

Flux Pinning Docking Interfaces in satellites using superconducting foams as trapped field magnets

UNIVERSITÉ DE LORRAINE

<u>M. R. Koblischka^{1,2}</u>, A. Koblischka-Veneva^{1,2}, D. Gokhfeld³, S. Pavan Kumar Naik⁴, Q. Nouailhetas^{1,5}, K. Berger⁵, B. Douine⁵, S. Fasoulas⁶

¹Saarland University, Experimental Physics, P.O.Box 151150, 66041 Saarbrücken, Germany

²Shibaura Institute of Technology, 3-7-5 Toyosu, Tokyo 135-8548, Japan

³Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnojarsk, Russia

⁴Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku City, Tokyo 162-8601, Japan

⁵GREEN, Université de Lorraine, Vandoevre-lès-Nancy, France

⁶Institute for Space Systems, University of Stuttgart, Pfaffenwaldring 29, 70569 Stuttgart, Germany

Introduction

Flux pinning-coupled cube sats in space

Flux-Pinning Docking Interfaces (FPDI) in satellite systems were developed using bulk superconductors and permanent magnets. However, such FPDIs have *limited* magnetic field strength, consist of *heavy-weight material*, and can only be used with a *single purpose*, i.e., as chasing or docking satellite.

Replacing the magnetic material in the FPDI by a TF-magnet would enable the interface to operate for both purposes, i.e., generating a (stronger) magnetic field *and* trapping it. We show the requirements for such a system and discuss the possible gains when using a TF-FPDI in satellites. To reduce the system weight, the use of superconducting foams is discussed in detail.

Superconductivity reduced dimensions M. R. Koblischka

Page

Flux-pinning docking interface

M. R. Koblischka

TOP GLOBAL UNIVERSITY

JAPAN

Page

3

EUCAS 2021 SEPTEMBER, 5-9 MOSCOW

SIT SHIBAURA INSTITUTE OF TECHNOLOGY **Flux-pinning docking interface**

Superconductor only used as the diamagnetic part to trap fields

difficulties to have large samples \rightarrow for tests, several smaller samples were used

Superconductors

Magnet Card with Superconductor Disk Permanent and Electromagnets

2010 Microgravity Prototype Sensing Card

FluxCraft/FloatCube Assembly

```
J. Shoer et al..
J. Spacecraft Rockets
47, 1066 (2010)
```

L.L.Jones, Thesis Cornell 2012

EUCAS 2021 SEPTEMBER, 5-9 MOSCOW

TF-FPDI

→ Using TF-principle, the satellite can be fully symmetric as the function can be chosen deliberately: **NO** distinction between *chaser* and *target* satellites necessary

Why use superconducting foams?

The foams may be applied as **ultra-light trapped field** (TF) magnets whereever the weight and the cooling efficiency counts, e.g., in space.

High cooling efficiency (coolant can pass through the sample, improved heat exchange).

Straightforward **scalability of the sample size** (limited only by furnace size).

Foam material may also serve as **buffer material** (e.g., as **shock absorber** in the docking process)

TF-FPDI

Advantages of the TF-FPDI

one common cryocooling unit for both superconductors # temperature can be lower than 77 K, e.g., 60 K or even 20 K

 \rightarrow lower *T* will improve TF performance, eventually use of MgB₂

energizing by pulsed field technique

- \rightarrow higher trapped fields as permanent magnets possible
- → saves weight (increases payload)
- \rightarrow higher fields will improve the docking process, stability of system
- # energy for pulsed fields can be provided by a fuel cell system

M. Hinaje et al., IEEE Trans. Appl. Supercond. 28, 4202606 (2018).

Superconductivity reduced dimensions M. R. Koblischka

Page

PEMFC, 100 cm²

Foam materials

EUCAS 2021

SEPTEMBER, 5-9

MOSCOW

open-cell porous metal foams

Al, Mg, Cu,....

technical use as

- shock dampers
- heat exchangers

Superconductivity reduced dimensions M. R. Koblischka

Superconducting foams

Superconducting foams

M. R. Koblischka et al., Materials 12, 853 (2019)

- \rightarrow high cooling efficiency
- → reduced sample weight
- → improved mechanical strength (cracking problem of large bulks)
- \rightarrow possibility for easy upscaling (large sample sizes possible)

Superconducting foams

TF-FPDI enables

- -- free use of the coupling elements, satellites can be chaser AND targets on demand, more complicated architectures of satellite systems possible
- -- TF-magnets on board save weight (increase payload) by eliminating the heavy permanent magnets
- -- easier docking process with improved stability

Use of superconducting foams allows

- -- larger sample sizes with further reduced weight
- -- combination of damping material and foam
- → more work on foams required (larger sizes, multiseeding, improved measurement conditions of large samples at lower T)

Thank you for your attention.

