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Abstract

A simple and rigorous approach to obtain stress correlations in viscoelas-
tic liquids (including supercooled liquid and equilibrium amorphous sys-
tems) is proposed. The long-range dynamical correlations of local shear
stress are calculated and analyzed in 2-dimensional space. It is established
how the long-range character of the stress correlations gradually emerges as
the relevant dynamical correlation length £ grows in time. The correlation
range £ is defined by momentum propagation due to acoustic waves and
vorticity diffusion which are the basic mechanisms for transmission of shear
stress perturbations. We obtain the general expression defining the time-
and distance- dependent stress correlation tensor in terms of material func-
tions (generalized relaxation moduli). The effect of liquid compressibility
is quantitatively analyzed; it is shown to be important at large distances
and/or short times. The revealed long-range stress correlation effect is
shown to be dynamical in nature and disconnected with static structural
correlations in liquids (correlation length £;). Our approach is based on
the assumption that &, is small enough as reflected in weak wave-number
dependencies of the generalized relaxation moduli. We provide a simple
physical picture connecting the elucidated long-range fluctuation effect with
anisotropic correlations of the (transient) inherent stress field, and discuss
its implications.

Typeset using REVTEX



1. Introduction

Liquids are characterized by an essentially irregular (amorphous) structure with
short-range spatial correlations.  Yet, liquid systems often show very long-time
relaxation processes. The most important examples of such complex fluids are
macromolecular (polymer) melts or solutions [1,2] and supercooled liquids or colloidal
systems near the glass transition [3-5]. The flow dynamics of such systems is
a subject of rheology. One important rheological characteristic is the response
function G(t) defining the relaxation of shear stress o(t) after a small step of the
shear strain, 4(t) = 706(¢t), 70 < 1 (here 4 is the shear rate [2]):

The memory function G(¢), also known as the shear relaxation modulus, has been
determined in rheometric experiments for many complex fluids. Tt decreases with
time from the initial value G(0) (instantaneous affine shear modulus) to Gu,
the long-time plateau shear modulus at the ‘macroscopic’ laboratory time-scale
tiab, Goo = G(tias). Note that typically Goo = 0 for liquids well above the glass
transition temperature Ty, while Go, > 0 for elastic solids (like crosslinked polymer
systems or crystals) and for supercooled liquids below Ty. *.
G(t) also characterizes the time-dependent correlations of the stress fluctuations,

The same function

o(t) = o(t) — o, where o is the mean stress (averaged over the time-scale tq5): [6]

C(t) = (5(0)5(1) = T6(0) (1)
where T is the temperature in energy units (absolute temperature times the Boltz-
mann constant) and V is the volume of the system. The fluctuation relation (1)
is valid for systems that are allowed to deform as a whole faster than t,, (&
becomes negligible as a result, ¢ — 0), while in the case of fixed boundaries (the
standard canonical ensemble) it must be replaced by [7-11]

(g(0)a(t)) ~ 37 [G(t) — G (2)

Egs. (1), (2) involve the shear stress averaged over the whole volume. 2
Let us turn to the space-resolved correlations of the local stress o(r,t), C(r,t) =
(a(r',t)o(r' + r,t' +¢)). This generalized stress correlation function is also related
to rheological characteristics of the fluid (see the mnext section). The distance-
dependent stress correlations have been considered in several recent simulation
studies [12-14] as well as theoretically [15]. These studies suggest that the stress

!Note also that G, is generally not equal to the equilibrium shear modulus G, introduced in

eq. (18)

ZNote that G, is nearly equal to the modulus g considered in refs. [10,11]. It is also worth
noting that, by contrast, the glassy modulus g can significantly exceed G, since a deformed glass
(with prescribed boundary conditions) would not relax to the equlibrium state on the laboratory
time-scale.



correlation function is both non-local and anisotropic. Let us briefly comment on
the theoretical results obtained in Ref. [15]:

(i) In the short-time regime, t < 7 (where 7 is the characteristic time associated
with relaxation of G(t) which was assumed to be exponential) the theory [15]
predicts infinitely long-range stress correlations (at any short time t > 7,, where
Tm i the microscopic time limit of the theory): C(r,t) o< t2/r%*2 for r > crt, where
cr is the transverse shear velocity (see eq. (44) below and the text around it).
This result seems surprising in view of the implicitly made assumption that all
structural correlations in the liquid are short-range (including the stress correlations
at t = 0). Formally, this assumption is adopted in ref. [15] by disregarding the
wave-vector dependence of the memory function G(q,t).

(ii) Expanding on the previous point, we note that the structural locality (short-
range correlations at ¢ = 0) and a finite speed of any physical signal mean that
stress correlations must be of finite range at any ¢.

(iii)) We believe that the issues mentioned above cannot be resolved within the
incompressible liquid model adopted in ref. [15], and therefore chose to analyze the
effects of finite compressibility in the present paper.

Therefore, we consider here the stress correlations in compressible viscoelastic
fluids. Instead of the Zwanzig-Mori projection formalism [6] used in ref. [15] we
develop a physical approach based solely on the concepts of response functions and
random stress (rather than on the mode-coupling theory, see section 3). It also
allows to specify the basic assumptions in a clear way and physically demonstrate
their validity. The theory 1s based on the general relationships between the
stress correlation function and the memory response functions coming from the
fluctuation-dissipation theorem (FDT) [26] considered in the next section. The
main results concerning the space- and time-resolved stress correlation function and
its long-range behavior are presented in the 4th section followed by a summary
and discussion of the new findings in the last section.

2. The FDT relations and material functions

The stress correlation function is defined in the general case as

Caarp (v5t) = (Fap(r + 1,1 + 1)) 0wp (', 1)) (3)
where (...) means averaging over an equilibrium ensemble, Gag(r,t) = 045(r,t) — (0ag)
is the tensor of local stress increments, a, (3, ... are Cartesian components,
(0ag) = (0ap(r,t)) is the stress tensor averaged over the equilibrium ensemble

(the system is assumed to be translation-invariant). The function C' has obvious
symmetries: it is invariant with respect to exchanges af — Ba, o'’ — f'a’, and

Caparp(r,t) = Corprap(—r, —t)

The time reversibility and uniformity demand that

Caparp (1,t) = Caparp (v, —t) = Cargrap(—1,1) (4)
In addition, all even-dimensional systems and all achiral systems obey
Caparp(1,t) = Cagarp (=1, 1) (5)
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hence

Capaip (T;t) = Corprap(r,t)

The general fluctuation-dissipation theorem (FDT) relates the function C with
the linear response of stress to a small instant deformation of the system at t = —0

like

r — 1+ u(r)

where u(r) is an infinitesimal particle-displacement field (the particle momenta p

are also changed to render the whole transformation canonical in the Hamiltonian

phase-space of the system: po, — pa —ugaps, where ugq = g%). Then, according to

the FDT the mean stress increment (o,5) induced by the infinitesimal strain field

Yap(T) = Ua,p + Upa

can be written as [6]:

1 ! ! !
(7ap(t,t) = 5 [ A% Caparpr (£ — 1/, yarp(z) (6)

where d is the space dimension (‘tilde’ over o is omitted here and below, and
summation over repeated indices is implied). Note that (o) means an out-
of-equilibrium average stress increment due to an applied field here and below.
Summation over o and B’ is essential in eq. (6); such summation was omitted in
the analogous equation 9 of ref. [15] which therefore does not describe the general
case. ® Doing Fourier transformation of the last equation we get

