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We study a quantum system composed of three interacting qubits, each coupled to a different
thermal reservoir. We show how to engineer it in order to build a quantum device that is analogous
to an electronic bipolar transistor. We outline how the interaction among the qubits plays a crucial
role for the appearance of the effect, also linking it to the characteristics of system-bath interactions
that govern the decoherence and dissipation mechanism of the system. By comparing with previous
proposals, the model considered here extends the regime of parameters where the transistor effect
shows up and its robustness with respect to small variations of the coupling parameters. Moreover,
our model appears to be more realistic and directly connected in terms of potential implementations
to feasible setups in the domain of quantum spin chains and molecular nanomagnets.

I. INTRODUCTION

The exploitation of classical thermodynamics has con-
ducted to the technological revolution that shaped our
world since the Nineteenth century [1]. In recent years
the exploration of the thermodynamics of quantum sys-
tems has given birth to quantum thermodynamics: a high
impact research field either on the fundamental level and
the applicative one [2]. In analogy to classical models,
quantum heat engines have been proposed and realized
[3–5]. In particular, the properties of non-equilibrium
open quantum systems has been employed to study how
to obtain many-body entanglement [6] or efficient flux
management [7]. Moreover, the implementation of non-
equilibrium quantum heat machines has been discussed
in solid state set-ups [8] or in more complex scenarios [9].

The ability to manipulate quantum resources is a de-
manding but fruitful task that has to be pursued in order
to build novel devices. A potential high impact apparatus
will be the one aiming at the control of thermal energy
transport in quantum systems, and at the amplification
of heat fluxes among the different parts constituting a
composite system. A promising approach in the afore-
mentioned task is to pursue the flourishing path followed
in electronics after the realization of rectifiers and tran-
sistors with semi-conducting materials [10] that paved
the way to build logic gates and to the information and
computational technology [11].

Typically, thermal and electric currents phenomena are
empirically well described by the Fourier’s and Ohm’s
laws, respectively. In fact, the functional dependence
upon the two respective control variables, temperature
and voltage, is of the same type. Recently, evidences of
the emergence of the Fourier’s law has been pointed out
also in the quantum realm [12, 13].

The proposal of such thermal analogues of the elec-
tronic rectifier and transistor is based on the assumption
that in a thermal set-up the role played by batteries could
be played by thermostats. This analogy allowed to come
forward with various proposals of mesoscopic thermal de-

vices such as rectifiers and diodes [14, 15] and transistors
[16], the latter operating either in near field [17] or in far
field [18] regime of thermal radiation, and also thermal
logic gates [19, 20].

The theoretical efforts are bolstered by the experimen-
tal ingenuity involving a wide range of experimental plat-
forms ranging from carbon and boron nitride nanotube
structures [21] and bulk oxide materials [22] to semicon-
ductors quantum dots [23], magnonic systems [24] and
phase changing materials, such as vanadium dioxide VO2

[25, 26], and ceramics materials that below a critical tem-
perature behave like high temperature superconductors
and above it as dielectrics [27, 28].

In the same time, the quest of atomic-scale devices for
quantum computational purposes is increasingly push-
ing the necessity to control and manipulate single or few
atoms systems. In particular, the isolation and coher-
ent manipulation of single spins, that are one of the best
candidates for a non-optical implementation of a single
qubit, is achieved using optical traps and electrical tech-
niques [29]. Recently, several novel quantum technology
devices have been proposed, including isolators based on
photonic transitions [30], rectifiers [31, 32], transistors in
an electromagnetic controlled environment [33, 34], and
also phonon-thermoelectric transistors [35].

Moreover, quantum systems suffer of an unavoidable
coupling to their environment, typically modeled as a
thermal reservoir of much bigger dimensions of those of
the system [36, 37]. Despite some detrimental phenom-
ena related to decoherence and dissipation, control and
engineering of interacting quantum systems coupled with
different thermal baths have led to several studies point-
ing out how to build the smallest thermal refrigerator
[38, 39], how to rectify a thermal current at the very
quantum level [40–42] and recently the building blocks of
a quantum thermal transistor have been discussed consid-
ering an integrable spin-chain model [43] and in a qubit-
qutrit system [44] .

In this paper we analyze the ability to design a quan-
tum thermal transistor employing a spin ring that can,
in principle, be implemented on a molecular nanomagnet
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[45]. In comparison to a previous model [43], we consider
a more complex scenario where the collective quantum
behavior of few spins is expected to play a crucial role in
the functioning of the device.

The paper is structured as follows. In Section II, we
examine the spin-ring model outlining the frameworks
where the theoretical model finds a direct implementabil-
ity. This section is also devoted to the quantum dissi-
pative process that allows the system to exchange heat
fluxes. In Section III, we discuss how the proposed sys-
tems can be adopted to build a quantum thermal tran-
sistor and some limits of their applicability. Having
in mind a direct experimental implementation, in Sec-
tion IV the robustness of the transistor effect against
unavoidable fluctuations and perturbations is addressed.
Section V concludes the paper with some final remarks
and prospects. Some details can be found in the Ap-
pendix.

