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Actions of nilpotent groups on complex algebraic varieties

We study nilpotent groups acting faithfully on complex algebraic varieties. We use a method of base change. For finite p-groups, we go from k, a number field, to a finite field in order to use counting lemmas. We show that a finite p-group of polynomial automorphisms of k d is isomorphic to a subgroup of GL d (k). For infinite groups, we go from C to Zp and use p-adic analytic tools and the theory of p-adic Lie groups. We show that a finitely generated nilpotent group H acting faithfully on a complex quasiprojective variety X of dimension d can be embedded into a p-adic Lie group acting faithfully and analytically on Z d p ; we deduce that d is larger than the virtual derived length of H. Contents 1 Introduction 1 2 Finite p-groups 3 3 p-adic analysis 10 4 Finitely generated nilpotent groups 20

Introduction

1.1 Minkowski's bound for polynomial automorphisms.

Rational numbers.-Let p be a prime. A finite p-group is a group of size p α for some integer α ≥ 0. For d ∈ Z+, define MQ(d, p) to be the integer

MQ(d, p) = d p -1 + d p(p -1) + d p 2 (p -1) + • • •
(Here M stands for Minkowski). Let vp be the p-adic valuation; then MQ(d, p) = d p-1 + vp d p-1 ! . Theorem 1.1 (Minkowski 1887, see [START_REF] Serre | Bounds for the orders of the finite subgroups of G(k)[END_REF]). Let d be a natural number and let p be a prime. If G is a finite p-subgroup of GL d (Q), then vp(|G|) ≤ MQ(d, p), and this upper bound is optimal: there are groups of order p M Q (d,p) in GL d (Q).

Number fields.-Schur extended Minkowski's result to the case of number fields. To state Schur's result, let us introduce some notation for cyclotomic extensions. Consider a number field k and fix an algebraic closure k of k. Denote by za ∈ k any primitive a-th root of unity, for a any positive integer; for instance z4 = i, a square root of -1.

• If p ≥ 3, set t(k; p) = [k(zp) : k] and let m(k; p) be the maximal integer a such that k(zp) contains zpa ; note that m(k; p) is finite because k is a finite extension of Q. This definition is consistent with the definition of MQ(d, p) given above.

Theorem 1.2 ([Sch05], [START_REF] Serre | Bounds for the orders of the finite subgroups of G(k)[END_REF]). Let d be a natural number, and let p be a prime. If G is a finite p-subgroup of GL d (k) then vp(|G|) ≤ M k (d, p) and this bound is optimal.

It is not difficult to find a subgroup G ⊂ GL d (k) such that |G| = p M (d,p) . We recall how to do so in Proposition 2.17.

Polynomial automorphisms.-Our first goal is to extend the theorem of Minkowski and Schur to an algebraic, but nonlinear context. Let Aut(A d k ) be the group of polynomial automorphisms of the affine space A d , over some number field k. This group contains GL d (k) but it is much more complicated. Surprisingly, we are able to show that the Minkowski-Schur bound still holds for subgroups of Aut(A d k ) and in fact the same finite subgroups appear.

Theorem A. Let k be a number field, let d a natural number, and let p ≥ 3 be a prime. If G is a finite p-subgroup of Aut(A d k ), then there exists a group embedding G ֒→ GL d (k). In particular, Schur's bound still holds:

vp(|G|) ≤ M k (d, p),
and this bound is optimal.

The proof first shows the bound on the cardinal of the group G and we then find the group embedding G ֒→ GL d (k) using a Sylow argument.

Remark 1.3. The case p = 2 is also dealt with in Section 2. But we don't get an optimal bound. For example for p = 2 and k = Q, we show that any 2-subgroup G of Aut(A d Q ) can be embedded into GL d (Q(z4)) and therefore satisfies v2(|G|) ≤ MQ(d, 2) + d 2 . More precisely, Proposition 2.10 defines three cases (a), (b) and (c) when p = 2. We get an embedding into GL d (k) in case (a) and (b) (this is the case for example if k contains z4), but in case (c) we can only get an embedding of G into GL d (k(z4)) and therefore we get the bound v2(|G|) ≤ M k (d, 2) + d 2 = M k(z 4 ) (d, 2). See Theorem C page 8 for the general statement. In fact, Theorem A still holds when k is a finitely generated field over Q but the proof is less intuitive so we will show the proof for k a number field and explain how to extend it to finitely generated field over Q in Remark 2.16. We then state the complete theorem for finitely generated fields over Q in Theorem D page 9.

Our method of proof follows [START_REF] Serre | Bounds for the orders of the finite subgroups of G(k)[END_REF], in which Serre bounds the order of the finite subgroups of H(k), for H a semi-simple algebraic group; the phenomenon mentioned in Remark 1.3 also appears for such groups H. The general idea is to embed G into a group of linear automorphisms over a finite field, study the finite field case, and use cyclotomic characters to find the optimal bound yield by this method.

Birational transformations.-The problem of the existence of uniform bounds on the size of finite pgroups or finite simple groups in infinite dimensional groups such as Aut(A d ) or Bir(A d ) has been studied extensively during the last decade (see [START_REF] Serre | A minkowski-style bound for the orders of the finite subgroups of the cremona group of rank 2 over an arbitrary field[END_REF]). For an arbitrary complex projective variety X, one cannot expect uniform bounds that would only depend on the dimension of X, since every finite group is the group of automorphisms of a complex projective curve (see [START_REF] Greenberg | Conformal transformations of riemann surfaces[END_REF]). But precise results have been obtained when X is rationally connected. Recently, Jinsong Xu showed the following optimal result: Let d be a natural number and let p be a prime > d + 1. If X is a rationally connected variety of dimension d over an algebraically closed field of characteristic 0, and G is a finite p-subgroup of Bir(X), then G is abelian and its rank is at most d (see [START_REF] Xu | A remark on the rank of finite p-groups of birational automorphisms[END_REF]). Results of this type were first shown by Prokhorov, Shramov and Birkar in [START_REF] Prokhorov | Jordan property for groups of birational selfmaps[END_REF] for birational transformations of any varieties and improvements were made for rationally connected varieties in [START_REF] Prokhorov | Jordan property for Cremona groups[END_REF].

These results are deeper than our Theorem A, but our contribution has a few advantages: it may serve as an introduction to the work of Prokhorov and Shramov, the techniques are more elementary, the precise bound we obtain illustrates the interplay between the arithmetic of the field k and the size of the group, and the proof shows why the upper bound of Minkowski and Schur is still valid in Aut(A d k ). Remark 1.4. The results of Prokhorov and Shramov rely on the BAB conjecture, which was proved by Birkar in [START_REF] Birkar | Singularities of linear systems and boundedness of fano varieties[END_REF]. The result of J. Xu relies on the work of Haution on equivariant cohomology and fixed points of finite groups (see [START_REF] Haution | Fixed point theorems involving numerical invariants[END_REF]).

1.2 A bound for the action of finitely generated nilpotent groups

Nilpotent and solvable groups

Let H be a group. If a, b ∈ H, we denote by [a, b] := aba -1 b -1 their commutator. If H1, H2 are two subgroups of H, then we denote by H1H2 the subgroup generated by the set {h1h2 : h1 ∈ H1, h2 ∈ H2} and by [H1, H2] the subgroup generated by the set {[h1, h2] : h1 ∈ H1, h2 ∈ H2}. The lower central (resp. derived) series is defined by D 0 (H) = H (resp. D0(H) = H) and D i+1 (H) = [H, D i (H)] (resp. Di+1(H) = [Di(H), Di(H)]). A group H is nilpotent (resp. solvable) when there exists an integer k such that D k (H) = 1 (resp. D k (H) = 1).

If H is nilpotent, its nilpotency class nilp(H) is the lowest integer such that D k (H) = 1. For a solvable group H, denote by dl(H) its derived length, that is the least integer k such that D k (H) = 1. The virtual derived length is the minimum of dl(H0) over finite index subgroups H0 of H. Similar definitions and notation will be used for Lie algebras.

Upper bounds on the virtual derived length

Finite p-groups are nilpotent. We now look at infinite, finitely generated nilpotent groups, and their actions by automorphisms and birational transformations. In [START_REF] Cantat | Algebraic actions of discrete groups: the p-adic method[END_REF], Cantat and Xie used p-adic analysis to give information on group actions on complex algebraic varieties by birational transformations, and sketched the proof of the following result.

Theorem B. Let H be a finitely generated nilpotent group acting faithfully on a quasi-projective variety X by algebraic automorphisms over a field of characteristic zero. Then,

vdl(H) ≤ dim X
where vdl(H) is the virtual derived length of H. Furthermore, this bound is optimal.

Another goal of this paper is to give a complete proof of this result. Again, the main idea is to replace the initial field of definition by another one, here Qp, and in fact by Zp, for a suitable prime p. Then, the initial action of the discrete group H will be extended to an analytic action of a p-adic Lie group over Z dim X p , so that tools from p-adic analysis will be available, in particular p-adic analytic vector fields and p-adic Lie algebras. Thus, Theorem B will follow from a similar theorem we prove over Zp. Section 3 is dedicated to the construction of p-adic analytic tools needed for the proof of Theorem B such as infinite dimensional p-adic Lie groups or Tate-analytic diffeomorphisms and Section 4 is dedicated to the proof of Theorem B.

Finite p-groups

Preliminaries

Primes and p-adic numbers In the rest of the article, p is a prime unless mentioned otherwise, Zp denote the ring of p-adic integers and Qp is the fraction field of Zp. Recall that Dirichlet's theorem states for any integers a, n such that gcd(a, n) = 1, there is an infinite amount of prime numbers ℓ such that ℓ = a mod n.

Maximal ideals and reduction

If q is a power of a prime, we denote by Fq the field with q elements. Let A be a finitely generated Z-algebra. Then for every maximal ideal m ⊂ A, A/m is a finite field. This comes from the Nullstellensatz for Jacobson rings which is proven in [START_REF] Bourbaki | Algèbre commutative: Chapitres 5 à 7. Bourbaki[END_REF], chapter 5, §3, theorem 3 of section 4.

Groups of linear transformations over Q

To warm up, let us prove the theorem of Minkowski. For a ring A, we denote by A × its subgroup of invertible elements; for any prime p the group (Z/p 2 Z) × is cyclic.

Proposition 2.1. Let G be a finite subgroup of GL d (Q). For any prime ℓ large enough there exists an injective homomorphism G ֒→ GL d (F ℓ ).

Proof. Since G is finite, there exists an integer N such that G ⊂ GL d (Z[1/N ]). Now, for each g ∈ G \ {id} denote by l(g) the largest prime factor that appears in the prime decomposition of the rational numbers given by the coefficients of the matrix gid; denote by L the maximum of the primes l(g). If ℓ > max(N, L), the homomorphism of reduction modulo l is defined on G and is injective.

Thus, if G ⊂ GL d (Q) is a finite subgroup, vp(|G|) ≤ vp(|GL d (F ℓ )|)
for any ℓ given by Proposition 2.1. We know that

|GL d (F ℓ )| = ℓ d(d-1)/2 d-1 i=1 ℓ i -1 .
(1)

for any prime ℓ. Let us compute the p-adic valuation of such a product.

Lemma 2.2. Suppose p = 2 and let ℓ be a generator of

(Z/p 2 Z) × . 1. If p divides ℓ i -1 then p -1 divides i; 2. If p -1 divides i then vp(ℓ i -1) = 1 + vp(i).
Proof. Suppose p divides ℓ i -1. Note that ℓ ip -1 = (ℓ i -1) p-1 j=0 ℓ ij ; since ℓ i ≡ 1 mod p, we have p-1 j=0 ℓ ij ≡ 0 mod p, and then ℓ ip ≡ 1 mod p 2 . Since ℓ is of order p(p -1) in (Z/p 2 Z) × , we have that p(p -1) divides ip therefore, p -1 divides i, which proves the first assertion.