<"aﬁ(2’ t>> = %Oaﬁa’ﬁ’(ﬂ’ t)Yerp(9) (7)

where Coparpr(g,t) = %<0aﬁ(g,t) U;,ﬁ,(g,0)> and V is the total volume of the system.
Note that Fourier transforms of C' and 5 are indicated by the wave-vector argument
g, while the function names are not changed for mnotation simplicity. Note also
that eqs. (4), (5) imply that Cupasg(g,t) is real and does not depend on the sign
of ¢

Coparp (@) = Caparp' (g, —t) = Corpap(g,t)

Let us try to obtain the stress correlation function C using the FDT relation (7)
and based on the known relaxation moduli. To this end we first find the stress
response to the deformation of the system using an independent approach outlined
in ref. [27]. In the linear response approximation the mean stress must be a linear
function of the flow velocity field. For a Newtonian fluid the local stress is just
proportional to the local rate-of-strain 4ag(r) = va g+ vge (here vy = va(r,t) is the

3Note that /c;zt in eq. 9 of ref. 15 is the symmetric part of the external velocity gradient, which
is generally different from the total rate-of-strain including also a part generated by internal
forces (see the discussion in the 4th paragraph of section 5.
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flow velocity), while in the general case of a complex fluid with memory effects
the relation is

(oapla,t) = / Eaparp (gt — ') Yarpr(g, ¢)dt’ (8)

Note that E is symmetric with respect to a', B’ permutations. * Using the
Laplace transformation the latter equation can be written as (in what follows we
assume no flow at t < 0):

(0a5(4,5)) = Baparp'(a,5)Fars (g, 5)/2 (9)

where <0aﬁ(g,3)> o’ <0aﬁ(q, )> e~*tdt, etc. (A special case of the above relation
was employed before [27].) Taking into account the space isotropy and that

Yop(9:5) = 1 (2av8(a; ) + gava(g, )) (10)

the stress response to the flow can be written as

<aaﬁ<g,s>>:G(q,s>m<g,s>+é[M<q,s>6aﬁ+< —2G ~ M) q;qﬁ] (11)

where € = é(q,s) = ;Try, and G(q,s), K = K(q,s), M = M(q,s) are Laplace
transforms of the following 3 material functions (the generalized time-dependent
relaxation moduli): the shear modulus G(g,t), the longitudinal modulus K(g,t)
(not to be confused with the bulk modulus) and the mixed modulus M(q,t)
which all depend on the magnitude ‘g‘ of the wave-vector (but do not depend on
its direction). The physical meaning of these material functions is clear: G(g,t)
defines the shear stress response to a shear strain, while K(q,t) and M(q,t) define,
respectively, the longitudinal and transverse stresses generated by a longitudinal
strain (by transverse stress we mean the normal stress in a direction perpendicular
to g). More formally, these definitions can be presented using the natural coordinate
frame with the first axis (ey) parallel to g. The response to an instant deformation

v(t) = ub(t) with w = (us,us,0) then reads (here §(¢) is the Dirac’s delta)

<011(g,t)> = K(q,t)e, <0'22(g,t)> = M(q,t)e, <0'12(Qat>> = G(q,t)’y (12>

where € = iqui, v = iqu, (all other components of the induced stress, except o711,
o2 and oy = 012, are equal to zero). ° Equations (12) are valid if an external
time-dependent force is applied to the fluid in order to keep it still (no flow,
v=20) at ¢ > 0. Otherwise, if no external force is applied, the fluid motion is
defined by the momentum equation

“Note also that eq. (8) can be used to predict the stress field if the flow field is known (is
imposed or prescribed).

*The moduli G, K, M are related to the components of the tensor Enagag: G = Ei212,
K = E1111, and M = Eg1;.



0
aJa = 048,38, t>0 (13)
where J, = pv, is the momentum flux and p is the fluid mass per unit volume.
Within the linear approximation we can treat p as a constant (thermodynamic
density of the fluid) and rewrite the above equation in terms of the ensemble-
averaged quantities:
0 .
P2 (va) = igs (oug), £ 0 (14

Solving eqs. (14), (11) for the stress <0'aﬁ(g,t)> and comparing the result with

eq. (7) we get (using again a natural coordinate frame related to a given g # 0)

psG(q, s)

OT(q,S) = O1z1z(g,3) = T;)STG((_],S) (15>
_ _ . psKl(g,s)

OH(q,s) = Ollll(ﬂ’s) - Tp.s n q2K(q,s) (16)

Ci(q,8) = Con(g,s) =T psMia,s) (17)

ps+q*K(q,s)

where

Oaﬂa/ﬂ/(g,s) :/0 Oaﬂa/ﬂ’(g,t)e_.gtdt

Eq. (15) is well-established [31,73]; its FDT-based derivation is given in ref. [27].
The second relation (16) is mentioned in ref. [28].

It is worth stressing again that the above results are valid for ¢ # 0. The
situation for ¢ =0 is more subtle [7,28]: in this case the fluctuations of the mean
stress averaged over the whole system are involved; their dynamics and statistics
depend on the boundary conditions. If the total volume and shape of the system
are not allowed to fluctuate (which is often the most convenient option for computer
simulations), then Cjr(0,£) may not coincide with the lim,_oC) r(q,t) [28]. As a
result, the FDT relations for ¢ =0 in the general case become [7-10,28]

C)(0,t) =T[K(t) - K.], Cr(0,t)=TI[G(t) - G (18)
where G(t) = G(¢ = 0,t), K(t) = K(q¢ = 0,t), and K., G. are the equilibrium

longitudinal and shear moduli (for infinitesimal strain), respectively (G. > 0 for
cross-linked polymer systems or crystalline solids, but G = 0 for uncrosslinked
systems like liquids and amorphous systems considered herein) 8 7. As for the

6We do not consider here nonergodic amorphous systems below the putative ideal glass transi-
tion temperature Tx which may exhibit G, > 0 [64-66]. In our view it is highly likely that the
finite rigidity in this regime is due to (hidden) long-range static structural correlations.

"To avoid fictitious problems (arriving at G, = 0 even for crystalline solids [67]) we define the
moduli taking first the limit of infinitesimal strain, v — 0, and then the thermodynamic limit,
the number of particles N — oo.



3rd correlation function C(0,t), it is not independent for ¢ = 0: C.(0,t) =
C)(0,t) — 2C7(0,t) (since M(0,t) = K(0,t) — 2G(0,t)). ®

The FDT-based relations (15) - (17) provide 3 independent components of the
stress correlation tensor Cugargr. However, the whole tensor function C' remains yet
unknown as it generally involves 4 or 5 independent components in total (including
Ca222 for 2-dimensional systems, and, in addition, Css3 in 3 dimensions). These
extra components can not be derived from any FDT relation, nor can they be
directly expressed in terms of a material function like those considered above. (Note
that the number of independent material functions (=3) is defined mathematically
by the most general linear relationship (as given in eq. (11)) between the tensor
o and the vector v, compatible with the system isotropy and involving the second
vector ¢.)  Fortunately, however, all the stress-correlation components can be
calculated in the hydrodynamic regime as demonstrated in the next section.

