 2 will suffice: in this case u2low = 4uhigh,
and taking larger values of p would not improve significantly the bound (2.5), as the

term γhighn+p2−1 would then dominate. For bf16 (ulow = 2−8) and fp32, the case p = 3
is also of interest.

Importantly, not all p2 products AiBj need be computed. This is because, as a
result of the construction (2.2), the magnitude of the elements of Ai and Bj rapidly
decreases as i and j increase. More precisely, we have

|Ai| ≤ ui−1
low (1 + ulow)|A|, i = 1, . . . , p,

|Bj | ≤ uj−1
low (1 + ulow)|B|, j= 1, . . . , p,

and thus
|Ai||Bj | ≤ ui+j−2

low (1 + ulow)2|A||B|. (2.6)

Therefore ignoring any product AiBj such that i+ j > p+ 1 only introduces an error
of order uplow or higher, which has no significant impact on the bound (2.5). Indeed,

by only computing the products AiBj such that i+ j ≤ p+ 1, we obtain Ĉ = AB+E
with the modified bound

|E| ≤
[
2uplow+ u2plow+

(
γhighn+p2−1

(
1 +

p−1∑
k=1

uklow

)
+

p−1∑
i=1

(p− i)up+i−1
low

)
(1 + ulow)2

]
|A||B|

≤
(

(p+ 1)uplow + γhighn+p2−1

)
|A||B|+O(uhighulow + up+1

low ). (2.7)

With respect to (2.5), we have only increased the constant in front of the term uplow
from 2 to p+ 1, but we have reduced the number of matrix products to be evaluated
from p2 to p(p + 1)/2. In practice, with fp16 and fp32 (p = 2), we only need three
products, which is less than the four used by Markidis et al. [26], and with bf16 and
fp32 (p = 3) we can reduce the number of products from nine to six, as already
suggested by Henry, Tang, and Heinecke [15].

It is possible to further reduce the number of products (such as using two products
for p = 2 as attempted in [26]), but our analysis tells us that such a choice is unlikely
to be advantageous. Indeed, ignoring any product AiBj such that i + j ≤ p + 1

would introduce an error of order up−1
low , thus the resulting algorithm would not be

significantly more accurate than one using p− 1 rather than p splits.
We summarize the proposed approach in Algorithm 2.1 and its rounding error

analysis in Theorem 2.1.

Theorem 2.1. Let A ∈ Rm×n and B ∈ Rn×q and let C = AB be computed by
Algorithm 2.1. The computed Ĉ satisfies

Ĉ = AB + E, |E| ≤
(

(p+ 1)uplow + γhighn+p2−1

)
|A||B|+O(uhighulow + up+1

low ). (2.8)
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Algorithm 2.1: Multiword matrix multiplication (MMM), using a mixed pre-
cision block FMA with precisions ulow and uhigh. On line 8 an algorithm
that satisfies (2.1), such as [6, Alg 3.1] for example, should be used.

Input : Two matrices A ∈ Rm×n and B ∈ Rn×q and number of splits p.
Output: The matrix C = AB computed in p-word arithmetic.

1 for i← 1 to p do

2 Ai ← f llow(A−
∑i−1

k=1Ak)

3 Bi ← f llow(B −
∑i−1

k=1Bk)

4 C ← 0
5 for i← 1 to p do
6 for j ← 1 to p do
7 if i+ j ≤ p+ 1 then
8 Compute Cij ← AiBj with a block FMA.
9 C ← C + Cij

Table 2.1. Dominant term in the error bound (2.8) for uhigh corresponding to fp32 and various
choices of ulow and p.

uhigh ulow Split Name Bound

2−24 (fp32)

2−11 (fp16)
p = 1 fp16 2× 2−11 + n× 2−24

p = 2 double-fp16 n× 2−24

2−8 (bf16)
p = 1 bf16 2× 2−8 + n× 2−24

p = 2 double-bf16 3× 2−16 + n× 2−24

p = 3 triple-bf16 n× 2−24

As mentioned, not only does the analysis above encompass previously proposed
algorithms, but it also suggests new variants that might be of interest. For example,
we may use a binary split (p = 2) with bf16 and fp32 which requires three products
rather than six (when p = 3) and delivers an accuracy of order 2−16 rather than 2−24.
We summarize in Table 2.1 the dominant term in the error bound (2.8) for several
choices of ulow and p.

