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Introduction

Cyanoacetylene (HC 3 N) is a simple linear molecule of great astrochemical interest. Its relevance has been demonstrated by the huge amount of observational studies carried out in the past decades, which revealed HC 3 N to be an ubiquitous interstellar species, detected in molecular clouds [START_REF] Turner | Detection of interstellar cyanoacetylene[END_REF], comets [START_REF] Mumma | The chemical composition of cometsemerging taxonomies and natal heritage[END_REF], nearby galaxies [START_REF] Mauersberger | Dense gas in nearby galaxies. III-HC 3 N as an extragalactic density probe[END_REF], and planetary atmospheres [START_REF] Kunde | C 4 H 2 , HC 3 N and C 2 N 2 in Titan's atmosphere[END_REF]. Recent observations have pointed out its importance as tracer of the chemical evolution of molecular clouds [START_REF] Yu | Chemical evolution of HC 3 N in dense molecular clouds[END_REF] or -through the DC 3 N isotopologue -as proxy of the deuteration level prior to the formation of dense gas in star-forming regions [START_REF] Rivilla | DC 3 N observations towards high-mass star-forming regions[END_REF]. Moreover, cyanoacetylene emission has been used to unravel the seasonal changes and atmospheric dynamics of the largest Saturn's moon Titan [START_REF] Thelen | Abundance measurements of titans stratospheric HCN, HC 3 N, C 3 H 4 , and CH 3 CN from ALMA observations[END_REF] and is predicted to be detectable in Super-Earth atmospheres by upcoming James Webb Telescope observations [START_REF] Rimmer | Detectable abundance of cyanoacetylene (HC 3 N) predicted on reduced nitrogen-rich super-earth atmospheres[END_REF]. Interestingly, vibrationally excited HC 3 N has been also observed in Space. For example, pure rotational transitions in vibrational states up to 1100 cm -1 have been detected in the protoplanetary nebula CRL 618 [START_REF] Pardo | The Slowly Expanding Envelope of CRL 618 Probed with HC 3 N Rotational Ladders[END_REF] (see also a more recent account for NGC 1068 [START_REF] Rico-Villas | Vibrationally excited HC 3 N emission in NGC 1068: tracing the recent star formation in the starburst ring[END_REF]).

The laboratory investigation of the rotational and ro-vibrational spectra of HC 3 N, which is essential for guiding astronomical searches of this species, has been pushed forward for 70 years. To date, the most comprehensive spectroscopic analysis of cyanoacetylene has been reported in our previous study (Ref. [START_REF] Bizzocchi | Rotational and high-resolution infrared spectrum of HC 3 N: global ro-vibrational analysis and improved line catalog for astrophysical observations[END_REF],

hereafter Paper I), where a comprehensive list of references for laboratory detections and observations in Space is also provided. In Paper I, the HC 3 N infrared spectrum has been recorded between 450 and 1100 cm -1 and analyzed focusing on all the vibrational states with energy below 1000 cm -1 , for which a sizable number of rotational transitions were also observed. The global analysis performed in Paper I allowed to derive a consistent set of spectroscopic rotational and vibrational parameters for all the twelve vibrational states investigated, and includes the accurate modelling of two networks of anharmonic resonances which substantially perturb the spectra. Yet, the dataset of Paper I did not include any ro-vibrational transitions located in the far-infrared (FIR, here below 450 cm -1 ) portion of the spectrum as well as none of the stretching bands, observed roughly between 2000 and 3400 cm -1 . While no spectrum was reported in the literature for the FIR region, some data were available for the stretching modes. In particular, after the first medium resolution (0.025-0.050 cm -1 ) study of the 1800-6500 cm -1 region [START_REF] Mallinson | High resolution infra-red studies of HCCCN and DCCCN[END_REF], higher-resolution spectra of the ν 1 [START_REF] Winther | The ν 1 band system of HCCCN (Cyanoacetylene)[END_REF], ν 2 [START_REF] Yamada | Diode laser spectrum of HCCCN: CN stretching band[END_REF], ν 3 [START_REF] Yamada | Diode laser spectrum of HCCCN near 5 µm[END_REF], and some of their hot-bands [START_REF] Winther | The ν 1 band system of HCCCN (Cyanoacetylene)[END_REF][START_REF] Yamada | Diode laser spectrum of HCCCN near 5 µm. The hot band[END_REF] were reported.