II. THE SPIN-RING MODEL

Quantum critical spin chains have longly been consid-
ered as one of the best substrates to test and implement
the future quantum computing and the novel quantum
devices. Their main characteristic is to show wide versa-
tility [46]. In fact, considering the most general model
for quantum magnetism, described by the Heisenberg
Hamiltonian, one can explore a great variety of univer-
sality class by an appropriate tuning of the interaction
strengths. Moreover, recent modern developments al-
low to realize spin chains of few atoms having net spin
s = 1/2, opening the road to the exploitation of the
physics of some well known models, viz., Ising, XY and
XXZ ones [47–51].

In parallel, molecular nanomagnets [45] are also at-
tracting more interest as a feasible platform for quantum
technological purposes [52]. Specifically, molecular nano-
magnets, composed by N = 3 main units, have been
proved to be useful for quantum thermometry [53] and
for coherent-manipulation of three-qubit states [54].

Spin chains and nanomagnets are theoretically well de-
scribed by the same effective Hamiltonian upon fixing
the configuration geometry. Here, we consider a sys-
tem of three two-level systems (qubits) of frequency ωp
(p = L,M,R), embedded in a magnetic field, and we in-
troduce the vector of the effective spin operators of any
qubit Ŝp = (σxp , σ

y
p , σ

z
p)T and the 3-by-3 matrix λ govern-

ing the coupling between spins along different polariza-
tion axis, where σip (i = x, y, z) is the i-th Pauli matrix of
the p-th qubit. A realistic description of a triangular spin
chain with a qubit in each vertex labeled L, M and R, as
depicted in Fig. 1, is given by the following Hamiltonian
(hereafter the reduced Plank constant and the Boltzmann
constant are set equal to one, ~ = kB = 1):

HS =
1

2

∑
p=L,M,R

ωpσ
z
p +

∑
p 6=q

ŜTp λŜq. (1)

TM

TL TR

FIG. 1: (Color online) Schematic picture of a system com-
posed by three qubits interacting each one with any other
according to the model in Eq. (2). Each of them is dissipating
into a different thermal environment as described in Eq. (3).

The first term is the sum of single particle free Hamilto-
nians of three qubits immersed in a magnetic field point-
ing along the direction of the z−axis and it is responsible
of the non-zero field splitting of each qubit, while the sec-
ond term is the intra-chain spin-spin exchange coupling.
Such an Hamiltonian takes into account symmetric and
antisymmetric exchange interactions. A proper tuning
of λ can give a situation where only the former type
of interactions occurs, like in the standard Heisenberg
Hamiltonian, or can introduce a coupling between non-
homologous components of the spin operators, as in the
Dzyaloshinskii-Moriya interaction [55, 56]. We omit here
the overcomplexity introduced by an antisymmetric ex-
change, hence we assume that the tensor λ contains only
symmetric terms.

This allows us to consider spins interacting among
them through an Heisenberg type Hamiltonian. There-
fore, specifying their couplings ηpq with p, q = L,M,R
and p 6= q, and the strengths along different polarization
axis λi, the Hamiltonian of the system reads:

HS =
1

2

∑
p=L,M,R

ωpσ
z
p +

1

2

∑
p6=q

ηpq
∑

i=x,y,z

λiσipσ
i
q, (2)

where we have chosen equal λi for the three qubits.
This Hamiltonian describes the simplest non-trivial

example of spin ring whose properties can be observed
with good approximation in a {Cu3}-Type nanomagnet,
a complex having an almost equilateral triangular shape
with a Cu2+ ion of spin−1/2 at each vertex [57].

A. Comparison between two Ising-type rings

Joulain et al. in their seminal paper [43] have ad-
dressed how a thermal transistor can be realized with
a quantum system of three interacting qubits, coupled to
a thermal reservoir each, and showed how it is analogous
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to an electronic bipolar one. Their discussion is based on
a peculiar choice of a very simple model, that implies a
lot of strong assumptions on the underlying physics.

Let us refer to the model adopted in [43] as the z−axis.
In fact, there the magnetic field applied on the three
qubits is longitudinal to the direction of the spin-spin in-
teractions. Being more specific, the exchange interaction
in HS of Eq. (2) is non-zero only along the same direc-
tion of the magnetic field, i.e. only λz 6= 0. Among the
other assumptions, this is the one that, in our opinion,
requires now a detailed discussion. In fact, this premise,
along with some other minor approximations, has the ad-
vantage to let the model and the dissipative dynamics be
solvable with analytical techniques, since the operators
σzpσ

z
q commute with the free Hamiltonian. Essentially,

the only effect of the zero field splitting terms σzpσ
z
q is to

modify the eigenenergies of the system, but the collec-
tive eigenfunctions remain the same and can be still ex-
pressed as a tensor product of single-particle eigenstates.
We note that this kind of spin ring, even if considered in
a quantum context, is a semi-classical model. In fact, the
spin−1/2 operators σzp can be alternatively viewed as a
classical magnetic moment pointing only along two op-
posite directions. The z−axis Ising model, hence, takes
correctly into account a quantization of the magnetic mo-
ment, but it does not consider quantum fluctuations due
to other spatial components of the same spin operator Ŝp
and any possible critical behavior is disregarded.