We prove assertion 2 by induction on vp(i). To initialize the induction assume vp(i) = 0. Then p and therefore p(p -1) do not divide i; thus ℓ i ≡ 1 mod p 2 because ℓ is of order p(p -1). Thus, vp(ℓ i -1) = 1. Now suppose the assertion true for vp(i) = k with k ≥ 0 and suppose vp(i) = k + 1. Write i = (p -1)p k+1 m with m not divisible by p and suppose the result true for vp(i) = k. Let s := ℓ (p-1)m , then

ℓ i -1 = s p k+1 -1 = (s p k -1) p-1 j=0 s jp k .
By induction, s p k is of the form s p k = 1 + up k+1 where u is an integer not divisible by p. Therefore, for all

1 ≤ j ≤ p -1, s jp k = 1 + jp k+1 u + vj p 2
where vj is some integer. , therefore we can write p-1 j=0

s jp k = p + p k+1 p(p -1) 2 u + p 2 V = p 1 + p k+1 p -1 2 u + pV where V = vj . Since p is odd, p-1 2
is an integer and this sum has p-adic valuation 1 since k + 1 ≥ 1.

s p k+1 -1 = (s p k -1) • p 1 + p k p-1 j=0 uj since k ≥ 1, we get vp(s p k+1 -1) = 1 + vp(s k -1) = 1 + (k + 1).
Equation (1) and Lemma 2.2 provide the following corollary.

Corollary 2.3. Let d be an integer, let p be an odd prime, and let ℓ be a prime whose image in

(Z/p 2 Z) × is a generator. Then vp(GL d (F ℓ )) = MQ(d, p).
This proves also the fact that Theorem 1.1 "is optimal for GL d (F ℓ )" by Sylow.

To prove Theorem 1.1, consider a finite group G ⊂ GL d (Q), then apply Dirichlet's theorem and Proposition 2.1 to embed G in GL d (F ℓ ) for some prime generator ℓ of (Z/p 2 Z) * . The corollary gives the desired upper bound.

Remark 2.4. The case p = 2 is also treated by Minkowski and in fact the same bound applies. However the proof is slightly different as it is required to embed G into an orthogonal group over a finite field. Indeed, If ℓ is an odd prime then the best bound one can get is v2(GL d (F l )) ≤ M (d, 2) + ⌊d/2⌋ with equality with the right choice of ℓ (see Proposition 2.13). To embed a finite group H of matrices over Q into an orthogonal group over a finite field, one just need to look at the positive definite bilinear form ψ := h∈H t HH. For any prime ℓ large enough such that ℓ does not divide det ψ, the group homomorphism of reduction mod ℓ induces an embedding of H into an orthogonal group over F l , however this process does not generalize well when looking at polynomial automorphisms (See Remark 2.18).

The Minkowski's bound for finite groups of polynomial automorphisms with rational coefficients

To prove Theorem A, we adapt the proof of the Minkowski bound for linear automorphisms. Actually, to conclude it suffices to show that Proposition 2.1 also holds for finite p-subgroups of polynomial automorphisms.

Proposition 2.5. Let d be an integer. Let G be a finite p-subgroup of Aut(A d Q ). Then, there exists a prime ℓ such that 1. ℓ is a generator of (Z/p 2 Z) × 2. There is an injective homomorphism G ֒→ GL d (F ℓ ) Lemma 2.6. Let d be an integer and p a prime. Let F be a finite field with char(F ) = p. Let G be a finite subgroup of Aut(A d F ) of order p α . Then G has a fixed point x0 ∈ A d (F ) = F d and the homomorphism

Φ : G -→ GL d (F ) g -→ Dx 0 g is injective.
Proof 

= id, then g(x1, • • • , x d ) = g(x) = id + j≥2 Aj(x)
where Aj is the homogeneous part of g of degree j. Suppose that g = id, let j0 be the lowest index j ≥ 2 such that Aj = 0. We rewrite g as g = id +Aj 0 + B where B = j>j 0 Aj and compute the second iterate

g 2 (x) = g(x) + Aj 0 (g(x)) + B(g(x))
= id +Aj 0 (x) + B(x) + Aj 0 (x + Aj 0 (x) + B(x)) + B(g(x))

= id +2Aj 0 (x) + (terms of higher degree).

And for every k ≥ 1 we obtain g k (x) = id +kAj 0 (x) + (terms of higher degree).

Since, g is of order p t for a certain t > 0, replacing k by p t in this formula we get p t Aj 0 (x) = 0, a contradiction since char F = p.

Remark 2.7. If F is of characteristic 0 and x0 is fixed by G, then the proof shows also that Φ : g → Dx 0 g is injective.

Proof of Theorem A when k = Q. As in the linear case, we can find an integer N such that G ⊂ Aut(A d Z[1/N] ). So, for ℓ > N prime , reduction modulo ℓ is well defined on G. Now, for ℓ large enough such that ℓ does not divide any coefficient of gid for all g ∈ G ⊂ Aut(A d Z[1/N] ), this homomorphism is injective and we can use Dirichlet's theorem to ensure that ℓ is a generator of (Z/p 2 Z) × . G is now embedded in Aut(A d F ℓ ) and we replace it by its image in Aut(A d F ℓ ). By Lemma 2.6, there is a point x0 ∈ F d ℓ fixed by G and we have an injective homomorphism Φ : G ֒→ GL d (F ℓ ). This concludes the proof when p = 2.

Extension of Minkoswski's bound to number fields

Strategy.-This part is dedicated to the proof of Schur's bound for finite p-groups of polynomial automorphisms over arbitrary number fields. We will then prove Theorem A using a Sylow argument. As in the previous section, we want to show the Theorem 2.8. Let k be a number field, d an integer and p be an odd prime. Let G be a finite p-subgroup of Aut k (A d ), then there exists a finite field F with char F = p and an injective group homomorphism

G ֒→ GL d (F) such that vp(|GL d (F)|) ≤ M k (d, p).
Indeed, this would prove that vp(|G|) ≤ vp(|GL d (F)|) ≤ M k (d, p). The natural idea is to do an analog of the proof for k = Q. Replace Z by the ring of integers L := O k of k, then for any maximal ideal m of L lying over a sufficiently large prime, there is an injective homomorphism G ֒→ Aut(A d L/m ). By taking differentials at a fixed point over L/m we would see G as a subgroup of GL d (L/m) and the order of GL d (L/m) would give a bound vp(|G|) ≤ d i=1 vp(|L/m| i -1). The remaining part is to choose m wisely so that we get the lowest bound possible. To do this, we use cyclotomic characters.

Cyclotomic characters.-In this part, k is a finitely generated field over Q. We denote by µn the group of n-th roots of unity in k. Recall that Aut(µn) = (Z/nZ) × because every automorphism φ is of the form φ(ω) = ω a where a ∈ (Z/nZ) × . Definition 2.9 (Cyclotomic character). Denote by Γ k = Gal(k/k) the absolute Galois group of k. For every n ≥ 1, Γ k preserves the group µn ⊂ k × of n-th roots of unity, this induces a group homomorphism

χn : Γ k → Aut(µn) = (Z/nZ) ×
called the n-th cyclotomic character of k. In particular, if p is a prime number, since the inclusion µpn ⊂ µ p n+1 induces a group homomorphism Aut(µ p n+1 ) = (Z/p n+1 Z) × → Aut(µpn ) = (Z/p n Z) × , we have a compatible family of homomorphisms χpn : Γ k → Aut(µpn ). This family of homomorphisms induces the p ∞ -cyclotomic character

χp∞ : Γ k → Z × p = lim ←- (Z/p n Z) ×
where Zp is the ring of p-adic integers. This homomorphism is continuous with respect to the profinite topologies on Γ k and Z × p .

We are interested in the image of χp∞ which is a closed subgroup of Z × p . Define t(k; p) and m(k; p) as in Section 1.1. The number m(k; p) is always finite if k is finitely generated over Q (see [START_REF] Serre | Bounds for the orders of the finite subgroups of G(k)[END_REF], §4.3). If s is an integer, we denote by Cs the cyclic group of order s.

Proposition 2.10 ([Ser07], §4).

1. If p is an odd prime, one has Z × p ≃ Cp-1 × (1 + p • Zp). The group 1 + p • Zp is a procyclic subgroup generated by 1 + p as a topological group and isomorphic to the additive group Zp. Its closed subgroups are the groups 1 + p j Zp with j ≥ 1. Furthermore, one has

Im χp∞ = C t(k;p) × 1 + p m(k;p) • Zp . 2. If p = 2, then Z × 2 = C2 × {1 + 4 • Z2}.
There are 3 possibilities for Im χ2∞ : (a) Im χ2∞ = 1 + 2 m(k;p) • Z2 and then t(k; p) = 1. (b) Im χ2∞ = -1 + 2 m(k;p)-1 (the closure of the group generated by -1 + 2 m(k;p)-1 ) and then t(k; p) = 2.

(c) Im χ2∞ = C2 × 1 + 2 m(k;p) Z2 and then t(k; p) = 2.

Remark 2.11. Those 3 cases are distinct when m(k, p) = ∞. We will refer as k being in case (a), (b), or (c) when Im χ2∞ is of the form (a),(b) or (c) of Proposition 2.10.

Recall that an integral domain L is normal if every localisation at a prime ideal of L is integrally closed. Let L be a normal domain that is finitely generated over Z such that the fraction field of L is k. For any maximal ideal m ⊂ L, the quotient L/m is finite by the Nullstellensatz for Jacobson rings and N (m) := |L/m| is the norm of m. Recall that for a ring R, Spec R denotes the set of prime ideals of R and Specmax R the set of its maximal ideals both with the Zariski topology. The following theorem is proven in [Ser07, §6 Theorem 7].

Theorem 2.12. Let L be a normal domain finitely generated over Z such that the fraction field of L is k. Let n be an integer and c an element of (Z/nZ) × . Denote by Xc the set of elements x ∈ Specmax(L) such that N (x) ≡ c mod n. Then:

1. If c ∈ Im χn, Xc = ∅. 2. If c ∈ Im χn, then Xc is Zariski-dense in Specmax(L).
In particular, Xc is infinite.

In particular, the ring of integers of a number field is normal because it is integrally closed and this property is stable under localisation. So Theorem 2.12 holds for L the ring of integers of a number field.

Valuations.-We define the constant

M ′ k (d, p) = inf u∈Im χ p ∞ d i=1 vp(u i -1).
The next proposition is adapted from Proposition 4, §6 of [Ser07] to our context.

Proposition 2.13. One has (a) If p = 2 or if p = 2 and t(k; p) = 1 (k is in case (a)), then

M ′ k (d, p) = d i=1 t(k;p)|i (m(k; p) + vp(i)) = M k (d, p). (b) If p = 2, t(k; p) = 2 and k is in case (b), one has M ′ k (d, 2) = r1 + (m(k; p) -1)r0 + d i=1 v2(i) = M k (d, 2)
where r1 is the number of odd integers between 1 and d and r0 the number of even integers in this range.

(c) If p = 2, t(k; p) = 2 and k is in case(c), one has

M ′ k (d, 2) = r1 + m(k; p)r0 + d i=1 v2(i) = d 2 + M k (d, 2)
with the same definition for r1 and r0.

Proof. Set t = t(k; p), m = m(k; p). We start with the case p = 2. First if t divides i, then vp(u i -1) ≥ m+vp(i). This is because u can be written as zv with z t = 1 and vp(v -1) ≥ m, so vp(u i -1) = vp(v i -1). So we have an inequality

M ′ k (d, p) ≥ d i=1 t|i (m + vp(i)).
To have the opposite one, choose u ∈ Im χp∞ such that u = zx with z of order t and vp(x -1) = m. This also works for p = 2 and t = 1. Suppose now that p = 2 and t = 2, Define m ′ = m -1 in case (b) and m ′ = m in case (c). Then for every

x ∈ Im χ2∞ , v2(x i -1) ≥ m ′ + v2(i) if i is even. v2(x i -1) ≥ 1 if i is odd. This gives M ′ k (d, 2) ≥ i odd 1 + i even (m ′ + v2(i)) = r1 + m ′ r0 + i even v2(i).
To show the opposite inequality, we use the fact that x = -1 + 2 m ′ ∈ Im χ2∞ and we check that

d i=1 v2(x i - 1) = r1 + m ′ r0 + d i=1 v2(i)
. Now, to show the different equalities, notice that for (a):

M ′ k (d, p) = m • d t + ⌊ d t ⌋ i=1 vp(ti).
Now, since t divides p -1, one has vp(ti) = vp(i) and the rest of the computation is similar as in the case k = Q. For (b) and (c), we have r0

= d 2 and r1 = d -r0. M ′ k (d, 2) ≤ d - d 2 + m ′ d 2 + d i=1 v2(i) = d + (m ′ -1) d 2 + d i=1 v2(i) = d + (m ′ -1) d t + k≥1 d 2 k = d + m ′ d t + k≥1 d 2 k t .
We can now state Theorem 2.8 without assuming p odd.

