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Abstract

This paper addresses the characterization of dense 3D microstructures using the unifying concept of
accessibility, mixing local shape features with global topology. Underlying percolation and constrictivity
features are jointly considered by probing the connected components of the microstructure with structuring
elements with increasing size. Adapted morphological operations are combined to provide a scalable protocol
embedding suitable descriptors applied on accessible volumes, yielding a sharp discrimination power. The
suggested framework named A-protocol can efficiently analyze complex microstructures by applying a
stratified sampling for the selection of paths’ endpoints, when connected. It stops when percolation ends, at a
critical radius value. The A-protocol is tested on Cox multi-scale Boolean models using the Euler number as
descriptor.

1 Introduction

The analysis of complex patterns or shapes has
to combine local -morphological- and global
-topological- features [34, 50]. Connectivity,
considered under different viewpoints, is of
paramount interest in such analyses [40, 51,
15]. Among them, the analysis of artificial or
real networks [37, 3] is among the most chal-
lenging ones [9].
The structural characterization of 3D mi-
crostructures of materials, i.e. interconnected
networks, enables valuable connections with
physicochemical properties, especially in the
analysis of porous media [17, 1]. The concept
of accessibility turned out to have a central in-
terest on various experiments making use of
different flowing particles and measurement
means [46, 16, 30, 42]. Hindrance in porous
media is indeed crucial as the size of flow-
ing particles can impact transport properties,
especially when it has the same order of mag-
nitude as the pores dimensions [49, 43]. In the
digital domain, after microstructure segmen-

tation, hindrance could be addressed in the
scope of morphological accessibility, defined
here by combining connectivity seen through
percolation, i.e. ability to connect, with con-
strictivity, i.e. the strength of bottleneck effect
[10]. Throughout the article, the term "accessi-
bility" will mean "morphological accessibility".
Percolation as a theory considers accessibility
in a specific way [8, 45, 18], indicating the ex-
istence of a connected path totally included
in the pattern, connecting a given entry to a
given exit, thus linked to global topological
notions (Fig.1(A-D)). The numerical implemen-
tations of percolation are of distinct types [39].
Constrictivity [32] highlights local hindrance
through bottleneck effects quantification, usu-
ally represented by a scalar value named con-
striction factor. Originally defined for a syn-
thetic pore (Fig.1(e)), extensions to microstruc-
tures exist [20, 29].
One can find similar ideas based on morpho-
logical operations, taking into account the local
shape in order to address accessibility, reach-
ability or penetrability [48, 47, 31, 10]. Mor-
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Figure 1: (A-D) Four forms of percolation: (A) direc-
tional percolation (between two opposite faces),
(B) multi-directional percolation (in at least
one direction), (C) adirectional percolation (be-
tween distinct faces) [12], and (D) stochastic
percolation [11] (between random points). Il-
lustration of (e) constrictivity and (f) accessi-
bility with critical radius rc (see Section 2).

phological opening or erosion, by spheres with
variable radius [41, 44], computed using dis-
tance transform [36, 7], are utilized for char-
acterization purposes according to pores’ or
particles’ size, quantifying disconnections. Ero-
sion is more adapted to topological measure-
ments, while opening is suitable for geometric
ones. Connectivity between parallel planes is
then computed using either connectivity func-
tions based on the Euler number [48, 47], or
percolation probability [31] or statistical perco-
lation [10]. The percolation is assessed utilizing
a connected components labeling, assigning a
specific label to each connected component [19,
35]. In order to remove the constraint of choos-
ing planar sections as entries and exits, [11, 13]
make use of a stratified sampling [4], yielding
to a stochastic consideration of percolation, as-
sessed between random points or vertices, in a
certain way akin to graph theory [27]. Spheri-
cal probes of different sizes travelling through
the network could be a common basis for ac-
cessibility, as illustrated in Fig.1(f).