It is worth noting that in order to propose a truly quan-
tum model a more complex interaction should be taken
into account. The reason why we discuss the class of
Hamiltonians defined in Eq. (2), where, in general, the
sum of the single particle contributions does not com-
mute with the interaction term is twofold: (i) from a
purely theoretical point of view, these systems may ex-
hibit strongly correlated and nonlocal eigenstates, open-
ing the door to phenomena with an enhancement due
to quantum correlations or criticality [46]; (ii) from an
experimentally inspired perspective, nowadays, the con-
trol of nanomagnets, spin chains or even quantum dot
molecules, has been well established for quantum critical
systems [49–51].

For the aforementioned reasons our aim is then to pro-
pose a well established quantum setting, richer than the
one considered in [43], where the thermal transistor effect
displays and to study its robustness with respect to the
operating temperature and against spurious fluctuations
of the exchange interactions.

In particular, we will mainly focus on the case of mag-
netic systems that belong to the universality class of the
quantum critical Ising model in a transverse field and
we will refer shorthand to it as the x−axis Ising model.
It can be realized considering in Eq. (2) that the cou-
pling among the qubits acts only along a direction (that
we name x) transverse to the applied magnetic field, i.e.
only λx 6= 0. We remark that once the coupling with
the environment is added (see next sub-section), the dif-
ferent directions transverse to the applied magnetic field

are not equivalent anymore. We address in Section IV
the presence of perturbations on both the x and z con-
figurations.

The x−axis Ising model introduced as the exemplary
model to study quantum phase transitions in magnetic
systems and their critical behaviors has been employed
in a wide range of protocols to characterize and fulfill
quantum computational tasks [46]. The main feature
of such a model resides in the fact that its collective
states are no longer a tensor product of the single par-
ticles states, but are non-separable. Its pivotal role for
the comprehension of magnetism at the quantum scale
has fostered the research of a model magnet where its
properties can be experimentally measured with differ-
ent techniques. Nowadays, the most germane realiza-
tion has been achieved in the low-energy magnetic ex-
citation of the insulator LiHoF4 [49] or with crystals of
the ferromagnetic CoNb2O6 where the spin resides on the
Co2+ ion [50]. A detailed presentation of the spectrum of
the x−axis Ising model for the purposes of this paper is
shown in Appendix , while a complete discussion of the
spectrum of z−axis one can be found in [43].

B. Dissipative dynamics

Each qubit composing the spin ring described above
suffers of an unavoidable coupling with its surrounding
environment, that is modeled as a thermal bosonic reser-
voir. The temperatures of the three reservoirs are, in gen-
eral, different, giving rise to an out of thermal equilibrium
scenario where the temperatures are meant to be tunable
at will. The total Hamiltonian is thenH = HS+HB+HI ,
where the bath and the system-bath Hamiltonians, re-
spectively, read:

HB =
∑

p=L,M,R

∑
k

ωka
p †
k apk

HI =
∑

p=L,M,R

σxp ⊗
∑
k

gpk

(
ap †k + apk

)
,

(3)

where apk and ap †k are the bosonic operators of bath p and
gpk are the coupling strengths. A schematic representa-
tion of the global system is sketched in Fig. 1. As spin
ring Hamiltonian HS , we consider the one of Eq. (2).

The dynamics of the 3-qubit system is dissipative and,
under the Born-Markov and secular approximations [36],
the evolution of the density matrix is described by a mas-
ter equation of the following form:

ρ̇ = −i[HS +HLS , ρ] +

3∑
p=1

Lp[ρ], (4)

where HLS =
∑
p, ω sp(ω)A†p(ω)Ap(ω) is the Lamb shift

Hamiltonian, Ap(ω) =
∑
ω=εi−εj |εj\/εj |σ

x
p |εi\/εi|, |εi〉

with i = 1, ..., 8 are the dressed states of the Hamiltonian
HS , as described in the Appendix , and the Lindblad
operators are given by [36]
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Lp[ρ] =
∑
ω

γ(ω)
[
Ap(ω)ρA†p(ω)− 1

2
{ρ,A†p(ω)Ap(ω)}

]
,

(5)
where γp(ω) = Jp(ω)[1 + np(ω)] for ω > 0 and
γp(ω) = Jp(|ω|)np(|ω|) for ω < 0. The average
number of excitations and the spectral density of the
p-th reservoir are respectively np(ω) = [exp ω

Tp
− 1]−1

and Jp(ω). In all the numerical computations, we will
choose Ohmic reservoirs characterized by a linear spec-
tral density Jp(ω) = κpω (at least in the range of
working frequencies), using values of κp different for the
three baths in order to suitably engineer the effect of
the environments on the three qubits. It follows that
γp(0) = limω→0+Jp(ω)np(ω) = κpTp. In the Appendix ,
a scheme of the transitions induced by the three thermal
baths is also reported.