Theorem 2.14. Let k be a number field, d an integer and p be prime. Let G be a finite p-subgroup of Aut k (A d ), then there exists a finite field F with char F = p and an injective group homomorphism

G ֒→ GL d (F) such that vp(|GL d (F)|) ≤ M ′ k (d, p). Proof of Theorem 2.14.-Take G a finite p-subgroup of Aut(A d k ) with p prime. Step 1. Reduction modulo l.-Set L = O k . For every element a ∈ k × the fractional ideal generated by a is of the form (see [Neu99], §3) a • O k = (a) = l∈Spec L l v l (a)
and the prime ideals l such that v l (a) = 0 are in finite number. For such an l there exists a unique prime ℓ ∈ Z+ such that (ℓ) ⊂ l. We define for g ∈ Aut(A d k )

ℓg := max a∈coeff(g-id) {prime ℓ ∈ Z+ : ∃l ∈ Spec L, (ℓ) ⊂ l, v l (a) = 0}
where coeff(gid) is the set of coefficients of the polynomial transformation gid. Set M1 = maxg∈G ℓg (M1 < +∞ since G is finite) and M = max(M1, p), then for every prime ℓ > M and for every m ∈ Specmax(L) such that (ℓ) ⊂ m, we have a well-defined injective homomorphism

Ψ : G ֒→ Aut(A d F ),
where F = L/m. Indeed, the homomorphism of rings φ : L ։ L/m induces the homomorphism φ :

Lm := (L \ m) -1 L → L/m. By construction, G is a subgroup of Aut(A d Lm ), so φ : G → Aut(A d L/m
) is well-defined and it is injective by our definition of M .

Step 2. The group

Ψ(G).-Now, Ψ(G) is a p-subgroup of Aut(A d F )
. Since p ∈ m, we get char(F) = p. By Proposition 2.6, there is a point x0 in A d (F) fixed by Ψ(G) and by taking the differentials at x0, we obtain an injective homomorphism G ֒→ Ψ(G) ֒→ GL d (F). So, we get

vp(|G|) ≤ vp N (m) d(d+1) 2 d i=1 (N (m) i -1) = d i=1 vp(N (m) i -1). (2) 
Set X := {m ∈ Specmax(L) : m|(s), for some s > M prime}, then (2) holds for all m ∈ X and we obtain vp(|G|) ≤ infm∈X d i=1 vp(N (m) i -1). So, to conclude, all we have to prove is

inf m∈X d i=1 vp(N (m) i -1) ≤ M ′ k (d, p). (3) 
Step

3. Proof of (3).-The set X is open in Specmax L. For, X = l≤M,l prime V (l) c with V (l) =
{m ∈ Specmax(L) : (l) ⊂ m} and V (l) is closed. Take u ∈ Im χp∞ . For j ≥ 1, let uj be the projection of u in (Z/p j Z) × . By Theorem 2.12 the set of maximal ideals m such that N (m) ≡ uj mod p j is dense, therefore it intersects the open subset X, so for every j ≥ 1, we can find mj ∈ X such that N (mj ) ≡ uj mod p j . Then, one has limj→∞

N (mj ) = u in Z × p , therefore vp(u i -1) = limj→∞ vp(N (mj ) i -1) so inf m∈X d i=1 vp(N (m) i -1) ≤ d i=1 vp(u i -1);
and this holds for every u ∈ Im χp∞ . Using Proposition 2.13, we get

inf m∈X d i=1 vp(N (m) i -1) ≤ inf u∈Imχ p ∞ d i=1 vp(u i -1) = M ′ k (d, p).
Proof of Theorem A and comments.-

Theorem C.
Let k be a number field, let d be a natural number, and let p be a prime. Let G be a finite p-subgroup of Aut(A d k ), then 1. If p ≥ 3 or p = 2 and k is in case (a) or (b), there exists a group embedding

G ֒→ GL d (k).
2. If p = 2 and k is in case (c), there exists a group embedding

G ֒→ GL d (k(z4)).
Remark 2.15. We do not state a Sylow-like property, saying that G is conjugated to a subgroup of GL d (k), we only state that we can find an isomorphism of abstract groups from G to a subgroup of GL d (k).

Proof. For 1, we know that vp(|G|) ≤ M k (d, p) and that there exists a subgroup H ⊂ GL d (k) such that |H| = p M k (d,p) by Theorem 1.2. Let L = O k be the ring of integers of k. The proof of Theorem 2.14 shows that there exists an infinite number of maximal ideals m of L such that vp(GL d (F)) ≤ M k (d, p) where F = L/m. So for any such maximal ideal m ⊂ L lying over a sufficiently large prime, there are embeddings ΨH : H ֒→ GL d (F) and ΨG : G ֒→ GL d (F). Looking at the size of H, we deduce that vp(GL

d (F)) = M k (d, p) and ΨH (H) is a p-Sylow of GL d (F). By Sylow's theorems, ΨG(G) is conjugated to a subgroup of ΨH(H) in GL d (F). This implies that G is isomorphic to a subgroup of H. For 2, if k is in case (c) then one can check that k(z4) is in case (a) and that m(k(z4); 2) = m(k; 2), therefore M k(z 4 ) (d, 2) = M k (d, 2) + d
2 and the same proof as 1 shows the result. Remark 2.16. Theorem A and C still hold for k finitely generated over Q. We just need to explain how the proof of Theorem 2.14 works in that case.

We need to find a normal domain L finitely generated over Z such that G is defined over L and to define the open subset X ⊂ Specmax L used for equation (3). Here is how to proceed: since G is finite, there exists a finitely generated Z-algebra R such that the elements of G are defined over R, we can suppose that R contains 1/p. By Noether Normalization's Lemma and more precisely by generic freeness (see [START_REF] Eisenbud | Commutative Algebra: With a View Toward Algebraic Geometry[END_REF], Theorem 14.4), there exists t1, . . . , ts ∈ R and an integer N such that R is a finite free module over Z[1/N ][t1, . . . , ts]. We can then take for L the integral closure of Z[1/N ][t1, . . . , ts] in k, L is a normal domain over which G is defined since R ⊂ L. We also have that L is finitely generated over Z because by [Eis95, Theorem 4.14] it is a finite module over Z[1/N ][t1, . . . , ts]. Now, let A be the set of coefficients of gid for g ∈ G. Set X = {m ∈ Specmax L : A ∩ m = ∅}. This is an open subset of Specmax L as A is finite and X = a∈A V (a) c . For any m ∈ X we have an injective group homomorphism G ֒→ Aut(A d L/m ) and Equation (2) holds. The proof of Equation (3) is the same as in the case of number fields. This proves Theorem 2.14 for finitely generated fields over Q.

To prove Theorem C, the key ingredient is that there exists subgroups of GL d (k) of size p M k (d,p) , as Theorem A is stated only for number fields we show for completeness how to construct finite p-groups of GL d (k) of size p M k (d,p) when k is finitely generated over Q. The proof of Theorem C for finitely generated fields over Q is then similar as in the case of number fields using Noether Normalization Lemma, we leave the details to the reader. Proposition 2.17. Let k be a finitely generated field over Q and let p be a prime, there exists a finite p-subgroup of GL d (k) of size p M k (d,p) . Proof. Set t = t(k; p), m = m(k; p) and r = ⌊d/t⌋.

The case p ≥ 3.-Let ρ = zpm ∈ k(zp). Then, the group (Z/p m Z) acts on k(zp) via multiplication by ρ k for all k ∈ Z/p m Z. Now take r copies of k(zp); this is a k-vector space V of dimension t • r ≤ d and let Sr be the r-th symmetric group, Sr acts on V by permuting the r copies of k(zp) and therefore the group

G := Sr ⋉ (Z/p m Z) r
acts faithfully by linear automorphisms on V and has the desired size. Indeed,

vp(|G|) = m • d t + vp(⌊ d t ⌋!).
The case p = 2 and t = 1.-

In that case, k = k(z4), then M k (d, 2) = m • d t + v2( d t !
). Therefore, the proof above works as well, with ρ = z2m acting on k(z4) = k.

The case p = 2 and t = 2.-The construction above yields that (Z/2 m Z) acts linearly on k(z4). We twist this action by the Galois automorphism σ that sends z4 to -z4; σ is an involution that sends ρ = z2m to another primitive 2 m -th root of unity. So we get that the group H := Z/2Z ⋉ Z/2 m Z acts faithfully on k(z4). Now set r = ⌊d/2⌋, we have that G := Sr ⋉ H acts faithfully and linearly on a k vector space V consisting of r copies of k(z4). The vector space V has dimension 2 • ⌊d/2⌋ ≤ d. Now, we have 2 ⌋. Remark 2.18. We get the optimal bounds except when p = 2 and k is in case (c) (this includes k = Q). For that case, following Remark 2.4, to get the optimal bound one would need a result of the following type: Let k be a number field in case (c) and G a finite subgroup of Aut(A d k ) of order 2 α , then for m in the complement of a finite set of Specmax O k the group G embeds into an orthogonal group over O k /m.

v2(|G|) = (m + 1) • ⌊d/2⌋ + v2(⌊d/2⌋!). If d is even this is equal to M k (d, 2) and we are done. If d is odd then v2(|G|) = M k (d, 2) -1 but then V is of dimension d -1 so the group G × {±1} acts faithfully on V ⊕ k that is
We know that for any maximal ideal m lying over a large enough prime, there exists an embedding G ֒→ GL d (F) and a fixed point Here is one way to attack this problem. Pick a fixed point x of G with coordinates in Q; such a point exist because otherwise let (Pn) be the system of polynomial equations stating that G has a fixed point. If this system has no solution over Q then by Hilbert's Nullstellensatz, there is a relation of the form 1 = QiPi for some polynomials Qi. Now take a number field k ′ where this relation is defined. By the previous paragraph we can reduce modulo a large enough maximal ideal m of O k ′ (i.e lying over a large enough prime) and this would yield an injective group homomorphism G ֒→ Aut(A d ) where F is a finite field with char F = p. The relation 1 =

x ∈ (F) d of G where F = O k /m.
QiPi still holds in F but this is absurd since we know that G admits a fixed point over F. Let k ′ be the number field generated by the coordinates of x and k. We would like to find A such that AG is non-degenerate. If k ′ ⊂ R we can use argument of positive definiteness to do so, but otherwise a first difficulty occurs. Now, even if such an A could be found, the arithmetic of k ′ leads to another difficulty: For any maximal ideal

m ′ ⊂ O k ′ lying over a large enough maximal ideal m ⊂ O k , the image x ′ of x in F ′ = O k ′ /m ′
is a fixed point of G, and the reduction modulo m ′ of AG is an invertible symmetric matrix over F ′ . But if the degree [F ′ , F] is even, then the 2-adic valuation of any orthogonal group over F ′ will be too large to get the optimal bound.

p-adic analysis

To prove Theorem B, we will show that any finitely generated nilpotent group acting on a complex quasiprojective variety of dimension d can be embedded in a finite dimensional p-adic Lie group acting analytically on a p-adic manifold of dimension d. The theorem will follow from a version of Theorem 1.1 of [START_REF] Dba Epstein | Transformation groups and natural bundles[END_REF] in a p-adic context. In this section, we introduce all the tools from p-adic analysis and p-adic Lie groups needed for the proof. 