3. The hydrodynamic fluctuations

In what follows we focus on the dynamics at long length-scales and therefore
small wave-vectors ¢, ga, < 1, where a,, is the molecular size. The details
of the short-scale structure (at length-scale ~ a,,) and the short-time processes
(like molecular collisions with time-scale 7,,) are disregarded (wiped-out) within the
adopted hydrodynamic approach. Of course, thermal fluctuations drive the fluid
motion also at large scales. Such slow motions are explicitly taken into account in
the model considered below.

According to this approach the local stress field can be generally represented as

a sum of 2 contributions: 2

0ap(2:t) = Tap(a,t) + oog(a,t) (19)

P is the ‘regular’ flow-generated stress defined by the current

where the first term o
strain and strain rate or, more generally, by the whole flow (deformation) history;
0P depends on the flow in the linear-response fashion reflected in eq. (8). The
linear response is valid since the flow is weak at long length-scales, ga, < 1. The
second term ¢® is the random stress due to structural (packing) irregularities and
thermal fluctuations of particle velocities (thermal noise) which is independent of
the macroscopic flow for the same reason: weak flow does not affect much the
local fluid structure defining the noise o®.

To obtain the mnoise correlation function

81t is important that the stress correlation function Caparpr(g,t) is discontinuous at ¢ = 0. For
example, limy_o C)|(¢,t) # C)(g = 0,1) in the general case. [28] Moreover, Copais(q = 0,1) is
also known to be notoriously ensemble-dependent. [69-71,28] By contrast, the correlation func-
tion Cogap(g,t) for a finite q is independent of the statistical ensemble in the thermodynamic
limit, N — 0. [28] That is why in what follows we focus on the ¢ # 0 regime for the stress
correlation function.

®The treatment given here is close in spirit to the classical fluctuation theories [29,30].



Capalp! (2, t) = % <‘723(2’t + t/>‘72'*ﬁ'(2’ tl)> (20)

we recall that o™ reflects thermal fluctuations of the fluid structure. Such structural
correlations are always short-range in a fluid, their range ¢, is comparable to a,,. '°
Therefore, a g¢-dependence of C™ must be weak for g€, < 1. Hence, C™ can be
approximated by setting ¢ = 0. Conveniently, for ¢ = 0 the fixed boundary conditions
also eliminate the flow (i.e., ¢” =0), so the random stress ¢ coincides with the

total stress in this case. The correlation function C™ can be then obtained using
eq. (18):

% mps (01) % g (0,1) =

= [G(t) — Ge] (8aarbpp + bapbarp) + [M(t) — Mc] Sapborp: (21)

where M(t) = K(t) — 2G(t), M. = K. — 2G., and it is taken into account that at
g =0 the stress correlation tensor must be isotropic. For liquids therefore

Coparp (g, t) — 0 at t —» o0
as it should be since the mean random stress must vanish due to its fluctuation
nature in the liquid state (limg,,,,— ﬁfom” o™(t)dt = 0).

The correlation function C' of the total stress can then be obtained by solving
the general momentum equation (13) with the total stress defined in eq. (19),
where oP can be calculated using eqs. (8), (11), while the ™ contribution can
be considered as an independent driving force whose statistics are defined in
eqs. (20), (21).

It is important that the relaxation moduli involved in eq. (11) are analytical

n

functions of ¢ since the deformation-generated stress is defined by the local structure
of the system (local correlations of neighboring interacting particles). Hence the
g-dependence of the material functions must be weak for length-scales exceeding the
structural correlation length ¢, comparable with the molecular size (and interaction

10Fragile glass-forming liquids are characterized by a super- Arrhenius increase of the relaxation
time on cooling toward Ty. An actively debated question is whether the associated increase of
the activation energy is caused by the growth of an underlying static glass correlation length
& [40,16-18]. Since static pair correlations (as measured by the static structure factor) do not
change much with decreasing temperature, a length scale extracted from these correlations is
unlikely to be a suitable candidate for £. Recent suggestions involve point-to-set correlations
which increase more strongly, but typically do not exceed a few a,, over the range of tempera-
tures accessible to computer simulations [17]. However, even for temperatures approaching the
laboratory Ty, { would not need to exceed more than ~ 10ay, in order to explain the super-
Arrhenius behavior of the relaxation time [17,18]. So, the growth of & in glass-forming liquids
is expected to be rather limited [40,49,46,48].

11The independence of ¢ permits to formally consider it as a weak ‘external force’ applied to
the fluid particles and generating their slow motion.



12Tt is also noteworthy that in some systems (like, say, polymeric

range), Q.
fluids) the molecules are large, so there is a significant range between the atomic
size and a,, where the relaxation modulus G(q,t) and the generalized viscosity
n(q) (cf. eq. (50)) may significantly depend on g¢; this dependence has been
calculated in ref. [27]. In what follows, however, we consider a more universal
regime of longer length-scales, 1/q > am,€&, where the material functions can be
approximated by the ¢ =0 limit, G(t) = G(0,t), etc. (since the relaxation moduli
are continuous at g =0)

G(q,t) ~ G(t), K(q,t)~ K(t), M(q,t) ~ K(t)—2G(t) (22)

The last equation follows merely from the fact that at ¢ =0 the stress (in eq. (11))
must not depend on the orientation of g, so K —2G — M = 0. Thus, only two
functions, G(t) and K(t), are involved in the regime of interest. These functions
can be directly measured in rheological and acoustic experiments [2,29,31-33].

In what follows we shall restrict the consideration to achiral 2-dimensional (2D)
systems which are invariant with respect to reflection of the second axis e, (the
unit vector e, is perpendicular to the wave-vector ¢). Therefore, for example,
Ci112 must vanish, and the only non-vanishing independent components (apart from
the trivial permutations of subscripts) are Ciaia(g,t), Cii11, C2211 and Chazga. The
Laplace transforms of the first 3 functions calculated as described above coincide
with expressions given in eqs. (15) - (17) once the latter are simplified by replacing
G(q,s) with G(s), K(q,s) with K(s), and M(q,s) with M(s) = K(s) —2G(s). The
last function, Ca99, which cannot be deduced from a FDT relation, takes the
form:

sz(s)z

Caana(q,8) = Calg,8) = T | K(s) — ps + ¢?K(s)

, 0<g<1/g, (23)
(We first obtain the Fourier transform of Cypza(g,t) with respect to time, and then
the Laplace transform of this function.) It is obvious that while Cyps(t) generally
differs from C4111(t), they tend to the same limit (= TK(¢)) as ¢ — 0 at a fixed
time.

Using the results at hand and the space isotropy, the correlation tensor function
can be written in the following general form (valid for any coordinate frame):

Caparp!(,8) = (C2 = 2C7) Sapbarg + (C1L — C2 + 207) (4agpbarp + qarqpr8ap) /3" +

+Cr(80arbpp + bapdpar) + (CII +C, —20, — 4CT> QaQﬁQa/%’/q4 (24)

12In particular, we can neglect the g-dependence of the generalized viscosity n(q) = [;~ G(g,t)dt
(cf. eq. (50)). This dependence was studied in detail by simulations of a model glass-former [72]
showing that while (¢) is significantly lower than the macroscopic viscosity n = n(0) for ¢§, 2 1,
the g-dependence of the generalized viscosity can be neglected for ¢¢,) < 1, where the character-
istic viscosity-based length ¢, grows up to ~ 4 particle diameters (~ 4a,,) in a highly supercooled
state. It appears therefore that ¢, is similar to the static correlation length £, which typically
increases up to ~ 5 particle diameters near T,. [46-49] Accordingly, the condition ¢f, < 1 is
applied in what follows to specify the region where the material functions are nearly independent
of gq.



where C, = C(q,s) is defined in eq. (23), and the functions Cr = Cr(q,s),
C) =C)(q,s) and CL =Cy(q,s) are defined in eqgs. (15) - (17).