We remark that as we will consider a strong coupling
between the three qubits (comparable or higher than the
bare frequencies ωp), we need the above microscopic ap-
proach to derive the Lindblad operators responsible of
the non-unitary evolution of the density matrix, avoid-
ing any extra simplification that can be somehow justi-
fied when the spin-spin interaction is much smaller than
the bare frequencies of the qubits [36, 40]. In this limit,
we cannot consider phenomenological master equations
where the operators A(ω) are built starting from the
eigenstates of the bare system Hamiltonian. For the
z−axis Ising model, these coincide with the dressed eigen-
states, while for the x−type this is not the case.

We also note that since HLS commutes with HS , it
only leads to a renormalization of the unperturbed energy
levels of HS induced by the coupling with the reservoirs
and that the steady state is independent on it.

The three temperatures of the environment will be in
general chosen to be different, leading to out of thermal
equilibrium steady states, which are not expected to be
three-qubit thermal states. At the same time, we ex-
pect that each qubit will not thermalize (its own reduced
state) to the temperature of its own reservoir because of
the collective nature of the quantum dynamics.

III. QUANTUM THERMAL TRANSISTOR

The particular operating principle of an electronic
transistor makes possible to regulate the currents at two
of its terminals, that could take also very high values, reg-
ulating a much smaller current injected through a third
terminal. This peculiarity made the transistor particu-
larly suitable to build logic gates commonly used in nowa-
days electronic. We propose here a thermal analogue of
this device able to amplify some of the heat currents cir-
culating in a system as in Fig. 1. The control parameter
that will play the role of the gate potential in an elec-
tronic transistor is the temperature TM of the reservoir
coupled to the middle qubit of frequency ωM .

A. Heat currents in a thermal transistor

A straightforward way to take into account the heat
flow in and out a quantum system [58], is to link the
variation of its mean energy 〈Hs〉 to the sum of the heat
currents Jp exchanged between the quantum system and
each bath (no power comes from other external sources
in our model): ∑

p

Jp =
∂〈HS〉
∂t

. (6)

By substituting Eq. (4) in the previous expression, one
can compute the current Jp that each thermostat ex-
changes with the system as

Jp = Tr (Lp[ρ]HS) . (7)

We note that at the steady state ρss, it holds ρ̇ss = 0,
so that the total energy is conserved in time. This im-
plies that

∑
p Jp = 0. A minor remark concerns the fact

that the Lamb shift term appearing in Eq. (4) does not
contribute neither to the final expression of Jp neither
to the steady state, so that the steady currents are inde-
pendent on it. In the following, we always address steady
configurations and we use Jp to indicate steady currents.

Following the geometry of the configuration of Fig. 1,
we will refer to left, middle and right currents (JL, JM
and JR) to those exchanged, collectively, between the
spin ring and, respectively, the left, the middle and the
right thermostat. From now on, we assume that the hot
reservoir, providing the energy to the system, is the left
one, whereas the cold one, that adsorbs the heat flux, is
the one placed to the right, and finally the bath in the
middle acts as a control. Borrowing the familiar termi-
nology of the bipolar transistor, the right qubit is playing
the role of the emitter, while the left one of the collector
and the middle one is indeed the analogue of the base.

The thermal transistor effect happens when a small
change in the the control temperature TM produce a sig-
nificant variation of the two lateral currents in contrast
with a tiny variation of JM . To study the occurrence of
this effect we define the differential thermal resistances

χs =

(
∂Js
∂TM

)−1
Ts=const

, s = L,R, (8)

and, as in the spirit of the electronic transistor [10], we
introduce a dynamical amplification factor αs, function
of the control temperature TM , defined as

αs =
∂Js
∂JM

= − χs
χL + χR

. (9)

The adimensional parameters in Eq. (9) are the figures
of merit used to have a quantitative benchmark of the
presence of the thermal transistor effect and they satisfy
the relation αL + αR = −1. In particular, for regions
where |αs| � 1 one can infer that we are in presence of
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3 6 9 TM

-0.2

0

0.2

J

FIG. 2: (Color online) The three thermal currents defined
in Eq. (7) (in units of κ ∆2) exchanged by the environments
with the system as a function of the control parameter TM (in
units of ∆), when the system is described by an x−axis Ising
model. The solid red line refers to JL, the dashed green line
to JM and the blue dotted one to JR. The parameters are
ωL = ∆, ωM = 0.1 ∆, ωR = 0.2 ∆, ηLM = ηMR = ∆, ηLR =
0, κL = κM = κ, κR = 100 κ, TL = 10 ∆ and TR = 0.01 ∆.
In the following figures, currents and temperatures are always
meant, respectively, in units of κ ∆2 and ∆.

a strong amplification of the lateral currents in compar-
ison to that controlled by the heat bath in central posi-
tion. Therefore, it is evident that to amplify the thermal
currents one of the two differential thermal resistances
should be negative. We underline that this condition
was already discussed in the context of non-linear lat-
tices [16], three-terminal graphene devices [59] and band
structured engineered silicene superlattices [60].

B. Thermal transistor in an x−axis Ising model

As said in Sec. II A the main case we want to discuss is
when the three qubits are described by an x−axis Ising
model. In particular, we choose open boundary condi-
tion, i.e. ηLR = 0.