Tate-Analytic Diffeomorphisms

:= x I 1 1 • • • x I d d ; we denote by Qp x1, • • • , x d =: Qp x the completion of Qp[x1, • • • , x d ]
with respect to the Gauss norm Qp x is the set of formal power series with coefficients in Qp such that aI → 0 when I → ∞ (i.e when max(I) → ∞). It is also the set of formal power series with coefficients in Qp converging over Z d p . This shows that Qp x equipped with the Gauss norm is an infinite-dimensional Banach space over Qp. For all polynomials f, g ∈ Qp[x], then ||f • g|| ≤ ||f || • ||g|| and this is also true in Qp x , therefore Qp x is a Banach algebra over Qp, it is the Tate algebra over Qp in d variables (see [START_REF] Robert | A course in p-adic analysis[END_REF]). We also define Zp x which is the completion of Zp[x] for the gauss norm; it is in fact the set of elements of Qp x of norm ≤ 1.

Remark 3.1. For each f ∈ Qp x there exists an element s ∈ Zp such that s • f ∈ Zp x and if g ∈ Qp x is such that g(0) ∈ Zp, then there exist an integer N > 0 such that g(p N x) ∈ Zp x . Moreover, if g ∈ Qp[[x]] is a formal power series with coefficients in Qp with a strictly positive radius of convergence, then there exists an integer N such that g(p N x) belongs to Qp x . Remark 3.2. There exist Tate-analytic maps with non-integer coefficients such that f (Z d p ) ⊂ Zp. For example, take

f (x) = x p -x p .
Since for all x ∈ Zp, x p ≡ x mod p, f induces a map f : Zp → Zp. However every element f ∈ Qp x d induces a map f :

D d p → Cp and we have f (D d p ) ⊂ Dp ⇔ f ∈ Zp x d .
This has to do with the residue field of Zp being finite but not the residue field of Dp (see [START_REF] Robert | A course in p-adic analysis[END_REF], Proposition of page 240).

For any m ≥ 0, elements of Qp x m are called Tate-analytic functions.

If g ∈ Qp x d , then ∀x, y ∈ Z d p , ||g(x) -g(y)|| ≤ ||g|| ||x -y|| . (4) 
In particular, g is ||g||-Lipschitz.

Proposition 3.3 (Strassman's Theorem, see [START_REF] Robert | A course in p-adic analysis[END_REF], chapter 6, section 2.1). Let f ∈ Qp t be a Tate-analytic function in one variable, if f is not the zero function, then f has a finite number of zeros over Zp.

Corollary 3.4. Let f ∈ Qp x , if there exists a non-empty open subset U ⊂ Z d p such that f |U ≡ 0 then f is the zero function.

Remark 3.5. This is not true for analytic functions over Z d p . For example define g by g(y) = 1 if ||y|| ≤ |p| and g(y) = 0 otherwise. Then, g is analytic at every point of Z d p because it is locally constant, it vanishes on the open subset x ∈ Z d p : ||x|| = 1 but g is not the zero function. Proof of Corollary 3.4. Take y ∈ U and x ∈ Z d p . Let ϕ be the function ϕ : t ∈ Zp → f (tx + (1t)y). Then ϕ belongs to Qp t and it vanishes for any sufficiently small t. By Proposition 3.3, we have that ϕ is the zero function, therefore f (x) = 0.

Let f, g ∈ Qp x and c > 0, we write f ≡ g mod p c if ||f -g|| ≤ |p| c and we extend such notation componentwise for Qp x m for every m ≥ 1.

Example 3.6. If c = 1 and f, g ∈ Zp x , then f = I aI x I ≡ id(x) mod p means that f := I aI x I = id(x) where aI = aI mod p is the reduction of ai mod pZp.

Tate analytic diffeomorphisms.-The composition determines a natural map

Zp X1, • • • , Xn m × Zp Y1, • • • , Ys n -→ Zp Y1, • • • , Ys m (g1, • • • ., gm) (h1, • • • , hn) -→ (g1(h1, • • • , hn), • • • , gm(h1, • • • , hn))
If the three integers n, m, s are equal to the same integer d, (Zp x d , •) becomes a semigroup. The invertible elements of this semigroup are called Tate-analytic diffeomorphisms and form a group denoted by Diff an (Z d p ). Using Equation (4), we have that Diff an (Z d p ) acts by isometries on Z d p . Remark 3.7. Following Remark 3.2, we see that Diff an (Z d p ) consists exactly of the elements of f ∈ Qp x that induces a Tate-analytic diffeomorphisms f :

D d p → D d p .
The next proposition shows an easy way to construct Tate-analytic diffeomorphisms of small polydisks.

Proposition 3.8 (Local inversion theorem, see [Ser92]). Let Φ ∈ Zp[[X1, • • • ., X d ]
] d be a power series with a strictly positive radius of convergence. Suppose that Φ(0) = 0 and det(D0Φ) = 0, then there exists a unique

Ψ ∈ Qp[[X1, • • • ., X d ]] d ,
with a strictly positive radius of convergence, such that Ψ(0) = 0 and 

Φ • Ψ(x) = Ψ • Φ(x) = x. Furthermore, ||Ψn|| ≤ max(1, D0Φ -1 n ), where Ψn ∈ Qp[X1, • • • , Xn] d is

4.

f -1id = ||f -id|| if f is a Tate-analytic diffeomorphism.

Lemma 3.10. Let f be an element of Diff an (Z d p ), if f ≡ id mod p then f p c ≡ id mod p c . Corollary 3.11. Let c > 0 be a real number, then the subgroup Diff an c (Z d p ) of Diff an (Z d p ) consisting of all elements f ∈ Diff an (Z d p ) such that f ≡ id mod p c is a normal subgroup of Diff an (Z d p ). Proposition 3.9, Lemma 3.10 and Corollary 3.11 are proven in [CX18], section 2.1.

Analytic flow and Bell-Poonen theorem

Flows and vector fields.-As in real or complex geometry, we define vector fields and flows. Let d be an integer:

A Tate-analytic vector field X over Z d p is a vector field of the form

X(x) = d i=1 ui(x)∂i
where each ui belongs to Qp x . The Lie bracket of two vector fields X and Y = d i=1 vi∂i is the vector field defined by The Qp-Lie algebra of Tate-analytic vector fields over Z d p is denoted by Θ(Z d p ) it is a strict subalgebra of the Lie Algebra of analytic vector fields over Z d p . The Gauss norm of a Tate-analytic vector field X = ui(x)∂i is defined as ||X|| = maxi ||ui|| and makes Θ(Z d p ) a complete Lie Algebra over Qp isomorphic as a Banach space to Qp x d .

A Tate-analytic flow Φ over Z d p is an element of Zp X1, • • • , X d , t d = Zp x, t d which satisfies the following properties

(i) ∀x ∈ Z d p , ∀s, t ∈ Zp, Φ(x, s + t) = Φ(Φ(x, s), t). (ii) ∀x ∈ Z d p , Φ(x, 0) = id(x). Set Φt := Φ(•, t) ∈ Zp x . Then, Φ0 = id and Φt ∈ Diff an (Z d p ) since Φ -1 t = Φ-t. Then, t ∈ Zp → Φt ∈ Diff an (Z d p )
is a continuous homomorphism of topological groups with respect to the Gauss norm. The main point here is that flows are parametrized by the compact group (Zp, +).

Example 3.12. If Φ is a Tate-analytic flow, then we can define its associated Tate-analytic vector field XΦ := ∂Φt ∂t |t=0 . In particular, XΦ is Φt-invariant, for all t ∈ Zp.

From vector fields to Tate-analytic flows.-Since a Tate-analytic vector field X is analytic, it is a general fact that it admits local analytic flows over Z d p (see [START_REF] Bourbaki | Variétés différentielles et analytiques: Fascicule de résultats[END_REF] for example), the next proposition shows that if the norm of X is sufficiently small, then it admits a global Tate-analytic flow.

Proposition 3.13. If X is a Tate-analytic flow over Z d p , then for any sufficiently small λ ∈ Zp, there exists a unique Tate-analytic flow Φ λ ∈ Zp x, t d such that

∂Φ λ t (x) ∂t = λX(Φ λ t (x)).
In particular, let c > 0 be such that c > 1 p-1 , then every Tate-analytic vector fields X such that ||X|| ≤ |p| c admits a global Tate-analytic flow.

Proof. The strategy is to solve this differential equation in the space of power series Qp [[x, t]] d and then to show some properties on the radius of convergence of the solution. We first replace X by µX for some µ ∈ Zp such that ||X|| ≤ 1. Write X(x) = i ui(x)∂i with ui ∈ Zp x . We look at the differential equations

∂ ∂t fi(x, t) = ui(f (x, t)) (5) with fi ∈ Qp [[x, t]] and f = (f1, • • • , f d ) such that f (x, 0) = x. Write fi(x, t) = k≥0 a (i) k (x)t k , a (i) 
k ∈ Qp [[x]]
then, the unique solution of this equation is formally given by the formulas a

(i) k (x) = 1 k! ∂ k f i ∂t k (x, 0
). We show that for all integer k ≥ 0, ∂ k f i ∂t k (x, 0) belongs to Zp x by induction on k. We get a (i) 0

= xi since f (x, 0) = id(x) and a (i) 1 (x) = ui(x) by Equation (5). Take k ≥ 2 and suppose the result to be true for all l < k. By differentiating both sides of Equation (5) k -1 times with respect to t and taking t = 0, we see that ∂ k f i ∂t k (x, 0) is obtained by sum and compositions of differentials of orders ≤ k -1 of the Tate-analytic function ui ∈ Zp x and the Tate-analytic functions ∂ l ∂t l fi(x, 0) ∈ Zp x with l < k. So ∂ k f i ∂t k (x, 0) belongs to Zp x by induction. The solution f is then of the form

f (x, t) = id(x) + k≥1 ∂ k f ∂t k (x, 0) t k k! . Now take λ ∈ Zp, such that |λ| ≤ |p| c . We have that for all k ≥ 0, λ k k! ∈ Zp and λ k /k! → 0 in Zp when k → ∞. Then, Φ λ t := f (•, λt) is a Tate-analytic flow such that ∂Φ t λ ∂t (x) = λX(Φ λ t (x)
). For the final statement, take X a Tate-analytic vector field such that ||X|| ≤ |p| c and let s ∈ Zp be such that |s| = ||X||, then Y := 1 s X has norm ≤ 1. The proof shows that there exists a unique Tate-analytic flow Φ such that ∂Φt ∂t |t=0 = sY = X.

Theorem 3.14 (local linearisation of vector fields). Let X1, • • • , X k be Tate-analytic vector fields over Z d p such that [Xi, Xj] = 0 for all 1 ≤ i, j ≤ k. Suppose that there exists a point m ∈ Z d p such that the vectors Xi(m) are linearly independent. Then, there exists a clopen subset V ⊂ Z d p containing m and an analytic diffeomorphism ϕ from Z d p onto V such that ϕ * (X i|V ) = ∂i and such that ϕ * yields an injective Lie Algebra homomorphism Θ(Z d p ) |V ֒→ Θ(V). Remark 3.15. This theorem is well known in p-adic differential geometry with analytic regularity (see [START_REF] Bourbaki | Variétés différentielles et analytiques: Fascicule de résultats[END_REF]), what is important here is that when changing coordinates we keep the Tate-analytic regularity for vector fields.