3. Implementation and experiments with simulated arithmetic. In order
to confirm the theoretical error bound derived in the previous section, we implemented
Algorithm 2.1 with simulated mixed precision fp16-fp32 block FMA arithmetic using
the CPFloat package [12]. The simulations in this section and in section 4.3 were
compiled using version 11.3.0 of the GNU Compiler Collection on a machine equipped
with an AMD Ryzen 7 PRO 5850U CPU.

We focus on double-fp16 arithmetic, that is, we set p = 2, ulow = 2−11, and
uhigh = 2−24. For comparison, we also compute the matrix product in fp32 and fp64
arithmetics in hardware by using the Eigen C++ library.1 For fp64 arithmetic, we
use the default Eigen matrix multiplication implementation, for all other arithmetics
we use the blocked FMA algorithm [6, Alg. 3.1] with a block FMA of dimension 1.

To measure the accuracy of the computed result Ĉ, we compute the maximum

1https://eigen.tuxfamily.org/

https://eigen.tuxfamily.org/
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Fig. 3.1. Componentwise relative error of algorithms for computing the product AB. The meth-
ods and arithmetics used are discussed in section 3. The double-fp16 matrices A ∈ R16×n and
B ∈ Rn×16 have entries sampled uniformly at random from the interval at the top.

componentwise relative error

max
i,j

|C − Ĉ|ij
(|A||B|)ij

, (3.1)

where C is a reference solution computed using fp64 arithmetic. We will use the same
error metric in section 4 when running the experiments on GPUs.

Figure 3.1 compares the error of double-fp16 arithmetic with that of standard fp16
and fp32 arithmetics. We will repeat the same experiments on GPUs in section 4,
and the matrix dimensions used here reflect the memory limits of the NVIDIA GPUs
used there. We consider the multiplication of two matrices A ∈ Rm×n and B ∈ Rn×q,
with m = q = 16, and we vary n between 29 and 220.

The results show that double-fp16 arithmetic can substantially improve accuracy
compared with fp16 arithmetic. As expected, the benefit is reduced as n increases,
since the error term of order n × 2−24 becomes more significant and can eventually
outgrow the term 2 × 2−11 (see Table 2.1). This is especially true when the data is
drawn from the interval (0, 1], in which case fp16 arithmetic becomes as accurate as
double-fp16 and fp32 arithmetic for n = 6× 104. If the entries of the input matrices
are drawn from the uniform distribution over (−0.5, 0.5], the data has zero mean,
which leads to an error not growing with n and even decreasing with n in some
cases, which is explained by probabilistic error analysis [19]; as a result, double-fp16
arithmetic remains at least one order of magnitude more accurate than fp16 arithmetic
for n ≤ 106. In our experiments, we also tested a variant of double-fp16 which does
not drop the A2B2 term and computes four fp16 products instead of three. The
results are not shown in Figure 3.1 as the curve for this variant is indistinguishable
from that of the algorithm that computes only the first three products. This confirms
that A2B2 can be neglected without any impact on the accuracy, as predicted by our
analysis.
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Table 4.1. Maximum theoretical throughput (in Tflop/s) of various arithmetics in the NVIDIA
V100 [30] and A100 [31] GPUs. These figures are based on the “GPU boost clock” [30], [31], which
is 1530 MHz on the V100 and 1410 MHz on the A100. The suffix “-tc” refers to the figures for mixed
precision matrix–matrix multiplication with tensor cores enabled.

GPU fp64 fp64-tc fp32 tf32-tc bf16 bf16-tc fp16 fp16-tc

V100 7.8 15.7 31.4 125.0
A100 9.7 19.5 19.5 156.0 39.0 312.0 78.0 312.0

4. Experiments on NVIDIA V100 and A100 GPUs. In this section we
evaluate the accuracy and performance of various GPU implementations of Algo-
rithm 2.1. The codes target the NVIDIA V100 and A100 GPUs, and the tensor cores
are used for fp16 and double-fp16 but not for fp32 arithmetic.

In our first experiments with the cuBLAS library (section 4.2), we find that
double-fp16 arithmetic is not as accurate as fp32 arithmetic, although the two possess
an almost identical error bound. In section 4.3, we identify the cause of the issue as
related to the rounding mode used by the tensor cores. We propose a cure for this
problem in section 4.4.