Theoretical calculations involving fundamental, combination, overtone, and hot bands between 200 and 4800 cm -1 have been recently published [START_REF] Dargelos | CCSD(T)-F12 calculations of the IR spectrum of cyanoacetylene HC 3 N beyond the harmonic approximation[END_REF], as well as estimates for the infrared fundamental intensities [START_REF] Vichietti | The infrared fundamental intensities of some cyanopolyynes[END_REF]. Previously, various theoretical works on the force field, dipole functions, and molecular structure were also presented [START_REF] Holme | SCF calculation of the structure, force field, and dipole function of cyanoacetylene[END_REF][START_REF] Hutchinson | High-energy vibrational state of cyanoacetylene -variational and perturbative analysis of an anharmonic normal mode[END_REF][START_REF] Botschwina | Ab initio calculations of stretching vibrational transitions for the linear molecules HCN, HNC, HCCF and HC 3 N up to high overtones[END_REF][START_REF] Botschwina | Accurate equilibrium structures for small polyatomic molecules, radicals and carbenes[END_REF]. However, the data available in the literature for the stretching modes indicated that the experimental dataset could be extended and recorded at a higher, homogeneous resolution. Therefore, we recently reinvestigated the ν 1 , ν 2 , and ν 3 bands and their associated hot bands ν 1 + ν 7ν 7 , ν 2 + ν 7ν 7 , ν 3 + ν 7ν 7 by Fourier transform infrared (FTIR) spectroscopy [START_REF] Jiang | High-resolution infrared spectroscopy of DC 3 N in the stretching region[END_REF] at an instrumental resolution of 0.004 cm -1 .

Here, to fill the lack of HC 3 N data in the FIR window, we undertake for the first time a detailed analysis of the region below 450 cm -1 , by recording FTIR spectra at the SOLEIL synchrotron facility as recently done for DC 3 N [START_REF] Melosso | Extensive ro-vibrational analysis of deuteratedcyanoacetylene (DC 3 N) from millimeter-wavelengths to the infrared domain[END_REF]. In addition, a new network of anharmonic resonances involving vibrational states with energies around 1200 cm -1 is identified and modelled on the basis of (i) spectra recorded but not analyzed in Paper I and (ii) new rotational measurements performed in this work. The ultimate goal of the present paper is to achieve an improved fit of all the HC 3 N data in order to attain a very accurate and extended set of ro-vibrational constants and, consequently, a comprehensive line list to be used for astronomical observations of cyanoacetylene at different wavelengths.

Experiments

The new rotational and ro-vibrational spectra described in this work have been recorded in three laboratories: the FIR spectrum has been observed at the SOLEIL synchrotron facility, while the millimeter (mm) and submillimeter (submm) spectra have been measured in Bologna and in Garching. The preparation of the sample used for the measurements has been described in Paper I.

The FIR spectrum of HC 3 N has been recorded at the AILES beamline of SOLEIL using a Bruker IFS 125 FT interferometer [START_REF] Brubach | Performance of the AILES THz-Infrared beamline at SOLEIL for high resolution spectroscopy[END_REF] associated to a White-type multi-pass absorption cell whose optics were adjusted to obtain 150 m optical path length [START_REF] Pirali | Rotationally resolved infrared spectroscopy of adamantane[END_REF][START_REF] Pirali | The far infrared spectrum of naphthalene characterized by high resolution synchrotron FTIR spectroscopy and anharmonic DFT calculations[END_REF]. The synchrotron radiation extracted by the AILES beamline was used as the FIR source of continuum for the FT interferometer. The interferometer was equipped with a 6 µm Mylar-composite beamsplitter and a 4 K cooled Si-bolometer and was isolated from the interferometer by two 50 µm-thick polypropylene windows. The optics compartment was continuously evacuated to 0.01 Pa in order to limit the absorption of atmospheric water. Vapor of HC 3 N was injected into the absorption cell at 1.5, 3.5 and 28.6 Pa pressure. The spectrum covers the range 70-500 cm -1 and was recorded at different pressures and with a different number of scans: 400 scans at 1.5 and 28.6 Pa, 360 scans at 1.5 Pa. The instrumental resolution was 0.001 cm -1 . No apodization function was applied to the interferogram. The wavenumber-axis of the spectra has been calibrated using residual water absorption lines, whose reference wavenumbers were taken from [START_REF] Matsushima | Frequency-measurement of pure rotational transitions of H 2 O from 0.5 to 5 THz[END_REF] and [START_REF] Horneman | Transferring calibration from CO 2 laser lines to far infrared water lines with the aid of the ν 2 band of OCS and the ν 2 , ν 1 -ν 2 , and ν 1 + ν 2 bands of 13 CS 2 : Molecular constants of 13 CS 2[END_REF]. Based on the dispersion after calibration, line frequencies are expected to be as accurate as 0.0001 cm -1 .

A number of new mm-wave spectra have been recorded at the Center for Astrochemical Studies in the 80-175 GHz frequency interval using the CASAC spectrometer already described in details elsewhere [START_REF] Bizzocchi | Accurate Laboratory Measurement of the Complete Fine Structure of the N = 1 -0 Transition of 15 NH[END_REF].