Proof. By translation, we can suppose that m = 0. We pick Y0 ⊂ T0Z d p such that we have the decomposition

T0Z d p = Vect(X1(0), • • • , X k (0)) ⊕ Y0. Let e1, • • • , e d-k be a basis of Y0. Pick local (analytic) coordi- nates (x1, • • • , x k , y1, • • • , y d-k ) such that for all 1 ≤ j ≤ d -k, ∂ ∂y j (0) = ej. Define : f : Z d-k p → Z d p by f (y1, • • • , y d-k ) = (0, • • • , 0, y1, • • • , y d-k ).
Take the local analytic flows ϕ 1 , • • • , ϕ k associated to X1, • • • , X k at 0 (here we do not suppose these flows to be Tate-analytic) and consider

g : Z k p × Z d-k p -→ Z d p (t1, • • • , t k ; y) -→ ϕ 1 t 1 • • • • • ϕ k t k (f (y)). The function g belongs to Zp [[t1, • • • , t k , y]] d
with a radius of convergence rg > 0, satisfies g(0) = 0 and its differential at the point (0, 0) is

(x1, • • • , x k ; z) → x1X1(0) + • • • + x k X k (0) + j zj ∂ ∂yj (0).
Therefore it is invertible. By Proposition 3.8 g admits a formal inverse

h ∈ Qp [[t1, • • • , t k , y]] d with a radius of convergence r h > 0. Denote by z the set of coordinates (t1, • • • , t k , y1, • • • , y d-k ). Pick integers K, L such that |p| K < rg and |p| L < r h such that g(B(0, |p| K )) ⊂ B(0, |p| L ). Let V denote g(B(0, |p| K )); it is a clopen subset of Z d p because B(0, |p| K ) is clopen. Set ϕ := 1 p L g(p K z) and ψ := 1 p K h(p L z)
, they both belong to Qp z d and are inverse of each other and we have ϕ * Xi = ∂i. Finally, since ϕ ∈ Qp z d , the map ϕ * preserves Tate-analytic vector fields.

Theorem 3.16 (p-adic version of [ET79] Theorem 1.1).

Let h be a nilpotent Lie algebra of Tate-analytic vector fields of Z d p , then d ≥ dl(h). Proof. We follow the proof of [START_REF] Cantat | Morphisms between cremona groups and characterization of rational varieties[END_REF] Proposition 3.10 and proceed by induction on the dimension d. If d = 0, there is nothing to prove. Suppose d ≥ 1 and that the result is true in dimension d -1. Since h is nilpotent, its center is not trivial. Let X be a nonzero central element of h. Let m be a point where X(m) = 0, then by Theorem 3.14, there exists a small clopen subset V ⊂ Z d p and an analytic diffeomorphism ϕ : ). Denote by h1 the image of h under π * and h0 its kernel. We have the exact sequence 0 → h0 → h → h1 → 0. Now, h0 consists of Tate-analytic vector fields of h of the form u(x1, . . . , x d-1 )∂ d so it is abelian and h1 is nilpotent because h is. So we get dl(h) ≤ dl(h1) + 1 by the exact sequence and dl(h1) ≤ d -1 by induction.

V → Z d p that yields coordinates x1, • • • , x d over V such that ϕ * X = ∂ d
We discuss the optimality of Theorem 3.16 in Section 4.4.

The theorem of Bell and Poonen.-The following theorem first proven by Bell in [START_REF] Bell | A generalised skolem-mahler-lech theorem for affine varieties[END_REF] then by Poonen in [START_REF] Poonen | p-adic interpolation of iterates[END_REF] gives us an easy way to construct flows from analytic transformations. This is a very strong theorem as it shows that, contrary to R, over Qp a lot of analytic diffeomorphisms are in a flow. See [START_REF] Cantat | Un lemme d'interpolation[END_REF] for a more precise discussion on Bell-Poonen theorem.

Theorem 3.17 (Bell-Poonen). Let d ≥ 1 be an integer, and f ∈ Zp x d . Take c > 1 p-1 and suppose that f ≡ id mod p c , then 1. f is a Tate-analytic diffeomorphism.

2. There exists a unique Tate-analytic flow Φ ∈ Zp x, t d such that

∀n ∈ Z, Φ(x, n) = f n (x).
In particular, Φ1 = f . In fact, Poonen showed this theorem for the valuation ring of any ultrametric field K. So, Bell-Poonen Theorem also holds over Dp or over any finite extension of Qp for example.

Corollary 3.18. Let H be a subgroup of Diff an 1 (Z d p ) with p ≥ 3, then H is torsion-free. Proof. Let h ∈ H, suppose that h has order N < ∞. By Theorem 3.17, there exists an Tate-analytic flow Φ such that Φ1 = h. Then for all x ∈ Z d p the function t ∈ Zp → Φt(x)x ∈ Z d p is analytic and has an infinite number of zeros, so it is zero everywhere by Proposition 3.4. Therefore Φ1(x) = h(x) = x and h = id.

The next proposition won't be used in the proof of Theorem B but it gives useful information on the dynamics of Tate-analytic flows. So if |t| ≤ ε, we have Φt(B(x, r)) ⊂ B(x, r) and Φ-t(B(x, r)) ⊂ B(x, r), so we get the equality. Since U is clopen, by compactness, U = T i=1 B(xi, ri) for some finite set {x1, • • • , xT } ⊂ U and radii ri ∈ (0, 1]. Thus, the results follows from the case of one ball.

Infinite-dimensional analytic manifold over Q p

The main goal of the next two sections is to show that the topological group Diff an (Z d p ) is in fact an infinite dimensional Lie group over Qp.

We refer to [START_REF] Bourbaki | Variétés différentielles et analytiques: Fascicule de résultats[END_REF] for reference on analytic functions and analytic manifolds over a Banach space. In this section k is an ultrametric complete field and E, F are Banach spaces over k (potentially of infinite dimension). As we shall see, taking k = Qp and E, F = Q d p allows one to recover the definition of converging power series and analytic functions over Q d p . Basically, if A is a Banach algebra over Qp, then any map of the form f : A d → A such that locally at any point x ∈ A d , there is a expression of f as a converging power series

f (x + h) = I⊂Z d + aI h I
with aI ∈ A, aI → 0 is an analytic map from A d to A. The problem is that if A is not finite dimensional, this definition is not enough, as for example a continuous linear map is not necessarily described by an expression of this form but still should be analytic.

Multi-indices, multi-linear maps

.-If α = (α1, • • • , α d ) ∈ Z d + is a multi-index, then |α| := i αi. For 1 ≤ j ≤ |α|, we define α(j) = max {k + 1 ∈ Z+ : α1 + • • • + α k < j} .
The sequence (α(j)) 1≤j≤|α| is the increasing sequence consisting of α1 times the number 1, α2 times the number 2, . . . , α d times the number d. For example, if α = (1, 5, 7), then d = 3, |α| = 13 and (α(j)) 1≤j≤13 = (1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3).

For 1 ≤ i ≤ d, we denote by pi : E d → E the projection to the i-th coordinate. For a multi-index α ∈ Z d + , we define pα := (p α(j) ) 1≤j≤|α| :

E d → E |α| .
If β ∈ Z d + is another multi-index, then we write α + β for the multi-index (αi + βi) 1≤i≤d . We write α ≥ β if αi ≥ βi for all 1 ≤ i ≤ d; in that case there is a unique multi-index γ such that α = β + γ, and we set αβ := γ. We also define the binomial coefficient α

β := α 1 β 1 • • • α d β d . Finally, if x = (x1, • • • , x d ), then x α := x α 1 1 • • • x α d d and if y = (y1, • • • , y d )
, one has the identity

(x + y) α = (x1 + y1) α 1 • • • (x d + y d ) α d =   α 1 β 1 =0 α1 β1 x β 1 1 y α 1 -β 1 1   • • •   α d β d =0 α d β d x β d d y α d -β d d   = 0≤β 1 ≤α 1 • • • 0≤β d ≤α d α1 β1 • • • α d β d x β 1 1 • • • x β d d y α 1 -β 1 1 • • • y α d -β d d = β≤α α β x β y α-β .
For an integer k, let L k (E, F ) be the set of continuous multilinear maps from E k to F equipped with the topology of uniform convergence over bounded subsets. The norm of an element φ ∈ L k (E, F ) is defined by

||φ|| = inf a > 0 : ∀x1, • • • , x k ∈ E k , ||φ(x1, • • • , x k )|| F ≤ a ||x1|| E • • • ||x k || E .
Continuous polynomial maps and power series.

-

([Bou07b] Appendix of §1-7) A continuous ho- mogeneous polynomial map of multi degree α, is a map f : E d → F such that there exists u ∈ L |α| (E, F ) for which f = u • pα.
We denote by Pα(E, F ) the vector space of continuous homogeneous polynomial maps of multi-degree α equipped with the quotient topology from L |α| (E, F ). The norm of a continuous homogeneous polynomial map P ∈ Pα(E, F ) is defined by

||P || := inf u∈L |α| (E,F ),P =u•pα ||u|| L |α| (E,F ) .
Example 3.20. Set E, F = Qp x . Let P be the monomial x α , then the map P : g ∈ Qp x d → P (g) ∈ Qp x is a continuous homogeneous polynomial map of multi-degree α. Indeed, let k = |α| and consider the multilinear map

T k : E k -→ F (f1, • • • , f k ) -→ f1 • • • f k ; it is continuous as ||T k (f1, • • • , f k )|| ≤ ||f1|| • • • ||f k || and P = T k • pα.
Furthermore, for a multi-index β, define φ β : Qp x → Qp x such that φ β (g) is the homogeneous part of multi-degree β of g. Then, φ β is linear and continuous, therefore if

P (x) = x α , the map g ∈ Qp x d → P (φ β 1 (g1), • • • , φ β d (g d ))
is a continuous homogeneous polynomial map of multi-degree α for any multi-index (βi) 1≤i≤d .

For an integer k, P k (E d , F ) is the direct sum of the Pα(E, F ) for α such that |α| = k, the elements of P k (E d , F ) are the continuous homogeneous polynomial maps of total degree k.

Example 3.21. If P ∈ Qp[x] is a homogeneous polynomial of degree k in d variables, then the map P : g ∈ Qp x d → P (g) is a continuous homogeneous polynomial map of total degree k and for any sequence of multi-index (βi) 1≤i≤d , the map g ∈ Qp x d → P (φ

β 1 (g), • • • , φ β d (g)) also is.
We denote by P (E d , F ) the direct sum of the spaces P (E d , F ), its elements are the continuous polynomial maps in d variables. Finally, the set P (E d , F ) of power series in d variables over E is the (infinite) product of the Pα(E, F ) (or of the P k (E d , F )) for α ∈ Z d + (for k ∈ Z+) equipped with the product topology of the discrete topology over each factor; equivalently if f = α fα ∈ P (E d , F ), then the order of vanishing at 0 of f is ord(f ) = min {|α| : fα = 0} and this is the topology induced by the norm ||f || := 2 -ord(f ) . The space P (E d , F ) is complete Hausdorff for this topology. A converging power series is an element f

= α fα of P (E d , F ) such that there exists R ∈ (R>0) d satisfying sup α R α ||fα|| Pα(E,F ) < +∞. If f = α fα, then the polyradius of convergence of f is r(f ) := sup R ∈ (R>0) d : R α ||fα|| → 0 when |α| → ∞ .
Definition 3.23. Let U be an open subset of E d , a map f : U → F is analytic at a point a ∈ U if there exists a converging power series fa such that for all x in a small neighbourhood of a in U, f (a + x) = fa(x). The function f is analytic if it is analytic at every point of U.

For any integer m ≥ 1, a map f : U → F m is analytic if each of its coordinates is analytic.

Example 3.24. Every continuous linear map Qp x d → Qp x d is analytic.

Proposition 3.25. The map Comp : (h, f

) ∈ Zp x d × Zp x d → h • f ∈ Zp x d is analytic. In particular, it is linear in h. Proof. It is enough to show that the map Φ : (h, f ) ∈ Zp x × Zp x d → h • f ∈ Zp x is analytic. Let (h, f ) ∈ Zp x × Zp x d , we show that Φ is analytic at (h, f ). Let g ∈ Zp x d and write h(x) = α aαx α , then h • (f + g(x)) = α aα(f (x) + g(x)) α = α γ≤α aα α γ f (x) α-γ g(x) γ = β   α≥β aα α β f (x) α-β   g(x) β = β Q β,f (h)(x) • g(x) β
where Q β,f : Qp x → Qp x is a continuous linear map and ||Q β || → 0 when β → ∞, this is a converging power series in the variables (h, g) of polyradius of convergence (+∞, 1). Therefore Φ is analytic at any point (0, f ) and by linearity in h, Φ is analytic at any point (h, f ).