In Fig. 2 we show the behavior of each current. In
order to deal with adimensional quantities we plot the
currents Jp in units of κ∆2, where κ = κL is the param-
eter characterizing the strength of the dissipation of the
left qubit and ∆ = ωL, ωL being assumed as the reference
frequency. The currents are function of the temperature
TM , given in units of ∆. We observe that once expressed
also κM and κR in units of κ, the steady state of Eq. (4)
is invariant with respect to κ, while the currents are just
proportional to it. Its value must just be small enough
to guarantee the validity of the approximations used to
derive the master equation of Eq. (4). In the following,
all the values of temperatures are given in units of ∆,
while for currents they are in units of κ ∆2. It is possible
to appreciate in Fig. 2 how the thermal transistor effect
manifests itself and how the amplification of JL and JR
is continuously achieved.

We stress here the crucial role played by the non-

3 6 9 TM

-200

-100

100

200

α

2 4 TM

-2

2

JMx10
-3

FIG. 3: (Color online) The amplification factors defined in
Eq. (9) as a function of the control parameter TM . The solid
red line refers to αL and the blue dotted one to αR. In the
inset, a zoom of JM including its local minimum responsible
of the divergence of the amplification factors. The parameters
have the same values of Fig. 2.

equilibrium steady state. In fact, the presence of three
environments at different temperatures plugged to dis-
tant sites of a magnetic system is the responsible of the
three heat flows circulating into it. In particular, it is
not surprising observing that even at TM = 0 each of the
currents has a non zero value.

In order to better describe the emergence of the ther-
mal transistor effect, the amplification factors αs are
plotted in Fig. 3, where it is possible to see how the
two lateral currents are amplified. Notably, around
TM ' 0.600, the amplification factor diverges, due to a
local minimum of JM ' −2.90×10−3. To this extent, we
can circumscribe the best working region of this quantum
thermal transistor to an interval of the control quantity
centered around this value. However, a plateau is present
where the amplification factors have values still signifi-
cantly high. In particular, at TM ' 4.17, where JM = 0,
αL ' 18.3. As a commentary, we notice that for this
value of TM , the reservoir M does not need to inject or
absorb energy to maintain the system in the steady state,
or in other words we can say that the central reservoir is
in a situation of dynamical thermal equilibrium between
the hot and the cold heat baths.

We also remark that it is easy to see that the right
qubit is the one showing χR < 0. We have thus shown
how a purely quantum scenario can be used to implement
a negative differential resistance device. Other choices of
the values of the parameters entering either in HS and in
the dissipator of Eq. (4) give a behavior of the currents
and of the amplifications analogous to the ones in Figs. 2
and 3. This has been observed in the case of asymmetric
configurations.

C. Thermal transistor in a z−axis Ising model

In order to better assess the value of the model here
proposed, we compare it with the model previously stud-
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0.3 0.6 TM

-0.2

0

0.1

JM

FIG. 4: (Color online) The three thermal currents defined
in Eq. (7) exchanged by the environments with the system as
a function of the control parameter TM , when the system is
described by a z−axis Ising model. The solid red line refers
to JL, the dashed green line to JM and the blue dotted one
to JR. The parameters have the same values of Fig. 2. In the
inset, a zoom including the working region of this setting.

ied in [43]. There, the thermal transistor effect had been
observed in a range of temperatures much narrower than
in our case. We put ourself in the same zone of param-
eters identified in Fig. 2 and we look if it is possible to
extend the working region to larger zones of temperatures
as in the x−axis case.

In Fig. 4, we show that in the case of the z−axis
Ising model the thermal transistor effect works only in
a narrow interval of the control temperature, namely
TM ∈ [0, 0.2]. When moving to higher values of tem-
perature, the effect completely vanishes, no matter how
large the thermal gradient between the hot and cold heat
baths is. In fact, in our analysis we have also increased
the difference TR − TL in comparison to what has been
shown in [43] and observed that the current amplification
is always achieved in the same narrow working region.

Recently, the appearance of current amplification has
been discussed in a model based on a qubit-qutrit system.
Also in this case, the thermal transistor works in a narrow
interval of the control temperature in comparison to the
x-type Ising model analyzed in Sec. III B, [44].

D. Local behavior

Here, we discuss the possibility to interpret the re-
sults of Fig. 2 on the basis of considerations involving
only the local behavior of the qubits composing the spin
ring. Firstly, we can have access to some local features
introducing the reduced density matrix of any qubit,
ρp = Trq,r 6=p(ρss), where ρss is the global steady state.
We indicate with ρ1p and ρ0p, respectively, the populations
of the excited and ground state of the p-th qubit. Each
ρp is a mixed state in the local energy basis and such
that we can define a local temperature for each qubit

2 4 6 8 10
TM

6.5

7.0

7.5

8.0

T
L

loc

(a)

2 4 6 8 10
TM

3.0

3.5

4.0

4.5

5.0

T
M

loc

(b)

2 4 6 8 10
TM

0.52

0.53

0.54

0.55

0.56

0.57

T
R

loc

(c)

FIG. 5: (Color online) Local temperatures of the three qubits
as defined in Eq. (10), as a function of the control parameter
TM . Plots (a), (b) and (c) refer, respectively, to the local tem-
perature of the left, middle and right qubit. The parameters
have the same values of Fig. 2.