The main contribution of this article is a scal-
able framework able to support the different
forms of percolation illustrated in Fig.1(A-D),
and jointly constrictivity illustrated in Fig.1(e).
The computational protocol proposed in Sec-
tion 2, named A-protocol, provides a versa-
tile methodology addressing accessibility via
3D patterns. It is suitable for any specific
application-dependent descriptors, extending
it in an easily interpretable manner, as shown
below with the Euler number. Its effectiveness
is tested on Cox multi-scale Boolean models,
focusing on the stochastic form of percolation
and accessibility, in order to assess its poten-
tiality in terms of discriminative power: the
results quantifying local anisotropy and global
heterogeneity are reported in Section 3. The
conclusion is drawn in Section 4.

2 The A-protocol

The A-protocol is an iterative method taking into
account all bottlenecks of a microstructure by
considering increasing radii r for sphere B(r)
used as structuring element for morphologi-
cal erosions. At each iteration, percolation is
jointly verified after labeling connected compo-
nents, and predefined embedded descriptors
are assessed. Some cavities defined as the result-
ing non-accessible connected components for
a probe of a given size, are formed due to the
hindrance caused by the probe dilation. Geo-
metrically, the larger the radius, the more there
will be vanished volumes. Topologically, the
trajectories between any two remaining points
of the microstructure, lengthen until they are
closed. The focus being mainly on topologi-
cal measurements and computation time effi-
ciency, the erosion operation was chosen and
S defined once for all at the initialization step.
As the A-protocol is a cumulative step by step
process, if residues descriptors are considered,
as cavities, the value of the descriptor for a spe-
cific size is equal to the sum over these residues
from r = 0 to the given size. The A-protocol
ends when the critical radius rc i.e. the radius of
the biggest percolating spherical probe B(rc),
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is reached. Sampling 3D patterns is optional
but required in the context of stochastic perco-
lation giving rise to stochastic accessibility, that
we define herebelow,

Definition 1. Stochastic accessibility: Let
εr(X) be the eroded set of microstructure X using a
sphere B(r) as structuring element. Let S = {pi}
be a set of N random points such that S ⊂ εr(X).
A connected component of εr(X) is said to percolate
if at least a number θ of connected paths exists be-
tween some pairs of points, (pi, pj), i 6= j. Eroded
set εr(X) percolates if there exists at least a perco-
lating connected component.
Let Ccr be the union of the percolating connected
components of εr(X). If Ccr 6= ∅, X is said to be
accessible for a probe B(r).

In order to comply with usual definitions, we
take θ = 1; for a connected component to
be considered as accessible, it suffices that a
connected path has been found. The stochastic
accessibility allows the A-protocol to be applied
on any microstructures, reflecting the flowing
particles in the physical domain.

The definition of a protocol devoted to ac-
cessibility is motivated by the transfer of the
concept into a scalable digital framework em-
bedding relevant descriptors, with efficiency
concerns. The A-protocol illustrated in Fig.2
on a synthetic structure, is formally given by
the algorithm below. The estimates of acces-
sible volume fraction V̂vA , number of cavities
N̂C, and average volume of cavities V̂C are si-
multaneously assessed until the critical radius
r̂c is reached. Let us note that the skeleton
of microstructure X [38, 21] could be consid-
ered, but would lead to increase the bias over
morphological descriptors as volume fraction
assessments.

3 Results

For testing the A-protocol and illustrating
its properties on complex microstructures,
stochastic models so numerical twins are con-
sidered, focusing on stochastic accessibility. For

Figure 2: Analysis of a synthetic structure (in white)
by the A-protocol; directional percolation and
r̂c = 1. (A-0) shows the pattern state at the
starting of an iteration, (A-1) connected com-
ponents labeling, each label being associated
with a color, (A-2) percolation assessment with
deletion of non percolating connected compo-
nents, (A-3) (not displayed) computation of
descriptors, (A-4) morphological erosion using
B(1), deleted pixels being in gray.
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Input: Pattern X; embedded descriptor
{Dk}; (optional) sampling point
set S

Output: Estimates V̂vA , N̂C, V̂C and
embedded descriptor {D̂k}, as
functions of r; critical radius r̂c

Initialization: r ←− 0

while Percolation do
A-1. Connected components labeling

X ←− {cci} (Fig.2(1))