4.1. Properties of the NVIDIA V100 and A100 GPUs. The NVIDIA
V100 and A100 GPUs provide a wide range of different arithmetics with varying
levels of performance. The third-generation tensor cores that equip the Ampere cards
provide more levels of precision than the tensor cores available on the Volta chips [8].
Table 4.1 compares the performance of these two GPUs for different arithmetics.
The throughput is expressed in floating-point operations per second (flop/s), and one
Tflop/s corresponds to 1012 flop/s.

Note that different arithmetics have different numbers of functional units on GPUs
and this has an impact on throughput—for example, an NVIDIA A100 GPU has 3,456
fp64 cores and 6,912 fp32 cores [31], therefore fp32 arithmetic is expected to have at
least 2× higher throughput than fp64. We say “at least” because the actual figure
could be larger in practice, for example if a single fp32 elementary arithmetic operation
requires fewer cycles than a single fp64 one to complete, or if the fp32 and fp64 cores
run at different frequencies. In fact, on A100 GPUs the throughput of fp32 arithmetic
is exactly twice that of fp64 (Table 4.1), therefore most likely both arithmetics have
the same latency, or the declared performance numbers assume hazard-free pipelining
of instructions (once the pipeline is full, a floating-point unit completes a new FMA
instruction at every cycle).

4.2. Experiments with cuBLAS. In this section we evaluate the performance
and accuracy of double-fp16 arithmetic using the cuBLAS library. Our implementa-
tion of Algorithm 2.1 uses the cublasGemmEx routine for computing matrix–matrix
products, as described in Algorithm 4.1. We use version 11.6.124 of the CUDA library
and the NVIDIA Tesla V100-SXM2 16GiB and NVIDIA A100-SXM 80GiB GPUs.
The function cublasGemmEx allows the programmer to choose between 24 (if tensor
cores are disabled) or 16 (if they are enabled) default algorithms, or a heuristic ap-
proach that selects the best algorithm according to undisclosed criteria. The latter
option has been used for the experiments below since on the A100 GPU and newer it
is the default and only option.

4.2.1. Performance. Figure 4.1 plots the maximum observed throughput for
the computation of the product of two n× n matrices of increasing size on the V100
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Algorithm 4.1: MMM algorithm (Algorithm 2.1) using cuBLAS.

Input : Two fp32 matrices A ∈ Rm×n and B ∈ Rn×q.
Output: The fp32 matrix C ≈ AB computed in double-fp16 arithmetic.

1 C ← 0
2 A1 ← f l16(A)
3 A2 ← f l16(A−A1)
4 B1 ← f l16(B)
5 B2 ← f l16(B −B1)
6 Compute C ← C +A2B1 using cublasGemmEx.
7 Compute C ← C +A1B2 using cublasGemmEx.
8 Compute C ← C +A1B1 using cublasGemmEx.

and A100 GPUs. As is common when comparing the performance of algorithms
that execute a different number of floating-point operations (flops), we choose as
performance metric the “effective Tflop/s” rate, which is computed by dividing the
number of executed flops, in our case 2n3, by the runtime of each algorithm:

Effective Tflop/s =
2n3

tavg
× 10−12, (4.1)

with tavg = ts/R, where ts is the total runtime of the experiment in seconds and R is
the number of times each run is repeated. We found R = 10 to give sufficiently consis-
tent measurements for the experiments in this section. The total runtime ts includes
only the computation of the matrix–matrix product; for large enough problems, any
other tasks, such as splitting the high precision input matrices into low precision ones,
have negligible performance overhead. Note that the definition of throughput in (4.1)
corresponds to the usual Tflop/s for fp32 and fp16, but not for double-fp16, which
performs p(p+ 1)n3 (or twice as many, if all products are computed) rather than 2n3

flops.
In Figure 4.1, fp32 arithmetic attains a maximum throughput of 14 Tflop/s on

the V100 and 19 Tflop/s on the A100, whereas fp16 arithmetic can achieve the much
higher rates of 91 Tflop/s and 158 Tflop/s on the V100 and A100, respectively. These
figures are relatively close to the corresponding theoretical peak performance of each
arithmetic, as reported in Table 4.1. While we are not always able to reach the
peak performance, our measurements are consistent with those of other independent
studies [26], [35]. Turning now to Algorithm 4.1, which implements double-fp16 arith-
metic, we achieve a maximum performance of 30 effective Tflop/s on the V100 and
of 76 effective Tflop/s on the A100. Compared with fp16 precision, the double-fp16
approach is thus about 3× slower on both the V100 and the A100. This is expected,
as both methods rely on the tensor core, but double-fp16 performs three times as
many flops. More importantly, double-fp16 arithmetic is up to 2.2× faster than fp32
arithmetic on the V100, and up to 7.3× faster on the A100. The speedup is generally
higher on the A100 compared with the V100; this is expected, as the performance
ratio between fp16 arithmetic on the tensor cores and fp32 arithmetic is also different
between the two cards.