(ρ0p ≥ ρ1p), with respect to their free Hamiltonianan, as:

T loc
p =

ωp
ln(ρ0p/ρ

1
p)
. (10)

We plot in Fig. 5 the local temperatures of the qubits as
a function of the control temperature TM . It is clear that
by increasing TM , the temperature gradient between the
L and M qubits decreases, in contrast to what happens
between the pair of qubits M and R. In addition, the ex-
ternal qubits are never in thermal equilibrium with their
respective environments, only the middle one reaches the
equilibrium with the control thermostat M at TM ' 4.17.
For this value it holds JM = 0 and JL = −JR ' 0.179.
This means that all the heat injected by the hot reservoir
into the system is transferred directly to the cold bath
without any participation of the control bath.

Once analyzed the behavior of the local temperatures,
we examine if we can qualitatively reproduce the behav-
ior of the heat currents with the following local model.
The three qubits are in contact with their local ther-
mostats exactly as in our model, but the qubits do not
interact between themselves. Instead, each qubit is also
strongly coupled to another local thermal environment
whose temperature is equal to (for any value of TM ) the
temperature T loc

p (TM ) depicted in Fig. 5. The steady
state of each qubit can be made close at will to the ther-
mal state of temperature T loc

p (TM ) by suitably tuning the
coupling between qubits and their own two local reser-
voirs. In this local model, the reduced state of each qubit
is thus equal to the one obtained in our model, while the
way each qubit dissipates is strongly different. In the lo-
cal model the dissipation is governed by local Lindblad
operators while in our model by collective ones, computed
using the dressed states of HS .

In Fig. 6 we compare the local currents with the exact
ones of Fig. 2. We notice that in some cases, local cur-
rents well approximate the exact ones, like JL, while in
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FIG. 6: (Color online) Comparison between the exact cur-
rents computed for the x-axis Ising model (red lines), the
same ones of Fig. 2, and the currents obtained with the local
model (dotted blue lines).

other they do not, like JR. This is a clear indication of the
relevant role played by the collective behavior of the spin
ring when it exchanges heat with the local thermostats.
The local temperatures induced by the collective dynam-
ics are thus, in general, not enough by themselves to catch
all the physics of this collective exchange and of the oc-
currence of the thermal transistor effect. In particular,
we stress the absence of a local minimum for JM , around
which we observed the best performance of the device.

IV. ROBUSTNESS AGAINST
PERTURBATIONS

The results reported in the previous sections show how
to build a quantum thermal transistor operating on a
wide range of temperatures and starting from a micro-
scopic derivation, with a potential implementation over
some feasible physical settings. However, in any real
physical implementation of an Ising Hamiltonian, spu-
rious and undesired couplings pointing along different
directions of the desired axis for the interaction could
occur. This could entail a lost of the thermal transis-
tor effect. Obviously, in any controlled setup, those in-
teractions can be considered as small fluctuations and
treated by means of perturbative corrections to the sys-
tem Hamiltonian HS . Nevertheless, in order to pursue
our microscopical description of the effect and be precise,
we use the full model for the three qubits as in Eq. (2),
introducing time by time more complex interactions and
studying to which extent they alter the amplification per-
formances.

In order to substantiate the process illustrated so far,
we consider a physical implementation where the real axis
of the interaction term of the model can differ from the
expected one (indicated with k in the following) [49], and
we compute the amplification factors, αs(λ

i, λj), that are

◆ ◆ ◆ ◆ ◆
◆

10-5 10-4 10-3 λ

1.15

1.2

1.25

ζ (x10-4)

10-5 10-4 10-3 10-2
λ

0.25

0.5

0.75

ζ

FIG. 7: (Color online) The ratio ζ defined in Eq. (12) for
the x−type Ising model, as a function of the mean value of

the spurious couplings λ
i,j

. The dashed green line refers to
ζz, the blue dotted one to ζy and the red solid line takes into
account perturbations with both λy and λz 6= 0 but with the
same mean value, namely ζy,z. In the inset, the ratio ζ for
the z−type Ising model. Here, the dashed green line refers to
ζx, coinciding with ζy (red diamonds). The blue dotted one
refers to ζx,y and is obtained imposing λy and λz 6= 0 with
the same mean value. The parameters of the unperturbed
configuration are the same as in Fig. 2.

now functions of the couplings, λi and λj , along the other
two possible polarization directions i and j, and they may
assume a different value from the unperturbed one. Only
the coupling between the qubits L and M and between
the qubits R and M are perturbed, while the coupling
between the qubits L and R is maintained equal to zero
as before.

To obtain a statistical detailed analysis we assume that
the values of the perturbations are normally distributed
and we evaluate the averaged amplification factors

αi,js =

∫
dλidλjαs(λ

i, λj)N (λ
i,j
,Σi,j), (11)

where s = L,R, and N (λ
i,j
,Σi,j) is the bivariate Gaus-

sian distribution of the perturbations. It is centered

around their mean values λ
i,j

= (λ
i
, λ
j
), with covari-

ance matrix given by Σi,j = diag(Σi,Σj). In particular,
we choose that the spurious interactions can deviate of

around 10% from their mean value, i.e. Σi = 0.1λ
i
.