A-2. Percolation assessment and
computation of Ccr (Fig.2(2))

if Percolation then
A-3. Computation of estimates

V̂vA(r), N̂C(r), V̂C(r) and
embedded descriptor Dk(r) over
Ccr

A-4. Erosion, X ←− ε1(X)
(Fig.2(4))

Incrementation: r ←− r + 1
end

end
Critical radius: r̂c ←− r− 1

Algorithm 1: A-protocol

this purpose, Cox multi-scale Boolean mod-
els which are suitable for both theoretical and
statistical analyses of computational methods
and usual investigation of stereological oper-
ators [2] are used. First, theoretical relation-
ships connecting the critical radius to constric-
tivity and percolation are given. Second, the
A-protocol’s behavior analysis with respect to
specific features is practicable; impact of the
grains’ anisotropy and the geometric hetero-
geneity over the accessibility to the microstruc-
ture.

3.1 Cox multi-scale Boolean models

Boolean models [24, 14] are considered in or-
der to generate homogeneous microstructures
made of anisotropic grains A′, located at Pois-
son points. Hereafter, they are defined by a
single volume fraction of grains Vv. Multi-scale
microstructures can be modeled by using Cox
multi-scale Boolean models [22, 26], simulating
heterogeneous materials. In the following, two-
scale models are considered, defined by three
volume fractions: Vv,INC for aggregates with
higher density, Vv for grains inside aggregates,
and Vv,OUT for grains outside aggregates.
Boolean models of spheres (Fig.3(a)) and
of spherocylinders with random orientations
(Fig.3(b)) are generated; Vv = 0.4 for both mod-
els, having similar average volume of grain,
V̄(A′) = 4188.8 for spheres and V̄(A′) =
4215.0 for spherocylinders.

1. sphere R = 10,

2. spherocylinder R = 5 and L = 47.

Cox multi-scale Boolean models of platelets are
considered; platelets’ shape (Fig.3(c)): L = 6,
l = 5 and h = 3, and aggregates’ size and
volume fraction: RINC = 10, Vv,INC = 0.5, are
fixed.

3. Vv = 0.5 and Vv,OUT = 0.3,

4. Vv = 0.6 and Vv,OUT = 0.2,

5. Vv = 0.7 and Vv,OUT = 0.1.
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40 realizations of size 4003 of each model are
generated (Fig.3). The A-protocol is applied
to the complementary set of the grains union
(black areas in Fig.3). Confidence intervals
with 95 % confidence level, represented by ver-
tical bars in the results display, are equal to 2lσ,
with lσ = 2σ/

√
nr, and σ the standard devi-

ation over the nr realizations. Finally, in this
case, the A-protocol provides averaged assess-
ments; let π be a given descriptor, then π̂ is an
averaged estimator over all realizations.

3.2 A-protocol: discussions

Constrictivity factors β quantifying bottlenecks,
are scalar values obtained from comparison of
minimal and maximal cross sections [20, 6]. A
specific definition consists in computing the
squared ratio of the minimal to the maximal
radius, which could be translated in our case
by using the critical radius rc and the maximal
radius, i.e. the maximal distance value Dmax
obtained from the distance map used for the
iterative erosions.

β =

(
rc

Dmax

)2
(1)

By definition the critical radius rc is linked
to the critical percolation threshold ρc, which
can be assessed using a statistical approach
[23], then defined as the volume fraction where
exactly 50% of the realizations percolate.
Considering Boolean models, the density θ of
grains A′ is given by:

1−Vv = exp(−θ.V̄(A′)) (2)

with Vv the volume fraction of grains of the
model A, and V̄(A′) the average volume of
grains A′. Let Ar = A ⊕ B(r) be a Boolean
model defined as the dilation of A by B(r), and
Vv,r be the volume fraction of Ar. As Vv,r ≥ Vv,
there exists a function α, ∀r ≥ 1 α(r) ≥ 1, such
that V̄(A′r) = α(r).V̄(A′). Therefore, with eq.2,
1−Vv,r = (1−Vv)α(r).
Henceforth, rc is a limit value of r, obtained
when 1−Vv,r is equal to the threshold ρc of the
eroded complementary set. Therefore, there