4.2.2. Accuracy. The performance results above are very positive: we find
double-fp16 arithmetic to be much faster than fp32 arithmetic, while possessing an
almost identical error bound of order n×2−24 (see Table 2.1). We now seek to confirm
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Fig. 4.1. Throughput of GPU implementations of algorithms for computing the product AB, where
A,B ∈ Rn×n. The methods and arithmetics used are discussed in section 4.2.1.

experimentally whether double-fp16 arithmetic can indeed deliver the same accuracy
as fp32. We will see that this is not always the case.

In the following experiments we consider two matrices A ∈ Rm×n and B ∈ Rn×q,
and we set the outer dimensions m and k to 16 while we vary n. By doing so, we can
measure the accuracy for larger values of n without hitting the memory limit of a single
GPU. We generate random matrices A and B with entries drawn from the uniform
distribution over the intervals (0, 1] or (−0.5, 0.5]. We then split A and B into four
fp16 matrices such that f l64(A) = fl32(A) = A1+A2 and fl64(B) = fl32(B) = B1+B2.

In Figure 4.2 we plot the normwise and componentwise relative errors obtained by
computing the product C = AB in fp32, fp16, and double-fp16 arithmetics on both
V100 and A100 GPUs. For matrices with entries sampled from the interval (−0.5, 0.5],
double-fp16 arithmetic is often significantly more accurate than fp16 arithmetic, but
not always as accurate as fp32, especially on the A100. All three arithmetics provide
results that are much more accurate than what the worst-case error bounds would
suggest; this is due not only to statistical effects in the accumulation of rounding
errors, but also to the fact that the matrix entries have zero mean [19]. The results
for matrices with entries in (0, 1] are much worse. We observe a severe accumulation
of rounding errors that leads double-fp16 arithmetic to be no more accurate than fp16
arithmetic for large values of n, and much less accurate than fp32 arithmetic. There
is no breach in the theory: the worst-case error bounds in Table 2.1 are not violated,
but the error of double-fp16 arithmetic attains its worst-case bound, growing linearly
with n, whereas the error of fp32 arithmetic maintains a slower error growth well
below the bound. To our knowledge, this is the first time that this behaviour of the
tensor cores for data in [0, 1) is reported in the literature. This may be explained by
the fact that previous work on multiword arithmetic with tensor cores [15], [26], [34]
mostly focused on matrices with zero mean entries.

In the next section, we investigate the causes of this behavior and show that it is
related to the rounding mode used by the NVIDIA tensor cores.
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Fig. 4.2. Componentwise relative error of GPU implementations of algorithms for computing the
product AB. The methods and arithmetics used are discussed in section 4.2.2. The double-fp16
matrices A ∈ R16×n and B ∈ Rn×16 have entries sampled uniformly at random from the interval
at the top.

4.3. Effects of round-toward-zero in NVIDIA tensor cores. One of the
main numerical features that we have identified when studying the numerical behavior
of the tensor cores [11] is that these units compute dot products using round-toward-
zero (RZ) rather than the more common round-to-nearest (RN). We now explain why
this difference may be the cause of the issue described in the previous section.

By using a probabilistic rounding error analysis one can typically replace, in
worst-case error bounds such as (2.5), (2.7), or (2.8), the constants depending on
the problem dimension (n in this case) by their square root [18]. Hence, probabilis-
tic analogues of the bounds in Table 2.1 can be obtained by replacing n with

√
n.