Analytic manifolds.-Let K be an ultrametric field and let X be a topological space. A K-chart of X is a homeomorphism φ : U → φ(U ) ⊂ E where U in an open subset of X and E a Banach space over K. We say that two K-charts φ :

U → E, ψ : V → F are compatible if 1. φ(U ∩ V ) is open in E and ψ(U ∩ V ) is open in F . 2. ψ • φ -1 : φ(U ∩ V ) → F is analytic. 3. φ • ψ -1 : ψ(U ∩ V ) → E is analytic.
An analytic manifold X over K is defined classically as a topological space equipped with an atlas of compatible K-charts. For a point x ∈ X, the tangent space at x is denoted by TxX. A function f : X Y between two analytic manifolds is analytic if for every chart φ : 

U ⊂ X → E, ψ : V ⊂ Y → F , the map ψ • f • φ -1 : φ -1 (U ) → F is analytic. The differential
Dxg = -D (2) (x,g(x)) f -1 • D (1) (x,g(x)) f
Proposition 3.28. The inversion map Inv : f ∈ Diff an (Z d p ) → f -1 is analytic. Proof. We write U = Diff an (Z d p ), we know that U is an analytic manifold over Qp by Proposition 3.26. By Proposition 3.25, the composition operation is analytic over Zp x d × Zp x d , therefore it is over U × U.

To show that Inv is analytic we only need to show that it is analytic at id. Indeed, take f ∈ U, then Inv = L f -1 • Inv •R f -1 where R f -1 is composition on the right by f -1 and L f -1 composition on the left. Since L f -1 and R f -1 are analytic, Inv is analytic at f if and only if it is analytic at id. To show that Inv is analytic at id, we use the implicit function theorem, since the map M : (f, g) ∈ U × U → f • g ∈ U is analytic and the partial differential D

(2) id,id M = id, one has the existence of a unique function G : V → U with V an open neighbourhood of id such that G is analytic at id and M (f, G(f )) = id for all f ∈ V. Therefore Inv |V = G and inversion is analytic at id.

p-adic Lie groups

We refer to [START_REF] Bourbaki | Eléments de Mathématique[END_REF] for more details on the results provided in this section.

A p-adic Lie group G is a topological group with a structure of a p-adic analytic manifold such that the multiplication map and the inverse map are analytic. The dimension of G is its dimension as an analytic manifold. It can be infinite. Its Lie algebra g is the tangent space of G at the neutral element, it is equipped with a Lie bracket [•, •] defined as follows. Let g ∈ G and ιg : h ∈ G → ghg -1 , then Ad(g) := Deιg ∈ GL(g) is the adjoint representation of G. Define ad := De Ad, then ∀X, Y ∈ g, [X, Y] := ad(X)(Y). 

[X, Y] = ∂ ∂s |s=0 ∂ ∂t |t=0 Φ X -s • Φ Y t • Φ X s = ∂ ∂s |s=0 ∂ ∂t |t=0 ι Φ X s (Φ Y t ) = D id Ad(X)(Y) = ad(X)(Y). On the other hand, if f, g ∈ Diff an c (Z d p ) with c > 1 p-1 , then ∂ ∂s |s=0 ∂ ∂t |t=0 Φ f -s • Φ g t • Φ f s = [X f , Xg] = ad X f (Xg).
Remark 3.30. Since Bell-Poonen theorem holds for any ultrametric field, the same proof shows that Diff an (D d p ) is a Lie group over Cp. In fact, for any complete extension K of Qp with unit ball A, the group Diff an (A d ) is a Lie group over K.

Theorem 3.31 ([Bou06], §8, Theorem 1). Let G, H be Lie groups over Qp and φ : G → H be a continuous homomorphism of topological groups. Then, φ is analytic and therefore a homomorphism of Lie groups.

Remark 3.32. The proof relies heavily on Q being dense in Qp and the theorem is false if we replace Qp by any finite extension of Qp. Indeed, suppose for example that K = Qp( √ α) is a quadratic extension. Any element z of K is of the form z = x + √ αy. Then, the function

f : z = x + √ αy → x - √ αy is a continuous group homomorphism, it is Qp-analytic but not K-analytic as f |1•Qp = id and f | √ α•Qp = -id.
Let Γ be a finitely generated group, the pro-p completion Γp of Γ is the projective limit of the quotient of Γ that are finite p-groups, it is a topological group with respect to the profinite topology. In particular, for any γ ∈ Γ, the group homomorphism n ∈ Z → γ n ∈ Γ extends uniquely to a continuous group homomorphism t ∈ Zp → γ t ∈ Γp. In the context of Tate-analytic diffeomorphisms, if p ≥ 3 and f ≡ id mod p, then the extension

n ∈ Z → f n ∈ Diff an 1 (Z d p ) is the Tate-analytic flow t ∈ Zp → Φ f t ∈ Diff an (Z d p
) associated to f given by Bell-Poonen theorem.

Proposition 3.33. Let p be a prime, let c > 0 be such that c > 1 p-1 and let G be a compact Lie group over Qp. Let Γ be a finitely generated subgroup of G such that G is the pro-p-completion of Γ and let ι : Γ → Diff an c (Z d p ) be a group homomorphism, then ι extends uniquely to a Lie group homomorphism ι : G → Diff an c (Z d p ) such that for all t ∈ Zp, all g ∈ Γ, ι(g t ) = ι(g) t and the map (t, x) ∈ Zp × Z d p → ι(g) t (x) is analytic. Proof. Theorem 2.11 of [START_REF] Cantat | Algebraic actions of discrete groups: the p-adic method[END_REF] shows that ι extends uniquely to a continuous map. In [START_REF] Cantat | Algebraic actions of discrete groups: the p-adic method[END_REF] this is only shown when p ≥ 3 and c = 1 but the proof is identical with p ≥ 2 and c > 1

p-1 at it is only required that the image of the elements of Γ admits a Tate-analytic flow. Since G and Diff an c (Z d p ) are both Lie groups over Qp, ι is automatically a Lie group homomorphism by Theorem 3.31. To prove Theorem B, we shall ultimately apply Theorem 3.41. Thus, we need a method to transfer problems regarding groups of automorphisms defined over C to similar problems on groups of Tate analytic diffeomorphisms over Zp, for certain primes p.

Theorem 4.1 (Lech, see [START_REF] Lech | A note on recurring series[END_REF]). Let K be a finitely generated field over Q and let S be a finite subset of K. Then there exists an infinite number of prime numbers p with an embedding K ֒→ Qp such that all elements of S are mapped to Zp.

Let X be an irreducible quasiprojective variety over C and Γ a finitely generated subgroup of Aut(XC).

• Let R be an integral domain. We say that (X, Γ) is defined over R, if there exists an irreducible separated reduced scheme XR over R and an injective homomorphism Γ ֒→ AutR(XR) such that X and Γ are obtained by the base change X = XR ×Spec R Spec C.

• Let p be a prime number. A model of (X, Γ) over Zp is the data of (i) A ring R ⊂ C over which (X, Γ) is defined and an embedding R ֒→ Zp.

(ii) An irreducible variety X over Zp and an injective homomorphism ρ : Γ ֒→ AutZ p (X ) such that

X ≃ XR ×Spec R Spec Zp.
is the base change of XR and for all f ∈ Γ, ρ(f ) is the base change of f .

• A good model over Zp of (X, Γ) is the data of a model of (X, Γ) with the additional condition that the special fiber XF p = X ×Spec Zp Spec Fp is geometrically reduced and irreducible and of dimension dimF p (XF p ) = dimQ p (X ×Spec R Spec Qp).

Proposition 4.2 (Proposition 4.4 of [BGT10], Proposition 3.2 of [START_REF] Cantat | Algebraic actions of discrete groups: the p-adic method[END_REF]). Let X be an irreducible complex quasi-projective variety, α ∈ X(C) and Γ be a finitely generated subgroup of AutC(X). Then, there exists an infinite number of primes p ≥ 3 such that (X, Γ) has a good model X over Zp and such that α extends to a section α : Spec Zp → X .

Example 4.3. For simplicity, suppose X is the affine space

A d C with its standard coordinates x1, • • • , x d and Γ ⊂ Aut(A d C
) is a finitely generated group of polynomial automorphisms. This is already an interesting example. Let S be a finite symmetrical (S -1 = S) set of generators of Γ. Let R be the ring generated by all the coefficients of the elements of S and the coordinates of α. Then, (X, Γ) is defined over R. Plus, by Theorem 4.1 there exists a prime p and an embedding ι : R ֒→ Zp. Using this embedding, the base change X = A d Zp and ρ : Γ ֒→ Aut(A d Zp ) show that (A d , Γ) is a good model over Zp and α extends to a Zp-point of X .

From algebraic automorphisms to analytic diffeomorphisms over Z p

In this section, we consider a scheme X of dimension d over Zp, where p ≥ 3 is a prime number, such that • X is a quasi-projective variety over Zp, and its generic fiber is geometrically irreducible over Qp.

• X = X ×Spec Zp Spec Fp is the special fiber of X and is geometrically irreducible over Fp.

• f : X → X is an automorphism of Zp-schemes.

• f : X → X is the restriction of X to the special fiber.

• r : X (Zp) → X (Fp) is the reduction map.

• x is a smooth Fp-point and there exists α ∈ X (Zp) such that r(α) = x.

For the two next propositions, we refer to [START_REF] Bell | The dynamical Mordell-Lang problem for étale maps[END_REF]. They will enable us to go from algebraic automorphisms to analytic diffeomorphisms. Proposition 4.4. Let X be a quasi-projective scheme over Zp. There exists a function ι : Z d p → X (Zp) which induces an analytic bijection between Z d p and the open subset of X (Zp) consisting of the points β such that r(β) = x.

Proposition 4.5. Suppose that f (x) = x. Let ι : Z d p → X (Zp) be the function defined in Proposition 4.4. Then there exist analytic functions F1,

• • • , F d ∈ Zp T1, • • • , T d such that (i) One has ι -1 • f • ι = (F1, • • • , F d ) =: F ∈ Zp T1, • • • , T d d .
(ii) if F is the reduction mod p of F, then F = F0 + F1 with F0 ∈ (Z/pZ) d and F1 ∈ GL d (Z/pZ).

Furthermore F is a Tate-analytic diffeomorphism because f is an automorphism.

Example 4.6. Propositions 4.4 and 4.5 are proven in [START_REF] Bell | The dynamical Mordell-Lang problem for étale maps[END_REF]. We only do the proof in the case Now, take a polynomial automorphism f , the map f is the polynomial automorphism over F d p obtained when taking the coefficients of f mod p. Take a point x ∈ F d p such that f (x) = x, up to a conjugation by a translation (which does not change the result), we can suppose that x = 0 ∈ F d p . This means that f preserves the ball of center 0 and radius 1/p in Z d p . Writing f in coordinates, we have

X = A d Zp . Take standard coordinates x = x1, • • • , x d over X . Then, X = Spec Zp[x] and X = Spec Fp[x]. The reduction map r : X (Zp) = Z d p → X (Fp) = F d p is
f (x) = pa0 + A1(x) + A2(x) + • • •
where a0 ∈ Z d p and Ai is the homogeneous part of degree i of f . Then,

ι -1 • f • ι(x) = 1 p f (px) = a0 + A1(x) + k≥2 p k-1 A k (x).
This is indeed an element of Zp x d and 1 p f (px) is an invertible affine transformation of F d p , this proves Proposition 4.5.

Proposition 4.7. [Proposition 3.3 of [START_REF] Cantat | Algebraic actions of discrete groups: the p-adic method[END_REF]] Let Γ be a finitely generated subgroup of AutZ p (X ). There exists a finite index subgroup Γ0 ⊂ Γ and an open subset U ⊂ X (Zp) analytically diffeomorphic to Z d p such that U is stable by the action of Γ0 on X and this action over U is conjugated to the action of a subgroup of Diff an 1 (U). Proof. Since r(α) = x ∈ X (Fp), the set X (Fp) is not empty and since X has finitely many Fp-points, there exists a finite index subgroup Γ1 ⊂ Γ that acts trivially on X (Fp). The point x is fixed by Γ1, let ι be as in Proposition 4.4 and U the open subset of X (Zp) consisting of the points β such that r(β) = x. Therefore, Γ1 preserves U and by applying Proposition 4.5 to the elements of Γ1, we get that conjugation by ι induces a group homomorphism Γ1 ֒→ Diff an (Z d p ). Composing this embedding with the homomorphism of reduction mod p induces a group homomorphism from Γ1 to the finite group of affine transformations of (Z/pZ) d . Denote by Γ0 the kernel of this homomorphism and the theorem is proven.