Figure 3: The different grain’s shapes used in this paper:
(a) sphere, (b) spherocylinder and (c) platelet.
Volume representation and 2D slice of a re-
alization of each Boolean model: (1) spheres
and (2) spherocylinders, and Cox multi-scale
Boolean models of platelets: (3) Vv = 0.5, (4)
Vv = 0.6 and (5) Vv = 0.7. Volumes gener-
ated and rendered using [33].
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exists αc = α(rc) and,

αc = ln(ρc)/ ln(1−Vv). (3)

If A′ = B(R), therefore αc = ((R + rc) /R)3

and,

rc =

(
3
√

ln(ρc)/ ln(1−Vv)− 1
)

.R. (4)

Considering Cox multi-scale Boolean models,
the total volume fraction of primary grains
Vv,TOT is defined by,

Vv,TOT = Vv,INC.Vv + (1−Vv,INC).Vv,OUT . (5)

Eq.2 is valid for each volume fraction and the
same rationale leads to,

ρc = (1−Vv)
αc − (1−Vv,INC).((1−Vv)

αc − (1−Vv,OUT)
αc).

(6)
Let us now restrict our attention to the

model (1). Only r̂c and V̂vA are displayed in
Tab.1 and Fig.4. As a global statement, the
low values of lσ attest the representativity of
the considered volume, i.e. the realizations’
volume times the realizations number. Confi-
dence intervals of all curves are represented,
but too small to be visible before a certain
value; the larger the radius r, the bigger the
representative volume element, the lower the
representativity [28].

The stratified sampling is a parametric
method, with NT and N the target number
given by the user and the final number of ran-
dom points, respectively [11]. None of them
is meaningful, but the length of the cubic sub-
images’ edges e is. The purpose is to assess its
optimal value with respect to an arbitrary refer-
ence, the percolation (A) (r̂c,re f , V̂vA,re f ). The A-
protocol with stochastic accessibility, is analyzed
as a function of e = {133, 100, 80, 66} (Fig.4(a)).
One can notice some slight differences with (A)
due to negligible volumes (Fig.4 bottom right);
Fig.4(a) shows the similarities of V̂vA what-
ever e. The best assessment of (r̂c,re f , V̂vA,re f )
is reached for e = 100 (N = 64). The same
process is performed on each model showing
a necessary refinement for the more complex

Table 1: 1st line: r̂c for the stochastic accessibility with
different e values. 2nd line: r̂c for the various
accessibility types. Display of lσ, the half length
of the confidence interval, with 95 % confidence
level.

Model Percolation r̂c lσ

(1) Sphere

Stochastic e = 133 9.175 0.311
Stochastic e = 100 9.05 0.237
Stochastic e = 80 9.4 0.266
Stochastic e = 66 10.95 0.531

(1) Sphere

A 8.9 0.096
B 8.975 0.05
C 13.95 0.423
D 9.05 0.237

ones; (1) e = 100, (2) e = 100, and (3) e = 100,
(4) e = 80 (N = 125), (5) e = 80. Hereafter,
these values are considered in percolation (D).

Let us compare now the four percolation
forms (Fig.4(b)). Globally, the curves are quite
similar whatever the percolation. The consid-
ered models being isotropic, the percolations
(A) and (B) exhibit very similar results, as for
the percolation (D). The accessible volume in
Fig.4 bottom, places in evidence the similari-
ties and differences; in particular (C), as less
constrained, overestimates (A), but the low rep-
resentativity of the remaining connected com-
ponents is shown.

3.3 Microstructures characterization

The focus is now on the A-protocol with stochas-
tic accessibility only. Although r̂c is sufficient
to discriminate the models in Tab.2, additional
information is provided by the behavior of the
estimates and the Euler number χ; the more
negative χ, the more interconnected the mi-
crostructure.
The anisotropy of the spherocylinder, char-
acterized by its morphological diameter too,
strongly induces the creation of cavities when r
increases; the more pronounced the bottleneck
effects, the faster the pores’ closing, the faster
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Figure 4: V̂vA for (a) the stochastic percolation (e ∈
{133, 100, 80, 66}) and (b) the four forms of
percolation ((A), (B), (C), (D)), applied to
Boolean models (1). Confidence intervals, with
95 % confidence level, are represented by ver-
tical bars. The accessible volume of a realiza-
tion of the Boolean model (1) for specific radii:
r = 9 = r̂c,re f and r = 10. Volumes rendered
using [33].