However, probabilistic error analysis is based on a model that assumes that rounding
errors are random variables of zero mean. Whether this assumption holds or not may
well depend on the rounding mode used to carry out the computation: for stochastic
rounding, for example, the model is always valid [9], [10]. RN does not guarantee it,
but the assumption has been observed to hold in many cases in practice, thus stan-
dard floating-point arithmetic with RN usually benefits from the reduced

√
n error

growth. With RZ, on the other hand, the assumption does not hold if the data have
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Fig. 4.3. Componentwise relative error of algorithms for computing the product AB using simu-
lated block FMAs. The methods and arithmetics used are discussed in section 4.3. Two rounding
modes are used: round-toward-zero (left) and round-to-nearest (right). The double-fp16 matrices
A ∈ R16×n and B ∈ Rn×16 have entries sampled uniformly at random from the interval (0, 1].

nonzero mean: since the sign of the partial sums in the dot products remains constant
throughout the computation, RZ always rounds in the same direction, and the round-
ing errors all have the same sign. For zero-mean data, such as those sampled from the
uniform distribution over the interval (−0.5, 0.5], the issue can still occur if the partial
sums computed in the evaluation of the dot product remain of the same sign for many
consecutive additions. However, since the data is uniformly distributed around zero,
positive and negative rounding errors are equally likely, and we can expect to benefit,
at least partially, from statistical error cancellation.

We now seek to confirm experimentally that the rounding mode of tensor cores is
the cause behind the underwhelming results observed in Figure 4.2. To do so, we rely
on a software emulator, implemented using the CPFloat library [12], which aims to
behave as closely as possible to the NVIDIA tensor cores [11]. With this tool, we can
switch the rounding mode from RZ to RN and assess the impact of this change on
the final accuracy delivered by the algorithms. The CUDA function cublasGemmEx

implements many matrix multiplication algorithms and selects the one to use for
a given input heuristically at runtime. Details on these algorithms are not publicly
available, thus we had to roughly match the results of the simulation to those obtained
when running on the tensor cores. The official NVIDIA documentation,2 indicates
that the algorithms can be based on a blocked summation approach, which means
that different blocks of the dot product are computed independently first and then
combined together. In our simulation, we split the dot products into 16 blocks, that
is, we use a variable block size equal to n/16 for all arithmetics. Each product of two
blocks is computed with the emulated V100 tensor cores, that is, using a block FMA
matrix multiply [6, Alg. 3.1] of dimension 4.

In Figure 4.3 we show the errors obtained by RZ and RN in the simulation.
Since emulating the behavior of the tensor cores has a rather negative impact on

2https://docs.nvidia.com/cuda/archive/11.6.1/cublas/index.html#gemm-algorithms

https://docs.nvidia.com/cuda/archive/11.6.1/cublas/index.html#gemm-algorithms
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Algorithm 4.2: FABsum-v1: compute intra-block sums with tensor cores
and inter-block sums in standard fp32 arithmetic.

Input : Two fp16 matrices A ∈ Rm×n and B ∈ Rn×q partitioned into b1 × b
blocks Aik and b× b2 blocks Bkj .

Output: The fp32 matrix C = AB.

1 Initialize C to the zero matrix stored in fp32.
2 for i← 1 to m/b1 do
3 for j ← 1 to q/b2 do
4 for k ← 1 to n/b do
5 Compute D ← AikBkj using the tensor cores (fp16 arithmetic).
6 Compute Cij ← Cij +D using fp32 arithmetic.

performance, for this experiment we set the outer dimensions of the matrix factors to
the smallest size that is necessary to fill the simulated tensor cores, and we consider
the product of two matrices A ∈ Rm×n and B ∈ Rn×q with m = q = 16. The results
for RZ in Figure 4.3 (left plot) should be compared with those from the actual tensor
cores in the right panel of Figure 4.2: these are relatively similar, which indicates
that the behavior of our simulator is not dissimilar from that of the algorithm chosen
by cublasGemmEx. Importantly, this experiment demonstrates that switching from
RZ to RN does fix the issue observed previously, as double-fp16 and fp32 now deliver
comparable accuracy even for data sampled from the interval (0, 1].

4.4. Using FABsum to reduce the accumulation of errors caused by RZ.
In this last section, we seek a cure for the accumulation of errors caused by the
rounding behavior of the NVIDIA tensor cores. As it is not possible to change the
rounding mode these hardware units use (as far as we are aware), we propose the use
of a more accurate summation algorithm within the dot product that underlies the
computation of each element of the matrix–matrix product. Specifically, we consider
the use of the FABsum (fast and accurate blocked summation) algorithm [7]. Like
standard blocked summation algorithms, FABsum splits the summands into blocks
of size b. Unlike other techniques, however, FABsum uses two different summation
algorithms: the sums of the elements within each block are computed with a fast
algorithm, and the partial sums are then accumulated using a more accurate algorithm
in higher precision.