In particular, for the correlations of the shear stress (o4, where z,y are the
fixed-frame coordinates) we get the following general expression

Coyey(a,5) = Or + (C) + C2 — 2C1 — 407) ¢24%/q" ~

. TpsG(s)
— ps+ ¢2G(s)

+ AT ¢*G(s)? ! — : 2y (25)

ps +q*G(s) ps+ @?K(s)) ¢*
which is valid for ¢¢, < 1. The above equation, valid for compressible 2D systems,
generalizes equation 2 of ref. [15]. The latter equation formally agrees with eq. (25)
if we suppress the term involving K(s) there (thus assuming the incompressibility
limit, K — oo) and take into account that ¢* = qz—}—q; in 2D. The correlation
function defined in eq. (25) is analyzed in different time-distance regimes in the
next section.

4. Stress correlations in real space/time

The spatial and temporal correlations of local shear stress in infinite 2D systems
are analyzed in this section based on eq. (25). Formally the problem to obtain the
correlation function C(r,t) boils down to calculating the inverse Fourier and Laplace
transforms of C(q,s) (we omit the subscripts zyzy here and below for simplicity).
The latter function as defined in eq. (25) consist of two terms: C = C* + (C*. The
first term C® is isotropic; the second term C* is anisotropic and singular at q =0,
s = 0 reflecting its long-range and long-time behavior (in the asymptotic sense as

clarified below).
We first turn to the isotropic part

psG(s)

18 — Ti
¢ae) ps + ¢*G(s)

(26)
The only unknown function involved here is G(s) = [;° G(t)e™*!dt, where G(t) is
the shear relaxation modulus. Below we assume that G(¢) develops a plateau in
the time-range between 7, and 7, (in the case of supercooled fluids T, is
the characteristic time of fast vibrational relaxation); by contrast, at longer times
exceeding some Ty, > Ty the relaxation modulus is assumed to decay significantly,
either exponentially or, at least, faster than 1/t. Such behavior is typical of
entangled polymer systems and of supercooled liquids near Ty (note that 7,4, can
become practically infinite below T,). We thus focus on the two main regimes of
stress relaxation: (i) the plateau regime T, < t < 7y, where G(t) ~ G is nearly
constant, and (ii) the long-time regime, t >> T,4., Where G(¢) is small (G(t) < Gu).
In the first regime G(s) ~ Gp/s, hence

Cois

C’”(q,S)ETm, s> 1/ (27)
where cr = (G'pl/p)l/2 is the transverse (shear) sound velocity. The correlation

function in real space-time reads (for ¢ < 7,; here and below we have in mind but
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do not mention explicitly another condition ¢ > 7, involving the plateau onset
time Tpmin):

C*(r,t) ~ TGy / cos (gert) €22d%q/(2m)? (28)

For t =0 the r.h.s. of the above equation formally gives TGp6(r) pointing to local
stress correlations. Doing the integral for ¢ > 0 we get

isp )~ TP [
C (z7t) - T27l't290 (CTt) ) t << TPl (29)

where

—-3/2

pla) =~ (1-2), (30)

Here the subscript ‘4’ means truncation of the negative part: (y)i =y if y >0,
(y)i =0 if y <0; y is a real expression and the exponent v is a parameter. Thus
C* is negative (anticorrelation of shear stress) for r < I; = crt, and it vanishes
at larger distances: C™ =0 at r > l;. The ‘isotropic’ stress correlations therefore
decay in time as t~2, while their range l; = crt is defined by the transverse sound.

Eq. (26) implies that
/ ¢ (r, t)d%r = TG(t)

for any ¢, hence it must be nearly equal to T'G, in the short-time regime we
consider. On the other hand, using eq. (29) we find

/C“(r,t)d%’ ~ TGul
where
I= /(p(a:)dzac/(Qﬂ') (31)

Therefore, it must be expected that I = 1, which may seem to contradict to
the above definition of ¢(z) implying that it is either negative or zero. Moreover,
the integral I seems to be divergent. Fortunately, both this contradiction and the
divergence are actually fictitious. In fact, the formally diverging integral, eq. (31),
can be defined in terms of the analytical continuation replacing the exponent (-3/2)
in eq. (30) by a parameter. Alternatively the whole function ¢ can be defined as

p(z) = —?Rlirrol (1 +ie — a:2> s/ (32)

with the idea that the limit must be taken after integration. The latter equation
agrees with eq. (30) and can be used to calculate any integral involving ¢(z) by
first taking the integral, and then setting e — 0. Both ways give I =1 as it should
be.

Let us turn to the long-time regime, & >> Ty, roughly corresponding to
8 € 1/Tmaz. Here G(s) = [;° G(t)exp(—st)dt is mnearly independent of s: G(s) =~ 7,

where
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n = /000 G(t)dt

is the shear viscosity. So

2D
18 s7 q
C*(q,8))]T ~ ——— =7 |1— 33

where D =n/p is the vorticity (transverse momentum) diffusion constant (also known
as kinematic viscosity of the fluid [2]). The inverse Fourier-Laplace transforms of

C*(q,s) then give

. p T
C¥(r,t)~T t nax 4
(rt) = T e (2l2(t)> y P> (34)

where
() = \/ﬁ, pa(z) = (a:z — 1) exp (—a:z)

Thus, in both time-regimes (short-time and long-time) C*(r,t) behaves qual-
itatively in the same way: €% ~ Tp/t? for r < £(t), while the isotropic stress
correlations are strongly suppressed, C** — 0, for r > £(t), where the propagation

length £(t) can be generally defined as [27]

£(t) ~ \/n(8)t/p (35)

Here
n(t) = /01t G(t)dt ~ G(s = 1/t)

is the effective time-dependent viscosity [27]. In the two time-regimes considered
above this length is

llcht y tsTpl
w)N{lz: ntip, t 2T (36)

Therefore, the propagation length £(t) is elasto-inertial (acoustic) in nature in the
short-time regime, and visco-inertial (diffusive momentum spreading) at long times.
Let us now turn to the singular part of stress correlations

o Tq2qu 2 1 I
8 — 4 z -
(g,5) ¢ (#) (Ps +¢°G(s)  ps+ q2K(3)> o

At short times, t < 71y, the relaxation moduli can be approximated as (the
condition T, < t is also assumed here and below)

G(s) ~ Gpu/s, K(s)~ Kp/s
Doing then the inverse Laplace transformation of eq. (37), we get

G?,q%q% [1 — cos(qert 1 — cos(qgert
C’(g,t) ~ 4T—plq Zy 2((] rt) — 2(q rt) , L T (38)
P g cr ‘L
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where cg, = \/Kp/p is the longitudinal sound velocity. Transforming it to the real
space correlation function yields

. TGZZJZ 4 T _a T
oI5 w(pd] o

where 6 is the angle between r and the z-axis, and the new nondimensional
function % is

_3/2] N 4 COS£49)

b(z,6) = sin?(26) [45(952) +(1-27)] (=3 + ()] (40)

Here = is the reduced radius, §(y) is the symmetric (even) Dirac’s delta-function:

o 8(y)dy = 1/2, and

a2 a2
$(z) = (3 —227) (1 :c)+ (41)
(the meaning of the ‘4’ symbol is explained below eq. (30)).