As a tool to investigate the effect of small perturba-
tions, we define the ratio

ζi,j =
αi,jL
αunp
L

, (12)

where αunp
L represents the value of the left amplification

factor obtained in the absence of perturbation. If only
one additional coupling of the type σipσ

i
q perturbs the

main interaction term σkpσ
k
q , the above ratio is indicated
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with ζi. For the sake of clarity, we point out that an-
other quantity analogue to ζi,j can be in principle de-
fined using the amplification factor of the right current
αR. Nevertheless, its value depends on αL in a simple
way, such that for any TM this choice would lead to ana-
logues dampings of ζi,j as function of the strength of the

perturbation, λ
i,j

.
In Fig. 7 we show the quantity ζ as a function of

the average strength of 3 types of typical perturbations
that can occur in both settings discussed in Section III.
Since αunp

L can diverge for a certain value of the con-
trol temperature TM , we fix it equal to TM = 0.650,
close enough the one where the divergence appears in or-
der to have αunp

L � 1 but where it is still finite, being
αunp
L ' 1.42 × 103. We stress here that the value of TM

in the presence of perturbations is kept the same of the
unperturbed case. The quantity ζ is close to unity when
the system still operates as a quantum transistor close to
its unperturbed value αunp

L but it vanishes as soon as the
perpendicular couplings become more intense.

As it is apparent from the plot, the x−axis and z−axis
Ising models show a completely opposite behavior in the
presence of perturbations. Indeed, despite the fact that
both the models have been perturbed around a quite opti-
mal configuration, the x−axis model still shows the ther-
mal transistor effect for extra couplings small enough. In
contrast, the possibility to achieve a current amplifica-
tion with the z−axis Ising model is completely lost in
the presence of infinitesimal couplings among the spin
in any direction perpendicular to the wanted interaction
axis. Our numerical evidences only allow us to see that ζ
is extremely low for values of the extra couplings larger
than ten millionths of the one along the z−axis, but we
cannot surmise how the unperturbed value is restored for

smaller values of the spurious coupling λ
i,j

.
We also provide a qualitative mathematical explana-

tion of this phenomenon which resides on the structure
of the couplings between the qubits. In fact, as pointed
out when discussing the two possible configurations, a
coupling commuting with the bare Hamiltonian affects
only the eigenfrequencies of the systems and it leaves un-
changed the eigenstates entering in the definition of the
operators A(ω), that are essential to derive the dissipa-
tive dynamics of Eq. (4). Adding a perpendicular cou-
pling, not commuting with the bare part of HS com-
pletely alters their structure and it imposes to consider
the dressed-state basis to write the A(ω), that typically
differs from the bare-state basis one.

V. CONCLUSIONS

In this paper, we have addressed the design and the
possible physical implementation of a quantum thermal
transistor. This novel device acts on thermal currents as
a bipolar electronic transistor does with electric currents,
providing an amplification of the collector’s and emit-
ter’s currents by a proper tuning of the gate potential,

while the corresponding gate current is order of magni-
tude lower than the other two and practically constant.

Our model proposes a system of three qubits strongly
interacting among them and each of them in contact with
a different thermal reservoir. This setting imposes non-
equilibrium dissipative dynamics that entail the presence
of non-vanishing steady state currents flowing into the
system via bath induced transitions. We have focused our
attentions on a particular system that can lead to a fea-
sible realization on several experimental platforms, such
as molecular nanomagnets and few-body spin chains, and
we have referred to this model as the spin-ring model.

In particular, we have devoted our efforts to describe
how a quantum thermal transistor works in a scenario
where a more complex spin-spin coupling is present, in
comparison to a previous model recently presented in
[43]. Throughout the paper, we have referred to these
two models as the x-type Ising model and the z-type
Ising model. The former is characterized by an interac-
tion Hamiltonian not commuting with the bare one, or in
other words the magnetic field acting on the three spins
is perpendicular to the direction along which the spins
interact; the latter, instead, is a model where magnetic
fields and interaction are longitudinal, so that the two
contributions of the system Hamiltonian commute.

Choosing as control parameter the temperature of the
heat bath directly coupled to the middle qubit, we have
shown that the x-type spin ring operates as a thermal
transistor over a wider range of temperatures in com-
parison to the z-type one. The significant amplification
of the lateral currents has been justified in the context
of devices characterized by negative differential thermal
resistance [16, 59, 60] and by means of the collective dy-
namics. In fact, considering a naive local model for the
system, that partially takes into account collective phe-
nomena, cannot explain the whole behavior exhibited by
our model. Finally, we have discussed the robustness of
both the possible implementations against spurious and
uncontrollable couplings stemming from the magnetic in-
teraction between the different pairs of the effective spins
of the magnetic ring. The results of exact numerical com-
putations suggest that, for reasonably small perturba-
tions, the x-type molecule can be steered acting on the
control temperature to behave still as a thermal transis-
tor around its unperturbed configuration. In contrast,
our computations show that the z-type molecule is really
fragile in presence of those kinds of perturbations.