Here we investigate two variants of FABsum, described in Algorithms 4.2 and 4.3.
Both instances use fp16 arithmetic with tensor cores to compute the intra-block
dot products, whilst the inter-block sums are computed with standard floating-point
arithmetic: Algorithm 4.2 (FABsum-v1) uses fp32 arithmetic, whereas Algorithm 4.3
(FABsum-v2) uses fp64 arithmetic. FABsum-v1 has a double advantage over comput-
ing the entire dot product with tensor cores. First, the use of blocked summation
reduces the worst-case error bound from n× 2−24 to (b+ n/b)× 2−24. Second, since
the inter-block dot products are computed with standard arithmetic and thus using
RN, we can expect the bound to hold with the constant n/b replaced with its square
root. FABsum-v2 further reduces the worst-case error bound to b× 2−24 +n/b× 2−53,
and can therefore be more accurate than FABsum-v1 for large n.
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Algorithm 4.3: FABsum-v2: compute intra-block sums with tensor cores
and inter-block sums in standard fp64 arithmetic.

Input : Two fp16 matrices A ∈ Rm×n and B ∈ Rn×q partitioned into b1 × b
blocks Aik and b× b2 blocks Bkj .

Output: The fp32 matrix C = AB.

1 Initialize C to the zero matrix stored in fp64.
2 for i← 1 to m/b1 do
3 for j ← 1 to q/b2 do
4 for k ← 1 to n/b do
5 Compute D ← AikBkj using the tensor cores (fp16 arithmetic).
6 Compute Cij ← Cij +D using fp64 arithmetic.

7 C ← f l32(C)

To implement FABsum we rely on the CUTLASS library.3 The library provides
an efficient routine for matrix–matrix multiplication that exploits blocked summation
(this operation is called “SplitK” in the library) and allows the user to freely choose
the block size b. For FABsum-v2, we have modified the routine to perform the inter-
block accumulation in fp64 arithmetic, which yields an implementation of FABsum

that is both accurate and efficient. Nevertheless, compared with the cublasGemmEx

baseline, the use of a more accurate summation algorithm carries a relatively signifi-
cant performance penalty, especially for smaller values of the block size b. Therefore,
our aim will be to use FABsum to find a better tradeoff between the fast but inaccurate
cuBLAS-based double-fp16 arithmetic and the accurate but slower fp32 arithmetic.

The naive approach to improve the accuracy of the cuBLAS-based implementation
would be to replace every call to cublasGemmEx in Algorithm 4.1 with a call to FABsum.
In light of the error analysis in section 2, and specifically of (2.6), this is not necessary:
the entries of |A1||B2| and |A2||B1| are of order 2−11|A||B|, thus the error in computing
the products A1B2 and A2B1 is bounded by n × 2−11 × 2−24. Assuming that with
standard fp32 arithmetic the accuracy follows the probabilistic error bound

√
n×2−24,

the error introduced by the A1B2 and A2B1 products can only become significant for
n larger than 222 ≈ 4 × 106. As a result, for matrices of order less than about four
million, applying FABsum only to the first order product A1B1 should be sufficient.
The resulting method is given in Algorithm 4.4.

In Figure 4.4, we assess the performance and accuracy of Algorithm 4.4 for both
versions of FABsum and different choices of the block size b. We compare these imple-
mentations against the cuBLAS-based codes in both double-fp16 and fp32 arithmetics.
As expected, FABsum-v2 is more expensive to use than FABsum-v1, but preserves a
high accuracy even when n is very large (compare the solid and dashed blue lines in
the figure). Also as expected a smaller block size b reduces both error and throughput
(compare different marker types in the figure). Interestingly, given a desired level of
performance–accuracy tradeoff, the best variant to choose depends on the problem
size n. For example, let us compare FABsum-v1 with b = 128 (solid light blue line
with square markers) and FABsum-v2 with b = 256 (dashed darker blue line with
asterisk markers). These two variants have a very similar performance, but different
accuracy: the latter is less accurate for small values of n because of the larger value

3https://github.com/nvidia/cutlass

https://github.com/nvidia/cutlass
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Algorithm 4.4: MMM algorithm (Algorithm 2.1) using FABsum for the first
order product.