The full stress correlation function C = C* + C® for Tmin < t < Tpt 15 defined in
eqs. (39), (29). It is useful to write it in a more explicit way:

C(r,t)/T ~ Eut ( - %) 8(r)—

2 Cr,

r? —3/2 ., er\ P2\ 2
L [c052(29) (1 - (CTt>2)+ 1 sin?(26) <g> (1— (th)2)+ +
05 i o(2)-+(2) o

Thus, there are 3 contributions to the correlation function here:

(i) The first 8(r)-term reflects the local structural correlations; it is nearly
constant for Tm, <t <K 7, due to little change of the memory function G(t) n
this regime.

(ii) The second term is due to acoustic waves; it decays rather fast as 1/t*, and
its range is characterized by two finite length scales, £ ~ ¢yt and £ ~ ¢pt which
both increase in time. Note that this correlation contribution strongly decreases
at r & {: it is typically much lower for r > £ than for r < £ since normally
(cT/cL)4 < 1. This term 1is anisotropic: it depends on the r-direction given by
6 and includes both isotropic and quadrupolar (cos(46)) parts. Further, being
proportional to p/t? this contribution can be considered as ‘inertial’ in nature.
Noteworthily, it is negative (corresponding to anti-correlation of the shear stresses)
for any 6 and distances in the ftransverse wave zone, r < crt (that is, away from
the wave fronts where the correlation function changes its sign).

(iii) The last term is of major interest: it is long-range (with correlation lengths
£~ crt and £ ~ cgt) and it does not decay in time in the regime T, <t < 7y
we consider. This term is not relevant for simple liquids well above the glass
transition temperature Ty (due to short relaxation time Tpne.), and it is not present

13



in crystalline solids '3, but it becomes dominant in viscoelastic liquids for ¢ > r/cr.
It implies the existence of significant transient (but persistent) stress fluctuations
in such liquids (in particular, supercooled liquids close to the glass transition). In
the most important regime ¢ > r/cr (note that in supercooled liquids the latter
condition is compatible with long r > a, since typically crry > an, in these
systems mnear or below Ty) the dominant contribution to the stress correlation
function, eq. (42), can be approximated as

G

pl

C(r,t) ~ —%Gpl cos(46) (1 — ) r r<Lerty,  Tmin <t < Ty (43)
In this regime the correlation function C(r,t) is thus nearly independent of time
and is long-range (LR) in space showing an algebraic decay as 1/r%. It is
noteworthy that the magnitude of the long-range correlations depends on both
elastic moduli, G and K. Eq. (43) qualitatively agrees with molecular dynamics
simulation results of a 2D binary glass former [12].

It is also interesting that stress correlations for incompressible systems (in the
formal limit K — oo corresponding to zero compressibility) cannot be obtained by
just suppression of all the terms involving ¢ in the above equations. In fact,
an absolute incompressibility leads to the emergence of the following behavior of
C(r,t) for r > crt (defined by the third term, involving the ¢-function, ¢ (r/ (crt)),
in the r.h.s. of eq. (42): this term dominates for r > crt):

¢ 2
O(Ea t) -~ _ETGle COS(49)a Tmin K t K Tpl (44)
™

o

This ‘incompressible’ correlation function is always truly long-range (for any ¢ > 0).
It shows the 1/r* power law decay for however long =, with an amplitude which
is increasing in time (for ¢ < 7). Such infinite-range stress correlations implied by
the results of ref. [15] come as a consequence of the incompressible liquid model
adopted in ref. [15]. Tt is important, however, that the correlation term defined in
eq. (44) is eventually canceled out when both transverse and longitudinal velocity
modes are properly taken into account.

So far we have considered the short-time regime ¢ < 1. The latter condition is
rather restrictive for viscoelastic liquids which normally show a very broad spectrum
of relaxation times with a large gap between 7n, and Tpmee. Nevertheless, the
detailed analysis of the short-time regime given above is useful to show how
the long-range character of stress correlations emerges and develops in time (as
illustrated in Figs. 1, 2).

Below we lift the short-time restriction, leaving essentially the only condition
r < crt, which is likely to be valid in viscoelastic liquids (generally due to rather
high sound velocity and long relaxation times in these systems). The singular
terms dominate in eq. (25) in this case, hence

13The reason is that in crystals the correlation function C(r,t) decays rather fast with the

characteristic time ~ 7/er (since the relevant stress fluctuations are due to thermal acoustic
waves with wave-vector k ~ 1/r and frequency ~ kecr). For t > r/cr the decay of C' due to
destructive interference follows the 1/t power law (in 2D) which is actually given by the second
term in eq. (42) in the case of isotropic crystals.
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“G(s), Gls) = Gs) - S

C(q,s) ~4AT (45)

- q

The inverse Laplace transform of é(s) gives the effective relaxation modulus

(N}'(t) which behaves similarly to the standard shear modulus G(¢): in the liquid

state G — 0 for ¢ > Tmaz, While in the glassy state it tends to a finite level
(N}'oo =G — % for t ~ tip.

Doing also the inverse Fourier transform of eq. (45) we get the stress correlation
function in real space-time:

C(r,t) ~ —§C05(49)C~¥(t)r_2, r < L(t) (46)
where the propagation length £(¢) is defined in eq. (35). This result agrees with
eq. (43) generalizing it. Thus, the LR stress correlations gradually decay in time
and vanish for ¢ >> T, in the liquid state, or tend to a plateau (proportional
to C?OQ) for vitrified systems. The latter conclusion qualitatively agrees with the
theoretical results [15] obtained for 3D supercooled liquids.

Note that while the results for C(g,t) obtained in this section are valid for 2D
systems, they are also fully applicable in 3 (and higher) dimensions if ¢ belongs
to the zy plane. Note also that the stress correlations at exactly t = 0 (rather
than for t > Tn,) can be deduced directly from the general eq. (25). The general
result is

C(r,0) = C¥*(r,0) = TG(0)8(r) (47)

pointing to localized static (structural) stress correlations in agreement with our
assumption of short ¢&,.

In the next section we discuss the obtained results pointing, in particular, that
the revealed long-range character of stress correlations is not related to the static
structural correlations which are typically short-range in liquid systems. We also
provide a simple physical argument showing that stress correlations in isotropic
complex liquids and amorphous systems must be long-range and anisotropic.

5. Discussion and summary

In this paper we analyzed the local stress tensor correlations in complex and
supercooled liquids focusing on the time and distance dependencies of the shear
stress correlation function C(r,t). Our approach is based upon the fluctuation-
dissipation theorem (FDT) and the concept of random forces due to local structural
and momentum thermal fluctuations. It is similar in spirit to the classical theory
of hydrodynamic fluctuations [29,30] and can be traced back to the theorems on
regression of fluctuations and reciprocal relations in irreversible processes proposed
long ago by Onsager [34-37].