As final remarks, we would like to point out that even
if we have performed a microscopic derivation of master
equation describing the dynamics of the system, overrid-
ing any phenomenological simplification, a deeper com-
prehension of the very quantum effects conducting to
such current amplification is still lacking. It could be
matter of future investigation the role of system critical-
ity and of the dissipation mechanism and how they con-
tribute and compete in order to state a general scheme
to build a quantum thermal transistor.
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Appendix: Spectrum of the system Hamiltonian in
the x-type Ising model.

In this appendix we give a sketch of the diagonalization
of the system Hamiltonian introduced in Eq. (2) and used
to obtain the thermal transistor effect discussed through-
out the paper. In particular, we focus on the case of the
x-type Ising model with the left and right qubits not
interacting, i.e. ηLR = 0. The matrix of a system com-
posed by three qubits with different splitting in a mag-
netic field with a transverse Ising interaction reads:

1

2



ΩLM + ωR 0 0 ΛxMR 0 0 ΛxLM 0
0 ΩLM − ωR ΛxMR 0 0 0 0 ΛxLM
0 ΛxMR ΩLR − ωM 0 ΛxLM 0 0 0

ΛxMR 0 0 ωL − ΩMR 0 ΛxLM 0 0
0 0 ΛxLM 0 −ωL + ΩMR 0 0 ΛxMR
0 0 0 ΛxLM 0 ωM − ΩLR ΛxMR 0

ΛxLM 0 0 0 0 ΛxMR −ΩLM + ωR 0
0 ΛxLM 0 0 ΛxMR 0 0 −ΩLM − ωR


, (A.1)

where we have assumed ηqp = ηpq and for shorthand we
have introduced Ωpq = ωp + ωq and Λxpq = ηpqλ

x with
p, q = L,M,R.

The secular equation of Eq. (A.1) can be reduced to a
quartic equation, leading to four pairs of energy eigen-
values equal in modulus. We can, therefore, decompose
HS in the base where it is diagonal, Hs =

∑8
i=1 εi|εi\/εi|,

where we have ordered the energy eigenvalues using the
following notation ε8 ≤ ε7 ≤ ... ≤ ε1 and ε9−i = −εi, ∀i.

Introducing the computational basis, defined as the
tensor product |lLlM lR〉, of all the dispositions of the
eigenvectors of the three σzp , i.e. σzp |lp〉 = (−1)(lp+1) |lp〉,
with lp = 0, 1 and p = L,M,R, the eigenvectors of
HS , found for the main case discussed in the paper
(Sec. III B), are:

|ε1〉 = −a1|111〉 − a2|100〉 − a3|010〉 − a4|001〉
|ε8〉 = +a1|000〉 − a2|011〉+ a3|101〉 − a4|110〉
|ε2〉 = +b1|000〉+ b2|011〉+ b3|101〉+ b4|110〉
|ε7〉 = +b1|111〉 − b2|100〉+ b3|010〉 − b4|001〉
|ε3〉 = +c1|000〉 − c2|011〉 − c3|101〉+ c4|110〉
|ε6〉 = −c1|111〉 − c2|100〉+ c3|010〉+ c4|001〉
|ε4〉 = +d1|111〉 − d2|100〉 − d3|010〉+ d4|001〉
|ε5〉 = −d1|000〉 − d2|011〉+ d3|101〉+ d4|110〉

, (A.2)

where the 16 real coefficients ai, bi, ci, di with i = 1, 2, 3, 4
in the above expressions are functions of the parameters
entering in the Hamiltonian. In all the numerical trials,
we have found the same above structure for the eigenvec-
tors, all the coefficients being real.

It is worth noting that the above states have well-

defined parity and that the states with opposite energy
have different parity. In fact, it is easy to check it by
measuring the parity operator P = σzL⊗σzM ⊗σzR on any
term appearing in |εi〉.

Finally, we report in Table I the transitions mediated
by any thermal reservoir. It is worth noting that we write
here only the transitions that can be interpreted as the
emission of a photon in the usual context of quantum
optics, since they involve states with a positive energy
difference between the initial and the final value.

TABLE I: The possible transitions of positive frequency me-
diated by any of the three thermal baths by means of the
interaction operator σx

p for the case of Sec. III B. The first
column gives the initial states, starting from the one with
highest energy, whilst the other columns specify the qubit
operator coupled to the corresponding thermal reservoir as
prescribed by Eq. (3), and the final states connected to the
initial ones.

σx
L σx

M σx
R

|ε1〉 |ε2〉, |ε3〉, |ε5〉 |ε2〉, |ε3〉, |ε5〉, |ε8〉 |ε2〉, |ε3〉, |ε5〉

|ε2〉 |ε4〉, |ε6〉 |ε4〉, |ε6〉, |ε7〉 |ε4〉, |ε6〉

|ε3〉 |ε4〉, |ε7〉 |ε4〉, |ε6〉, |ε7〉 |ε4〉, |ε7〉

|ε4〉 |ε8〉 |ε5〉, |ε8〉 |ε8〉

|ε5〉 |ε6〉, |ε7〉 |ε6〉, |ε7〉 |ε6〉, |ε7〉

|ε6〉 |ε8〉 |ε8〉 |ε8〉

|ε7〉 |ε8〉 |ε8〉 |ε8〉
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