Input : Two fp32 matrices A ∈ Rm×n and B ∈ Rn×q.
Output: The fp32 matrix C ≈ AB computed using double-fp16 arithmetic.

1 C ← 0
2 A1 ← f l16(A)
3 A2 ← f l16(A−A1)
4 B1 ← f l16(B)
5 B2 ← f l16(B −B1)
6 Compute C ← C +A2B1 with cublasGemmEx.
7 Compute C ← C +A1B2 with cublasGemmEx.
8 Compute C ← C +A1B1 with Algorithm 4.2 or Algorithm 4.3 (FABsum).

of b, but becomes more accurate once n is large enough to make the n/b term in the
error dominate. In fact, the two lines cross in the figure at n ≈ 3× 105 for the V100
and at n ≈ 105 for the A100.

Comparing against the cuBLAS-based implementations now, we see that the
FABsum-based algorithms achieve a flexible and significantly improved tradeoff between
performance and accuracy. With a moderately large block size and the FABsum-v1

version, Algorithm 4.4 can be as fast as Algorithm 4.1 whilst remaining significantly
more accurate, especially for large n. Alternatively, using the FABsum-v2 version with
a smaller block size, Algorithm 4.4 can match the accuracy of fp32 arithmetic while
remaining significantly faster.

We conclude by investigating the use of FABsum in fp16 arithmetic. As we rely on
FABsum to improve the accuracy of double-fp16 arithmetic, for fairness we should check
what we obtain by applying the same approach directly to the faster fp16 arithmetic.
For very large n, we can expect the error term corresponding to the accumulation
within the inner products to exceed the errors caused by the conversion to fp16.
Figure 4.5 shows the performance and accuracy of FABsum-v2 with fp16 arithmetic
for several block sizes, and compares it to that of FABsum-v2 in double-fp16 arithmetic
with fixed block size b = 256. Only results on A100 are shown, those on V100 being
similar. For the smallest block size (b = 128), fp16 is indeed as accurate as double-
fp16 with b = 256 for n ≈ 106, but in this case double-fp16 is faster because of the
larger block size. For b = 256 or larger, fp16 becomes faster than double-fp16, but
does not reach the same level of accuracy. We can conjecture that this will eventually
happen for larger values of n. The conclusion is that the use of double-fp16 arithmetic
is of interest for a wide range of matrix dimensions.

5. Conclusion. The emergence of hardware with accelerators for low precision
arithmetics has generated renewed interest in multiword arithmetic as a way to obtain
fp32 accuracy using fp16 arithmetic. We have proposed a general class of multiword
matrix multiplication algorithms based on the block FMA framework [6] and have
carried out their error analysis.

We have implemented our algorithms and run them on NVIDIA GPUs equipped
with tensor cores. We have identified some cases where double-fp16 arithmetic is,
unexpectedly, unable to achieve full fp32 accuracy. With the help of probabilistic
rounding error analysis we have showed that a possible cause is the fact that these
devices use round-toward-zero rather than round-to-nearest [11], [16]. To support
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Fig. 4.4. Throughput (left) and componentwise relative error (right) of GPU implementations of
algorithms for computing the product AB. Implementations of Algorithm 4.1 (MMM using cuBLAS)
and of Algorithm 4.4 (MMM using FABsum), using either Algorithm 4.2 (FABsum-v1) or Algorithm 4.3
(FABsum-v2), are benchmarked against the cublasGemmEx using fp32 arithmetic. In the left panel
A,B ∈ Rn×n, whereas in the right panel the double-fp16 matrices A ∈ R512×n and B ∈ Rn×512

have entries sampled uniformly at random from the interval (0, 1].

our conclusion, we have developed a simulator of the tensor cores and have showed
that switching between the two rounding modes has indeed the expected impact
on accuracy. Finally, we have explained how to alleviate the issue by using blocked
summation algorithms based on FABsum [7], which allow for a flexible tradeoff between
accuracy and performance when using block FMA hardware such as the tensor cores.

With this improvement, we have obtained multiword matrix multiplication algo-
rithms that can achieve fp32 accuracy and have a throughput significantly higher than
that of standard fp32 arithmetic. We expect that multiword arithmetic algorithms
will become increasingly attractive as more hardware devices with limited support for
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high precision arithmetic appear.
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