The fluids we consider are characterized by slowly fading memory and long
structural relaxations including the stress relaxation with the longest time Tpmae.
Such fluids are viscoelastic by definition: for ¢ < Tpae they show quasi-elastic
behavior (with considerable transient elastic moduli), while for ¢ >> 7,4, they behave
as highly viscous media. This property is equally applicable to macromolecular
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solutions or melts and to glass-forming simple liquids, the major difference being
that polymer systems are normally highly elastic, while glasses are typically brittle.
This difference however is not important for the present analysis since we consider
weak fluctuations near the equilibrium state rather than non-linear flow effects.

The present theory assumes that structural correlations (due to irregularities of
molecular packing) are local (short-range) in liquid systems we consider. This is
true for all equilibrium viscoelastic liquids known so far (including glass-forming
systems): the static structural correlation length ¢, can increase as the system is
cooled down close to the vitrification temperature [38,39,43-45], but this increase
is typically limited by a few (at most ~ 10) molecular sizes. [40-42,46-49] It is for
this reason that we actually neglect the g-dependence of the generalized relaxation
moduli G, K and M as such dependence is essentially of structural origin.

Indeed, the ¢ = 0 approximation for material functions (cf. egs. (22)) is
equivalent to stating that these functions (relaxation moduli) reflect a localized in
space response. The argument concerning their locality (around eqgs. (22)) is based
on the assumption that the local stress is defined by the local momentum flux
(transverse current) and local deformation history of a fluid element (by ‘local’
we mean short-range within the structural correlation length ¢,). Now, it is the
deformation history (and, therefore, the momentum flux) that is controlled by the
definition of the material functions (cf. the constitutive relation (11)) providing
the stress response to a prescribed deformation field. The locality of the relaxation
moduli then comes merely from the fact that a small deformation of a fluid element
1 (of size somewhat exceeding €;) does not affect much the local stress in a distant
fluid element 2 if the latter is kept undeformed. By contrast, the deformation and
momentum flux are not prescribed in eq. (6) (which is equivalent to eq. (7)) apart
from the instant initial deformation at ¢ = 0: at any later time, £ > 0, the liquid
is being deformed further due to the generated internal stresses. This effect gives
rise to fast momentum propagation and, as a result, to significant non-locality of
the stress response. So, the distinction of eq. (7) (implying a non-local response)
from the constitutive relation, eq. (11) (reflecting the local response) is that the
former corresponds to the process in which neither the deformation history, nor
the momentum flux are prescribed. To resume, equation (7) allows for internal
flow (momentum flux) as a consequence of the external perturbation, whereas the
constitutive relation (11) defines the material functions solely in response to the
prescribed external deformation (no ‘internal’ flow on top of it). With no such
flow (due to internal forces) the information about a perturbation at one point
cannot be transmitted to a distant point, so the response is local.

The effects we consider in this paper correspond to length-scales > &,. Tt is
demonstrated here that non-simultaneous stress correlations (with finite time-shift t)
are long-range (LR) in viscoelastic liquids in agreement with the ideas of ref. [15].
As a major result we show that the stress correlations decay algebraically (rather
than exponentially) with distance r, as 1/r? for r < {(t) in 2D systems, and that
they decay in time only slowly for ¢ < Tpe.. Such behavior is of course very
different from what is known about the classical simple liquids [29,30]. Moreover,
in the glassy state the stress correlation function is predicted to show a finite
plateau level in the long-time regime where the liquid is characterized by a nearly
constant shear modulus, G(t) ~ G.. Similar conclusions have been drawn in
ref. [15] based on a different theoretical approach. The relevant correlation length
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£(t) (defining the region of validity of the 1/r® correlation law) turns out to be
the time-dependent momentum propagation length given in egs. (35), (36). Thus,
the correlation length £(t) corresponds to sound propagation at short times and
to vorticity diffusion at long times. Both processes are fast in highly viscous
(viscoelastic or glass-forming) liquids leading to a long length-scale £(¢) for the
characteristic time range coming from the relaxation spectrum of the liquid.

Note that transverse sound waves (with wavelength A < £(t)) are not significantly
damped in the time regime T, < t < 7, corresponding to the rubbery plateau
of the shear relaxation modulus G(t): the liquid shows an elastic response in this
time range, so the propagation length here is proportional to the sound velocity,
f(t) ~ crt. By contrast, the sound waves get dumped for t 2 7,: the liquid
response then becomes viscoelastic with the propagation length defined by the
generalized time-dependent viscosity n(t): £(t) ~ /n(t)t/p (cf. eq. (35)). In this
regime £ increases with ¢ in a sublinear fashion.

Thus, we show that very long-range and anisotropic correlations of stress must
develop in the transient regime t < T, with the characteristic correlation range
(for ¢ ~ Tyax) being Lmge ~ (nTmam/p)l/z, where 7 is the zero-shear viscosity of the
liquid. In viscoelastic (glass-forming) liquids 5 is high (it is roughly proportional
to the relaxation time Tp4z), so the vorticity diffusion is fast giving rise to long
Lmaz strongly exceeding the molecular size a,p,.

Noteworthily, the stress correlations do not decay exponentially for r» > £: in the
distal region £ < r < {' & cpt they still follow a power law, but with a significantly
faster decrease with r, C(r,t) o r=* (cf. Fig. 1). Here £ is the longest correlation
length defined by the longitudinal sound velocity cp. Interestingly, in the plateau
time-regime (Tmin < t < Tp) the correlation function increases with time in the
distal region £ < r < {': it is proportional there to t2G12,l1'_4 (cf. the second part
of the last term in eq. (42)).

Thus, the developed theory allows to see how the long-range stress correlations
gradually emerge as a function of time-shift (¢) starting from purely local simulta-
neous stress correlations (see eq. (42)). We also predict how the magnitude of the
long-range stress correlations gradually decreases in time according to the relaxation
law reflecting both shear and longitudinal memory functions, G(t) and K(t) (cf.
eqs. (45), (46)).

To further clarify the main results obtained here let us first recall what is
known about the stress correlations in ordered (crystalline) solids. The fluctuations
of stress there are essentially due to thermally excited acoustic waves. The
correlation function of simultaneous fluctuations (with time-shift ¢ = 0) is long-
range (more precisely, infinite range) and anisotropic as follows from the classical
elasticity theory [26]. However, the stress fluctuations in solids decay rather fast
with characteristic time ¢ ~ r/c corresponding to frequency of acoustic waves with
wave-length ~ r (¢ is the sound velocity). Thus, the stress fluctuations become
uncorrelated at ¢ > r/c. Similar high-frequency stress fluctuations (of) are also
present in viscoelastic (glass-forming) fluids which behave as solid at short times,
but this fluctuation field is superimposed with a quasi-permanent (virtually frozen)
heterogeneous random stress pattern. The ‘frozen’ (inherent) stress o* does not cause
directly any fluid motion: being compatible with mechanical equilibrium it does not
generate any internal force, 0'3575 = 0. However, it is important to emphasize that
the inherent (transiently frozen) stress is necessarily present in viscoelastic fluids:
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it serves to restore the short-range character of the total stress correlations at
t =0 (recall that these correlations are structural in nature). Thus, the correlation
function of the total stress, o = of + %, is C(r,0) = C¥(r,0) + C¥(r,0) ~ 0 for
r > ¢,. Hence, the correlation function of the inherent stress, C*, must be nearly
opposite to the function Cf due to acoustic stress fluctuations. Therefore, C* must
also show infinite-range and anisotropic correlations. As the fluctuation part decays
rather fast, the stress correlations at longer times (¢ > r/c) must be mostly due
to the inherent (frozen) stress, hence they must be also long-range and stay for a
long time ~ Timae. '* Such long-range (and nearly frozen) ‘elastic’ stress fields have
be considered in the framework of elasto-plastic models [57-59]. It is also worth
mentioning that the anisotropic character of the frozen stress correlations directly
follows from the condition of mechanical equilibrium ((fiﬁ,ﬁ = 0) which demands that
shear stress must vanish for certain directions of the wave-vector g. For example,
O'iy =0 if ¢ #0 is parallel to either z or y axis. The latter example also explains
why the second (‘singular’) term in the stress correlation function (cf. eq. (25))
shows knots for ¢, =0 or ¢, = 0.