Proof of Theorem B

Take H a finitely generated nilpotent group acting by algebraic automorphisms on a quasi-projective variety X over a field of characteristic zero.

We are first going to show that we can suppose X to be irreducible in order to work on a Zp-scheme: X has a finite number of irreducible components and H permutes them. So there exists a finite index subgroup H ′ ⊂ H that stabilizes every irreducible component Xi of X. Call Hi the restriction of H ′ to Xi, then H ′ = Hi and vdl(H ′ ) = min vdl(Hi). We replace X by one of its irreducible component of maximal dimension and H by H ′ restricted to this component, H ′ is also finitely generated by Proposition 3.37.

Let α ∈ X(C), X is then an irreducible complex quasi-projective variety of dimension d, by proposition 4.2, there exists a prime number p ≥ 3 such that (X, H) admits a good model X over Zp and such that α extends to a Zp-point of X . Now, by Proposition 4.7, there exists a finite index subgroup H0 ⊂ H which is isomorphic to a subgroup of Diff an 1 (U), for U an open subset of X (Zp) analytically diffeomorphic to Z d p . By Proposition 3.37, H0 is a finitely generated nilpotent subgroup of Diff an 1 (Z d p ). Using Theorem 3.41, we get that the Lie algebra h associated to H0 is nilpotent and dl(h) ≥ vdl(H0) ≥ vdl(H). Applying Theorem 3.16, we get d ≥ vdl(H).

Optimality of Theorem B

An example from [START_REF] Dba Epstein | Transformation groups and natural bundles[END_REF].-We will use the construction from [START_REF] Dba Epstein | Transformation groups and natural bundles[END_REF] to find groups where Theorem B is optimal.

Let n be an integer and let A be the matrix such that A(ei) = ei+1, 1 < i ≤ n where ei is the canonical basis. Consider the subgroup of affine transformations G = {x ∈ R n → exp(tA)x + b : t ∈ R, b ∈ R n }, we will write (t; b) for the element (x → exp(tA)x + b). This is a real Lie group of dimension n + 1 of nilpotency class n and derived length 2, diffeomorphic to R n+1 . The group law is given by (t; b)(s; c) = (t + s; b + e tA c).

Notice that the group law is given by polynomials with rational coefficients in s, t and the coordinates of b and c; thus G is in fact an algebraic group. is a nonconstant polynomial map with rational coefficients from R (n+1)(k+1) to R n+1 .

Proof. The map is polynomial with rational coefficients because the group law is, and this map is not constant because nilp(H) = n > k.

Consider the vector space generated by the translations Te i , 2 ≤ i ≤ n. The Lie group S acts on the variety G on the left and G/S is a variety diffeomorphic to R 2 . The diffeomorphisms are given by We see that the action is therefore by polynomial automorphisms. We will write (t; b) on the left even though the action is on the right because we view it as a polynomial automorphism of A 2 C .

A group where theorem B is optimal.-Now, take H a finitely generated subgroup of G such that nilp(H) = n and H contains two elements (t; b), (s; c) such that t, s and all the coordinates of b, c are algebraically independent over Q. The group H satisfies the condition of Theorem B, it acts faithfully on the quasiprojective variety A 2 C and we have vdl(H) = 2. Indeed, if H admits an abelian finite index subgroup, then there exists an integer N such that (t; b) N and (s; c) N commute. But this would give a non-trivial polynomial relation over Q between s, t and the coordinates of b, c by Lemma 4.8, this is absurd. Thus, the bound in Theorem B is optimal for H.

Derived length versus nilpotency class.-In Theorem B we suppose that H is nilpotent. One might wonder if the bound can be improved using the virtual nilpotency class, i.e the minimum of nilp(H ′ ) for H ′ of finite index in H. We show that this is not possible with a similar counterexample as above. Take H a finitely generated subgroup of G such that H contains (t0; b0), • • • , (tn-1; bn-1) ∈ G n such that all the ti's and the coordinates of the bi's are algebraically independent over Q. We show that every finite index subgroup H ′ of H has a nilpotency class equal to n. Indeed, there exists an integer N such that for all 0 ≤ i ≤ n -1, hi := (ti; bi) N ∈ H ′ . The coordinates of the hi's are still algebraically independent over Q because the group law is given by polynomials with rational coefficients and by Lemma 4.8, the bracket [h0; • • • ; hn-1] of length n is not the identity, because that would give a nontrivial polynomial relation between the coordinates of the hi's.

Optimality of Theorem 3.16.-We show that in Theorem 3.16 we can't replace the derived length with the nilpotency class and that the theorem is optimal. In fact, the counterexample of [START_REF] Dba Epstein | Transformation groups and natural bundles[END_REF] can be adapted over Zp as follows. Consider the group G given by

G := x ∈ Z n p → exp(p • tA)x + b : t ∈ Zp, b ∈ Z n p .
The group law is now given by polynomials with coefficients in Zp and Lemma 4.8 still holds but the polynomials are with coefficients in Zp.

  of dimension d and this group has the desired size. We can therefore state: Theorem D. Let k be a finitely generated field over Q, let d be a natural number, and let p be a prime. Let G be a finite p-subgroup of Aut(A d k ), then 1. If p ≥ 3 or p = 2 and k is in case (a) or (b), there exists a group embedding G ֒→ GL d (k) and vp(|G|) ≤ M k (d; p). 2. If p = 2 and k is in case (c), there exists a group embedding G ֒→ GL d (k(z4)) and v2(|G|) ≤ M k (d, 2)+⌊ d

3. 1 . 1

 11 Definitions and topologyLet p be a prime. We denote by Zp the completed ring of Z with respect to the p-adic norm defined such that |p| = 1/p. Denote by Qp the completion of Q with respect to this norm. Then Qp = Frac(Zp) and Zp is the set of elements of Qp of absolute value ≤ 1. We extend this norm to Q d p by taking the maximum of the absolute values of the coordinates. We will use explicitly the ring Zp and the field Qp but what follows can be done with any complete valued ring or field of characteristic 0. The right setup would be to consider Cp the completion of the algebraic closure of Qp and Dp the unit ball of Cp.For reference, check[START_REF] Cantat | Algebraic actions of discrete groups: the p-adic method[END_REF]. We denote by B(x, r) = y ∈ Q d p : ||x -y|| ≤ r the closed ball of radius r and center x. It is both open and closed. Such sets will be called clopen. Tate analytic maps.-Classically, a function Z d p → Qp is analytic if it can be written locally as a converging power series, we work with Tate-analytic functions which are converging power series of radius ≥ 1 over Z d p . Take Z d p with its standard coordinates x = x1, • • • , x d . On Qp[x1, • • • , x d ] =: Qp[x] the Gauss norm is defined by ∀g ∈ Qp[x], g = I⊂Z d + aI x I , ||g|| := max I |aI | where I = (I1, • • • , I d ) and x I

  Group topology.-The following proposition shows that Diff an (Z d p ) is a topological group with respect to the topology induced by the Gauss norm. Proposition 3.9. Let f, g, h ∈ Zp x d , then 1. ||g • f || ≤ ||g||. 2. If f is an element of Diff an (Z d p ) then ||g • f || = ||g||. 3. ||g • (id +h) -g|| ≤ ||h||.

  and such that ϕ * maps Tate-analytic vector fields to Tate-analytic vector fields. By Proposition 3.4 the morphism of restriction h → h |V is an isomorphism of Lie algebras. We replace h by h |V and work with the coordinates x1, • • • , x d over V. Every vector field Y of h must commute with X = ∂ d so it is of the form Y = d i=1 ui(x1, • • • , x d-1 )∂i. Let π : V ≃ Z d p → Z d-1 p be the projection over the first d -1 coordinates. This yields a Lie algebra homomorphism π * : h → Θ(Z d-1 p

  Proposition 3.19. Let Φ ∈ Zp x, t be a Tate-analytic flow over Z d p . If U ⊂ Z d p is a clopen set, then there exists an ε > 0 such that ∀t ∈ Zp, |t| ≤ ε ⇒ Φt(U) = U. Proof. Fix x ∈ Z d p and 0 < r ≤ 1. Since Φt → id as t → 0 in Diff an (Zp), there exists ε > 0 such that for all t ∈ Zp, |t| ≤ ε ⇒ ||Φt -id|| ≤ r. Now for all z ∈ Z d p , ||Φt(z) -z|| ≤ ||Φt -id|| ≤ r. Then, for all y such that ||y -x|| ≤ r, ||Φt(y) -x|| = ||Φt(y)y + y -x|| ≤ max(||Φt(y) -y|| , ||y -x||) ≤ r.

  Proposition 3.22. Set E, F = Qp x . Take a polynomial P ∈ Qp[x]. Then, P induces a continuous polynomial map E d → F and the linear embedding Qp[x] ֒→ P (E d , F ) is an isometry.

  of f at a point x will be denoted Dxf . Proposition 3.26. The topological space Diff an (Z d p ) is an analytic manifold over Qp, it is in fact an open subset of the Banach space Qp x d . The subgroups Diff an c (Z d p ) for c > 1 p-1 are diffeomorphic to Zp x d and they form a basis of neighbourhood of id in Diff an (Z d p ). Proof. Theorem 3.17 shows that Diff an c (Z d p ) is the ball of center id and radius |p| c in Zp x d , using Proposition 3.9 we see that for every f ∈ Diff an (Z d p ), the ball of center f and radius |p| c is included in f • Diff an c (Z d p ) therefore it is an open set of Qp x d , so Diff an (Z d p ) is an infinite dimensional analytic manifold over Qp. The implicit function theorem.-Let X, Y, Z be manifolds over K and let f : X × Y → Z be an analytic map. Let (a, b) ∈ X × Y , we write D (a,b) f the differential map of f at (a, b) and let D (1) (a,b) f be the differential of the partial map x ∈ X → f (x, b) at a and D (2) (a,b) f the differential of the partial map y∈ Y → f (a, y) at b. Then, one has T (a,b) X × Y = TaX × T b Y and D (a,b) f (u, v) = D (1) (a,b) f • u + D (2) (a,b) f • v.Theorem 3.27 (Implicit function theorem, 5.6.1 of[START_REF] Bourbaki | Variétés différentielles et analytiques: Fascicule de résultats[END_REF]). Suppose that D (2) (a,b) f is bijective, then there exists an open neighbourhood U of a in X and an open neighbourhood V of b in Y and a unique analytic map g : U → V such that ∀x ∈ U, f (x, g(x)) = f (a, b) and the differential of g at any x ∈ U is given by

  Theorem 3.34 ([START_REF] Bourbaki | Eléments de Mathématique[END_REF], §8, Theorem 2). Let G be a finite-dimensional Lie group over Qp, then every closed subgroup of G is a Lie subgroup of G. Proposition 3.35 ([Bou06], §9, Corollary of Proposition 6). Let G be a finite-dimensional Lie group over Qp and g its Lie algebra, there exists an open subgroup G0 of G such that for all i ≥ 0, the subgroups D i (G0) and Di(G0) are Lie subgroups with Lie algebra D i (h) and Di(h) respectively. Proof. Set G = ι(H) and ψ := ι -1 : G → Diff an c (Z d p

  the reduction mod p coordinates by Take x ∈ F d p and z ∈ Z d p such that r(z) = x, then the open subset of X (Zp) of elements β such that r(β) = x is the ball of center z and radius 1/p. The analytic bijection ι is given by ι : m ∈ Z d p → z + p • m ∈ X (Zp) = Z d p . This proves Proposition 4.4.

Lemma 4. 8 .