Figure 5: A-protocol with stochastic accessibility applied
to the Boolean models (a) V̂vA , and Cox multi-
scale Boolean models: (b-d) A-protocol esti-
mates and (e) χ̂A ((d-e) are enlargments, or-
ange rectangle, of original curves, small and
blurred). Confidence intervals, with 95 % con-
fidence level, are represented by vertical bars.
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Table 2: r̂c for the stochastic accessibility with optimal
e values, for all models. Display of lσ, the half
length of the confidence interval, with 95 %
confidence level.

Model r̂c lσ
(1) Sphere 9.05 0.237

(2) Spherocylinder 6.325 0.166
(3) Vv = 0.5 2 0
(4) Vv = 0.6 2.575 0.158
(5) Vv = 0.7 3.575 0.174

the decrease of accessible volume. Fig.5(a)
displays the decrease of accessibility with the
grains’ anisotropy. Considering the models (3-
5), χ is assessed as a function of the probe’s
radius; its extension and numerical estimator
are named χA and χ̂A, respectively. Fig.5(b-e)
underlines the good discrimination between
the distinct heterogeneities, naturally involv-
ing cavities formation; for Vv,TOT fixed and
Vv,INC = 0.5, globally, the more heterogeneous
the microstructure, the less dense the exterior
of aggregates, the slower the porous network
closes because of the enlarging of the pores size,
decreasing the strength of bottleneck effects.
This second case attests to the increase of ac-
cessibility with heterogeneity for large enough
particles. Furthermore, it highlights the im-
provement of the sensitivity of the extended
descriptor, the Euler number. At a finer scale,
the A-protocol puts in evidence the classifica-
tion reversal of topological measures N̂C, V̂C
and χ̂A, attesting of the heterogeneity of these
models (Fig.5(b-d)). Indeed, this behavior, cor-
responding to the very "moment" of the aggre-
gates closing, provides models’ discrimination;
in particular between homogeneous (models (1-
2)) and heterogeneous materials (models (3-5)).
Consequently, together, these cases bring novel
information about heterogeneity detection.
The computations have been performed for the
five models, supporting these conclusions.

Figure 6: A sample of a specific γ-alumina, obtained
by electron tomography, reconstructed, fil-
tered, and segmented: (left) the porous volume,
(right) a slice. Volumes rendered using [33].

4 Conclusion

The A-protocol combines state-of-the-art defini-
tions dynamically considering the accessibility,
aiming to extend any given numerical descrip-
tor definition with topological notions. The
A-protocol integrates all bottleneck effects, de-
tected by the spherical probe with increasing
radii, and gives rise at the end to estimates as
the critical radius. The A-protocol is illustrated
using Cox multi-scale Boolean models, vali-
dating its interest as a new "extractor" of mor-
phological and topological information. The
A-protocol with the stochastic accessibility, pro-
viding a less restrictive method through the
existence of a connected path between ran-
dom points, is discussed. This analysis at-
tests the similarities of this definition with
the most common definition in the literature,
yielding a good estimator. The Euler number
is then considered, illustrating together with
the estimates, the enhancement of discrimina-
tive power when characterizing multi-scale mi-
crostructures; anisotropy discrimination and
heterogeneity detection and discrimination.
The A-protocol exacerbating initially impercep-
tible differences, is able to characterize mi-
crostructures whatever their complexity, inher-
ent to the materials and/or stemming from the
image acquisition device, thanks to the stochas-
tic accessibility. Consequently, real materials
as the γ-alumina (Fig.6), can be characterized
with any morphological descriptors, extending
the work of [25] and opening wide application
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perspectives. Also, a deterministic extension of
the A-protocol will be defined, similarly to [5].
Finally, a grayscale extension would allow the
consideration of continuous fields [47].
The A-protocol procedure is available in the
open access software environment plug im!
[33].
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