It is worth emphasizing again that the predicted long-range spatial and temporal
stress correlations are essentially wiscoelastic in nature. The long-range character
of C(r,t) is not exactly an inertial effect (in contrast to fast fluctuations due
to acoustic waves): in fact, the correlation function is independent of the fluid
density p for » < £(t) (in this regime C is defined in eq. (46)). Moreover, C is
well-defined in the formal limit p — 0 where the infinite range character of stress
correlations emerges instantly.

As explained above, the revealed LR stress correlations are dynamical in nature
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and are not directly related to the static correlation length &,. Let us recall

that supercooled liquids are often characterized by a dynamical correlation length
€a which depends—as £(t)—on the time scale [50-52,40,53-55,18,21,22]. Can we

associate the stress correlation range with €37 The point is that £€a depends on the
nature of variables whose correlations are studied, so many dynamical lengths &4
can be defined at the same time scale [56,23]. Typically, €4 is associated with the
emergence of dynamical heterogeneities in glass-forming fluids [23] and refers to the
size of an increasing number of particles with correlated motion at low T (e.g. the
span of one-dimensional string-like motion [21,22], or the length scale associated
with dynamic fluctuations as measured by dynamic susceptibilities [50-52,40,53-56],

or a length scale characterizing the distance between localized excitations of high
mobility [24]). While stress fluctuations certainly affect the cooperative motion of
fluid particles, the usually defined £q is expected to be much shorter than £,£
[18].

14Some evidence for such distinction between the inherent structure dynamics and the overall
liquid dynamics can be found in simulation studies (see Figs. 5, 6 in ref. [68] and Fig. 1 in
Supplemental Material of ref. [12]).

5However, this does not imply that the LR stress correlations are completely unrelated to the
static glass correlation length &,. Since £(t) ~ \/nt/p (cf. eq. (35)) at long times, £ and £, would
be related if £, indeed determines the increase of the viscosity at low T as n/no ~ exp(E4(T)/T)
with the putative equation E4(T) x &(T)¥ [17] and ¢ < d (d being the spatial dimension).
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It appears that the length f,.. = €(Timae) is rather analogous to the dynamical
length-scale associated with oscillatory behavior of the transverse current correlation
function €Y7 used to characterize the spatial extent of solid-like regions in some
experimental and theoretical studies. [19,20,18] In the general case this function is

defined as

0 (at) = g (Jel 3(0,)

where Ju(g,t) is the a-th component of the current (the momentum flux, cf.
eq. (13))._ Noteworthily, this correlation matrix function is closely related to
the stress correlation function. Using eq. (13) we get in the Fourier-Laplace
representation:

02 (1:5) = o~ as00 s (1:5) /(7

A more special relation of that sort was derived (cf. refs. [73,31,27]) for the
transverse current correlations (when g is perpendicular to the velocity direction):

T

JJ =077
Cr'(a,8) = 22 (988) = oo sy

(48)

On return (by inverse Laplace transform) to the real time ¢, this correlation
function shows oscillations for t < Tpmee and g > 1/£(t). A generalization of the
above equation for any direction of g can be derived using eq. (24). The result
(where we neglected the g-dependence of the relaxation moduli) is: [73]

JJ ~ 2 _ G(s)qZ _ K(s)g
Cas (g’ s) ~ ps {1 ps +q*G(s) ps+ qu(s)} (49)

This function is moderately anisotropic; in the limit K — oo the anisotropy is
given by the factor qj: Cl qZ/[q2 (ps + ¢*G)]. In the real space-time variables
the correlation function CJ7(r,t) decays as 1/4(t)> for r < £(t) and it rapidly
vanishes for 7> £(t). Therefore, the long-range character of CJ7 is much weaker
than that of the stress correlation function: CY7 never shows any frozen long-range
effect even in the amorphous solid regime.

Eq. (48), which follows directly from the FDT relation (eq. (15)) for the shear
stress correlation function, can be harnessed to define the wave-vector dependent
shear viscosity 7(q) in terms of the transverse current autocorrelation function using

the general relation [72,32,33]

00 -1 T . -1
o= 5| [ aci @ n/ctqe =0 = [imci ()
q 0 q s—0
By inserting eq. (48) in the equation above we get
n(g) = lim G(g,s) = G(g,s = 0) (50)

in agreement with the standard physical definition of the generalized viscosity
n(q). [2,32,27] It is noteworthy that directly taking s — 0 limit in eq. (15) defining
the shear stress correlation function does not help to get n(q): it merely shows that

19



lim,_o Cr(q,s) = 0. Hence, the well-known Green-Kubo formula [73,31,32] for the
macroscopic shear viscosity in terms of the shear stress autocorrelation function for
g = 0 is not directly generalizable to the case of nonzero wavevector. This feature is
also related to the fact that generally lim,_qlimg_oCr(q,s) # limy_olim,_o Cr(g,s)
(cf. also footnote 5).

It is remarkable that the r,8 dependencies of the LR part of the stress correlation
function, eq. (46), completely agree with the far field stress response to a localized
plastic strain event [62,57] which, in turn, was shown to be equivalent to the stress
field generated by a pair of ‘force dipoles’ [57]. The corresponding characteristic
quadrupolar (eight-lobe) LR stress pattern was also observed in simulation and
experimental studies of the local rearrangements effects in 2D foams [60], 2D glass
systems [61] and quasi-2D emulsions [63].

Long-range dynamical correlation effects have been reported in several other
recent studies [54,55,12,25]. Computer simulations of ref. [12] reveal LR correlations
between plastic events in deeply supercooled 2D liquids, which have been attributed
to 1/r? correlations of the local inherent stresses a distance r apart, in agreement
with our result given in eq. (46). The simulation studies [12] also revealed that
the amplitude of power-law stress correlations first grows, then shows a transient
plateau and finally decays. That sort of behavior is in harmony with our results (cf.
eqs. (42), (46)) showing the early time increase of the correlation amplitude (due
to the factor ¢* in the last term of eq. (42)) and then its gradual decrease defined
by the é(t) factor in eq. (46). The LR dynamical correlations between particle
displacements and related functions have been demonstrated in refs. [54-56,25].
Remarkably, the studies [54,55] show that the corresponding dynamical correlation
length €4 grows linearly in time in glasses, while & o /gt in the long-time
regime in liquids, in obvious agreement with the momentum propagation length
£(t) defining the range of stress correlations considered in the present paper (cf.
eq. (36)). Similar results are also found in ref. [25]. It is worth noting that
generally the length £(¢) (cf. eqs. (35), (36)) can be also considered as the range
of viscoelastic hydrodynamic interactions in the liquid. [27]