 8 Recall the notation of 3.4.1. Let k < n be an integer. The map((t0; b0), • • • , (t k ; b k )) ∈ G k+1 = R (n+1)(k+1) → Br k+1 ((t0; b0), • • • , (t k ; b k )) ∈ G = R n+1

[

  (t; b)] ∈ G/S → (t, b1) ∈ R 2 and (x, y) ∈ R 2 → [(x; ye1)] ∈ G/Swhere the brackets mean that we take the orbit under the action of S.The group G acts by right composition on G/S and this action is faithful. The formulas are given by∀(t; b) ∈ G, ∀(x, y) ∈ R 2 = G/S, (x, y) • (t; b) = x + t, y + n k=1 t k-1 (k -1)! b k .

  . The group G acts on F d which is of size |F | d . Since |G| = p α and p does not divide |F |, the class equations gives the existence of at least one trivial G-orbit in F d ; hence, the existence of a fixed point x0 ∈ F d .Up to a translation we can suppose that x0 = 0. Now to show the injectivity of Φ. Take g in G such that D0g

  The problem is to find a symmetric matrix A such that AG :=

g∈G t Dxg • A • Dxg is non-degenerate. Such an A does not exist for every subgroup of GL d (F) precisely because v2(|GL d (F|) is larger than the 2-adic valuation of the order of any orthogonal group over F. So we have to use that G comes from a group over k and adapt m wisely.

  the homogeneous part of degree n of Ψ and ||•|| is the Gauss norm over polynomials. Therefore, if Φ belongs to Zp x d , then for any k such that |p| k < D0Φ -1 , we have that 1 p

k Φ(p k x) and 1 p k Ψ(p k x) are Tate-analytic diffeomorphisms and are inverse of each other.

  Theorem 3.29. The topological group Diff an (Z d p ) is an infinite-dimensional Lie group over Qp. The fact that Diff an (Z d p ) is a Lie group over Qp follows from Propositions 3.25, 3.26 and 3.28 where it was shown that it was an analytic manifold and that composition and inversion are analytic maps. The statement for Diff an c (Z d p ) follows from the same propositions. The tangent space at id is Qp x d that we identify with Θ(Z d p ) and under this identification the Lie bracket between two Tate-analytic vector fields corresponds to the Lie bracket of the Lie algebra of the Lie group Diff an (Z d ) because if X, Y are of norm ≤ |p| c with c > 1 p-1 , then they admit global Tate-analytic flows Φ X and Φ Y by Proposition 3.13 and

	Its Lie Algebra
	is Θ(Z d p ). Moreover, the subgroups Diff an c (Z d p ) are also Lie groups for c > 1 p-1 and they form a basis of neighbourhood
	of id in Diff an c (Z d p ).
	Proof.

  ). By Proposition 3.40 and Proposition 3.33, ψ extends to a Lie group homomorphism ψ : Gp → Diff an c (Z d p ) where Gp is the closure of G in Tri1(n, Zp); we show that the image of ψ is the closure of H in Diff an (Z d p ). Let K be the image of ψ. Since Tri1(n, Zp) is compact and Gp is closed, Gp is also compact and so is K. This implies that the closure H of H is included in K. And K is included in H because of the continuity of ψ. This shows that H is a finite dimensional Lie group isomorphic to Gp/ ker ψ. Now, we show the statement for h. By Proposition 3.35, there exists an open subgroup H1 of H, such that D i (H1) is a Lie subgroup of H with Lie algebra D i (h). Since H1 is open, by Theorem 3.29 there exists an integer c > 0 such that Diff an c (Z d p ) ∩ H ⊂ H1. Take f1, • • • , fs generators of H. Then by Proposition 3.38 the subgroup H ′ generated by the f p c i 's is a finite index subgroup of H and it is included in H1 by Lemma 3.10, therefore dl(h) = dl(H1) ≥ dl(H ′ ) ≥ vdl(H). Base change from C to Z p : Good models
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3.4 Nilpotent groups and embedding into p-adic Lie groups.

Nilpotent groups

The main goal of this section is to show that if H is a finitely generated nilpotent group with generators h1, . . . , hs, then for any m ≥ 1 the subgroup Hm of H generated by h m 1 , . . . , h m s is a finite index subgroup of H. This will be useful in the proof of Theorem B because if H ⊂ Diff an 1 (Z d p ) we will need to consider such a subgroup Hm to get the desired result.

Recall the notation introduced in § 1.2.1 for nilpotent and solvable groups and Lie algebras. We shall say that an expression that involves k commutator brackets is a commutator of length k; for instance [[a, [b, c]], d] is a commutator of length 3 and a single element can be viewed as a commutator of length 0. For k ≥ 1, we denote by [a1;

, the maps φ(g, •) and φ(•, g ′ ) are group homomorphisms. More generally, a map G1ו • •×Gm → G is m-linear if fixing m-1 coordinates yields a group homomorphism. For any triple of elements x, y, z in G, we have

It follows from the last three formulas that, for every k ≥ 1, this map induces a bilinear map

Proposition 3.36. Let G be a group and S a set of generators of G.

1. for every integer k ≥ 0, the subgroup D k (G)/D k+1 (G) is generated by the commutators of length k consisting of elements of S.

Proof. Let us prove the first assertion by induction on k. Let X k be the set of commutators of length k in elements of S. The initialization k = 0 follows from X0 = S and the fact that S generates G. Now, suppose k ≥ 1 and that X k-1 generates D k-1 (G)/D k (G). The image of the map co k generates D k (G)/D k+1 (G); by induction and since co k (a, b) is a homomorphism with respect to a and with respect to b, the elements [s, x k-1 ] for s in S and x k-1 ∈ X k-1 generate D k (G)/D k+1 (G), and these elements are exactly the commutators of length k in the elements of S. The second and third assertions follow from the first one.

Proposition 3.37. Let H be a finitely generated nilpotent group, then every subgroup H0 of H is finitely generated.

For a proof see [START_REF] Segal | Polycyclic groups[END_REF] where this is actually shown for polycyclic groups, the result follows since finitely generated nilpotent groups are polycyclic.

Proposition 3.38. Let H be a nilpotent group of nilpotency class t.

1. the map Brt :

Proof of the first assertion. Let us do an induction on t. The case t = 1 being trivial, suppose the result true for a nilpotent group of class t -1 and consider H a nilpotent group of class t. Since D t (H) = 0, one has that the map cot-1 :

is bilinear; thus, Brt is a homomorphism with respect to the first factor h1 ∈ H. Let us show that Brt is a homomorphism in the second coordinates h2, the other coordinates are dealt with in the same way. By induction, the map

• g] and the bilinearity of cot-1 gives the result since [h1, g] = 0.

Proof of the second assertion. We set S = {h1, • • • , hs} and we denote by HS,m the subgroup of H generated by the set {s m : s ∈ S}. We show by induction on t = nilp(H) that HS,m is of finite index in H.

If t = 1 then H is abelian and there is a unique surjective group homomorphism Z s → H sending the canonical basis to S = (h1, • • • , hs). The subgroup HS,m is the image of mZ s . Therefore, there is a surjective group homomorphism Z s /mZ s ։ H/HS,m and we get that H/HS,m has at most m s elements. Now suppose the result true for a group of nilpotency class t -1 and assume nilp(H) = t, with t ≥ 2. Set T := D t-1 (H), T is central in H. One has the exact sequence

By induction, the image of HS,m in H/T is of finite index; thus, one can fix a finite set A ⊂ H such that H = h∈A hHS,mT . To conclude, we only need to show that the index of T ∩ HS,m in T is finite. Since, T ∩ HS,m contains the subgroup of t -1 commutators D t-1 (HS,m) it suffices to show that the index of D t-1 (HS,m) in T is finite.

By Proposition 3.36, T is generated by the set

xi ∈ S} furthermore, the first assertion shows that S ′′ consists exactly of the elements of S ′ raised to the power m t-1 . So by the abelian case, D t-1 (HS,m) is of finite index in T .

Malcev's completion of nilpotent torsion-free finitely generated group

Denote by Z = p prime Zp equipped with the product topology (the adelic topology). It is the profinite completion of Z. Let H be a nilpotent torsion-free finitely generated group. It is known that H embeds into Tri1(n, Z) the group of upper triangular matrices with integer coefficients and 1's on the diagonal for some integer n (see for example [START_REF] Segal | Polycyclic groups[END_REF] Theorem 2 of Chapter 5). For the rest of this section, we fix an embedding ι : H ֒→ Tri1(n, Z). There are two topologies that one can consider on ι(H). First the adelic topology induced by the inclusion Tri1(n, Z) ⊂ Tri1(n, Z), and second, the profinite topology where a basis of neighbourhood for the neutral element are the subgroups of finite index in ι(H).

Proposition 3.39. Let G ⊂ Tri1(n, Z) be a subgroup of matrices with integer coefficients and 1's on the diagonal, then the profinite topology and the adelic topology on G are the same. In particular, the profinite completion of G coincides with the closure of G in Tri1(n, Z).

Proof. First, let K be a subgroup of GLn(Z) of the form K = {A ∈ GLn(Z) : A ≡ id mod m} for some integer m, such groups K form a basis of open neighbourhood of id for the adelic topology. It is a normal subgroup of GLn(Z) with finite quotient, therefore G ∩ K is a finite index subgroup of G. Therefore the adelic topology is finer than the profinite topology.

Conversely, G is a unipotent group of matrices over Q, therefore it is arithmetic (see [START_REF] Segal | Polycyclic groups[END_REF] Exercise 13 of Chapter 6). By the affirmative solution to the congruence subgroup problem for arithmetic soluble groups (see [START_REF] Singh | Solution of the congruence subgroup problem for solvable algebraic groups[END_REF]), we get that G is a congruence subgroup. This means that every finite index subgroup of G contains a subgroup of the form G ∩ {A ∈ GLn(Z) : A ≡ id mod m} for some integer m. Therefore, the profinite topology is finer than the adelic topology; thus, they are the same.

A consequence of this proposition is that the profinite completion of ι(H) is exactly the closure of ι(H) in Tri1(n, Z). Proposition 3.40. Let G be a nilpotent subgroup of Tri1(n, Z). The closure of G in Tri1(n, Zp) is the pro-pcompletion of G, in particular it is a p-adic Lie group.

Proof. Denote by G the profinite completion of G and for a prime ℓ, G ℓ the pro-ℓ-completion of G. Since G is nilpotent and a finite nilpotent group is a product of ℓ-groups for some primes ℓ (see [START_REF] Bourbaki | Éléments de mathématique[END_REF] chapter 1, §7, Theorem 4) we have that G = ℓ G ℓ . By Proposition 3.39, we have a continuous injective homomorphism of topological groups

For a prime p, this induces a continuous group homomorphism Gp ֒→ ℓ Tri1(n, Z ℓ ). But, Gp is a pro-pgroup and for every prime ℓ, Tri1(n, Z ℓ ) = lim ← -Tri1(n, Z/ℓ k Z) is a pro-ℓ-group. Therefore, Gp can be identified with the image of G in Tri1(n, Zp); this is exactly the completion of G in Tri1(n, Zp), meaning that Gp is a closed subgroup of the p-adic Lie group Tri1(n, Zp), so it is a Lie group by Theorem 3.34. Theorem 3.41. Let c > 0 be such that c > 1 p-1 and let H be a finitely generated nilpotent subgroup of Diff an c (Z d p ), then the closure H of H in Diff an (Z d p ) is a finite-dimensional nilpotent Lie group. Furthermore, denote by h the Lie algebra of H, then h is a finite-dimensional nilpotent Lie algebra and dl(h) ≥ vdl(H).

Then, G/S is analytically diffeomorphic to Z 2 p and we have an embedding of Lie groups G ֒→ Diff an (Z 2 p ) given by

Let g ⊂ Θ(Z 2 p ) be the Lie algebra of G, g is nilpotent and we show that nilp(g) = n. Let k = nilp(g), then by Proposition 3.35, there exists a small subgroup G ′ of G which is a neighbourhood of id such that nilp(G ′ ) = k. Therefore k ≤ n, suppose k < n. By Lemma 4.8 the map and this implies that Q1 = 0, Q2 = 0, this is a contradiction. By a similar argument, we can show there are no small abelian subgroups G ′ ⊂ G neighbourhood of the identity therefore dl(g) = 2 by Proposition 3.35 and Theorem 3.16 is also optimal.