In section 3 we figured out how to obtain the correlation function C™ of the
random stress (the thermal and structural noise) using a simple physical argument,
and how then to derive the correlation function of the total stress, €', based on
C?. Tt is interesting that this approach can be reversed in some sense. Indeed,
a few components of the total correlation function € are generally defined in
eqs. (15) - (17) in terms of the material relaxation functions. These exact FDT
relations can be harnessed to obtain the corresponding components of C*. To this
end we use the momentum equation (13), eqs. (8), (11) defining ¢” and eq. (19)
to find, first, the general relation between the fields of the total stress o and
the structural noise o™, then the relation between C™ and C in the frequency
(w) representation for w # 0. Finally, C™(q,t) is established using the additional
condition that C™ must tend to 0 at ¢ — oco. The resultant relations for the noise
correlations are:

1
Tc?zn(q,t) = G(Qa |t|) - Ge(‘])

1
70T (a:t) = K(q, [t]) - Ke(q)
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C5na(0,1) = Mg, 1) ~ M.(q) (51)

where we again use the natural coordinate frame (with axis e; parallel to ¢ and
e, perpendicular to it). Note that Ge(q) =0 (both at ¢ =0 and ¢ # 0) for the
liquid systems considered herein (including viscoelastic and supercooled liquids).
Obviously, given a weak dependence of the generalized moduli G, K, M on g¢q
(for ¢€s < 1), the exact relations are in perfect agreement with the approximate
eq. (21) derived on the physical grounds.

As discussed in section 2, the stress correlation function C defines the stress
response after a small instant deformation of the system. It is useful to note
that the same function C' also defines the stress response to a small external force
f(r,t) applied to all particles in the system (r is the particle position). Using the
FDT as outlined in ref. [27], we find the linear response in the Fourier-Laplace

representation:
11
<0'a,8(g,5)> = mT s aﬁa’ﬁ’(g,S>Qa'fﬁ’(ﬂ,5) (52>
In particular, the response to an instant push (momentum increment) at ¢ = —O0,
Flr,t) = P()s(t +0), is
11
<0'aﬁ(g,5)> = T s aﬁa’ﬁ’(g,s)Qa’Fﬁ’(ﬂ) (53)

The latter equation can be compared with the response to an instant small
deformation r — r 4 u(r) at t = —0. Using eqs. (7), (10) we get

(72p(g,5)) = F:Capars(, 8)aru (0) (54)
Thus, both response functions are closely related to each other: in real time the
response to instant deformation is simply proportional to the time derivative of the
response to an instant momentum increment. In other words, both types of linear
responses (to the external force field and to the deformation) contain essentially the
same information. This means, in particular, that the stress correlation function C
cannot be fully restored based solely on the response to a ‘“force dipole’ [57,12] or
any other external force field (cf. also the discussion at the end of section 2).

It is worth noting that all the results obtained in this paper are valid for
equilibrium systems, either ergodic liquids or equilibrium ensembles of amorphous
solids (glasses). In practice the glassy systems are normally out of equilibrium; the
effect of their non-ergodicity on stress correlations will be considered separately.

It is stress fluctuations in an infinite system that are considered in this
paper.  Simulation studies concern finite box systems, normally with periodic
boundary conditions (PBC). The results obtained below for an infinite space are
still applicable in the PBC case with box-size L if £(¢) < L. In the general case
C(r,t) with PBC is defined (in 2D) as

C(r,t,L) = L7? Z C(g,t)exp (ig . z)

where ¢ = (2 /L) n, n is the vector whose components take independently all integer
values between —oo and oco. In the opposite regime L < £(t) only one term above
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(with ¢ = 0) matters for the isotropic part of the stress correlation function, C*,
thus giving

C¥(r,t,L) ~ T[G(t) — G.] /L, L(t)> L (55)

Therefore, C** turns out to be nearly independent of r in the regime £(¢) > L
relevant in most simulation studies due to relatively small box-size L. Note
that strictly speaking the above equation provides the correlation function C*(r,t)
which is coarse-grained over a time-interval At > ¢L/{(t). This interval is relatively
short, At/t < 1 at long times; the coarse-graining is necessary due to a singular
behavior of C*(r,t) at the wave front (cf. eq. (29)). Note also that G. in
eq. (55) is the equilibrium shear modulus (cf. eqs. (18)), and that G. =0 for the
systems we consider (ergodic liquids or glassy systems which are fully equilibrated
thermodynamically). Turning to the the singular part of the correlation function,
C*, and the full function C = C* + C* in the regime £(t) > L, the infinite space
results (cf. egs. (39), (42), (46)) remain applicable provided that r < L.

The last point concerns the effects of temperature variations. In the present pa-
per we widely used the FDT connecting the equilibrium stress correlation function
with a stress response to a mechanical perturbation. Analyzing the response func-
tions we implicitly assumed that the temperature is constant (isothermal process).
This assumption is valid for shear deformation modes since in this case the energy
and entropy change is only quadratic in deformation amplitude. However, it may
not be valid in the case of longitudinal strain (which generally leads to a linear
change of energy, entropy and temperature). Of course, the isothermicity condition
remains generally true if the heat conductivity is very fast (a high heat diffusion
coeflicient Dg: Dy — oo). However, in reality, with finite Dg, this assumption
fails at short times ¢. In particular, the infinitesimal canonical deformation at
t — 0 is always adiabatic rather than isothermal. More generally, the results
obtained in this paper are valid for

Dgt > r? (56)

With ¢ ~ T4, the latter condition still allows for a quite long-range effect, given
that the stress relaxation time is long for viscoelastic fluids while their viscoelastic
nature does not affect much the heat transport (Dg). We plan to describe the
temperature variation effects in a separate publication.
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FIGURE CAPTIONS

FIG. 1. The reduced correlation function ‘é‘, C = Ct*/(Tp) vs. 7 =r/(crt) in
log-log scale for § =0 (a), § =x/4 (b) and 8 =7/8 (c). The same dependencies
for 8 =0, w/4 in semi-log scale (d) (see also insets of (a), (b)). C is calculated
for cp/er = \/Kpi/Gp & 2.45 corresponding to Ku/Gp =6 using eq. (42) without
the §(r)-term. The dotted vertical lines show the wave fronts (r = £ = cyt and
r =4 = cgt). Note that C for 8 = w/4 changes its sign at 72 0.84, ¥ =1 and
TR 2.26.

FIG. 2. Two-dimensional plots of C = Ct?/(Tp) in polar coordinates (7,8) using
eq. (42) with the same cp/er; T = rcosf, y = rsinf. (a) C for short
7 < 0.02 showing regions of negative (blue to green) and positive (red to green)
correlations; black lines separating these regions correspond to C = 0. (b) ‘é‘
for 7 <1 showing the transverse wave front (red/white dashed circle, 7 = 1).
Black curves (separating the regions C' >0 and C < 0) include 4 ‘petals’ with
the central crossing and 4 arcs (belonging to the circle, ¥ =1). (c) C for 7 <1
using a color code highlighting the behavior in the region 7 < 0.5. (d) The
whole 2D plot for ‘é‘ showing 2 wave fronts as red/white circles (for transverse,
7 =1, and longitudinal, # = '/ ~ 2.45, sound waves). C > 0 inside 4 small
petals (in the region 7 < 1) and 4 large petals (for 1 <7 < £ /{) shown with
black contour lines; €' < 0 outside the petal regions; C =0 for 7 > £'/L.
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