Additional measurements in selected frequency intervals between 260 and 450 GHz have been performed in Bologna using a frequency-modulation (FM) mm-wave spectrometer, whose description has been reported in Refs. [START_REF] Melosso | The pure rotational spectrum of 15 ND 2 observed by millimetre and submillimetre-wave spectroscopy[END_REF][START_REF] Melosso | The rotational spectrum of 15 ND. isotopicindependent Dunham-type analysis of the imidogen radical[END_REF]. In both these latter laboratories, the spectra were recorded at room temperature, using static samples at a pressure of 0.3-1.0 Pa. The transition frequencies were recovered from a line-shape analysis of the spectral profile [START_REF] Dore | Using fast fourier transform to compute the line shape of frequency-modulated spectral profiles[END_REF] and their accuracy, estimated by repeated measurements and depending on the attained S/N, is in the 5-30 kHz range. This work also reports on the analysis of some vibrational bands observed in the spectra previously recorded in Bologna using a Bomem DA3.002 Fourier-transform spectrometer [START_REF] Bizzocchi | Rotational and high-resolution infrared spectrum of HC 3 N: global ro-vibrational analysis and improved line catalog for astrophysical observations[END_REF][START_REF] Jiang | High-resolution infrared spectroscopy of DC 3 N in the stretching region[END_REF] and not included in Paper I. For further details about the recording conditions, the readers are referred to Bizzocchi et al. [START_REF] Bizzocchi | Rotational and high-resolution infrared spectrum of HC 3 N: global ro-vibrational analysis and improved line catalog for astrophysical observations[END_REF] and Jiang et al. [START_REF] Jiang | High-resolution infrared spectroscopy of DC 3 N in the stretching region[END_REF] for the regions 450-1050 cm -1 and 1900-3400 cm -1 , respectively.

Observed spectra

Cyanoacetylene is a linear molecule with seven vibrational normal modes: four stretching modes (ν 1 , ν 2 , ν 3 , ν 4 ; Σ symmetry) and three doubly degenerate bending modes (ν 5 , ν 6 , ν 7 ; Π symmetry). All of them are infrared active.

A portion of the vibrational energy manifold of HC 3 N is schematically shown in Figure 1. All the levels involved in the present analysis are plotted in solid black lines, while the appearance of the infrared spectra is depicted sideways on the left. Our study includes all the vibrational fundamentals as well as all the excited levels below 1300 cm -1 with the only exception of the v 5 = v 6 = 1 state. This combination mode, together with the v 5 = 2 overtone state, is involved in a complex network of anharmonic resonances and will be the object of a future investigation. In total, 24 bands have been identified and analysed in this work. They are summarised in Table 1.

The 190-450 cm -1 region

The far infrared region shows many bands starting from 200 cm -1 . A recording of this spectral range is shown in Figure 2, together with a stick-spectrum simulation to allow for the identification of the most prominent features. The fundamental ν 7 , around 220 cm -1 , has been observed for the first time in this work, although a precise determination of its vibrational energy had been already achieved indirectly in Paper I. Nevertheless, the resolution and sensitivity of the FIR spectrum recorded at the SOLEIL facility has confirmed and improved both precision and accuracy of the spectroscopic constants related to the ν 7 vibrational mode.

The excitation of the v 7 mode gives rise to different manifolds for increasing values of the vibrational angular quantum number l, labelled as Σ, Π, ∆, Φ, Γ, H for l = 0, 1, 2, 3, 4, 5, respectively. All the possible allowed transitions between those energy levels, according to the selection rule ∆l = ±1, have been identified, with the exception of the 5ν 7 -4ν 7 hot-band, for which only the H← Γ component has been assigned. In the same portion of the spectrum, almost all the sub-bands of the ν 6 + ν 7ν 6 , ν 5 + ν 7ν 5 , and ν 6 + 2ν 7ν 6ν 7 have been also assigned, which show very weak, if not barely detectable, Q-branches.

At higher wavenumbers, the ν 6ν 7 (∼ 277 cm -1 ) and ν 4ν 6 (∼ 363 cm -1 ) difference bands, and the 2ν 7 overtone (∼ 443 cm -1 ) do have notable intensity as well. For all these transitions, eight associated hot bands have been identified and analysed. Apart from ν 4ν 6 and its ν 4 + ν 7ν 6ν 7 hot band, which have a prominent Q-branch (∆l = ±1), all these features show a parallel structure with strong P -and Rbranches and no Q-branch. ). The states investigated in this work are drawn in black solid lines. Grey dashed lines indicate the levels not considered in the present analysis. On the left, the appearance of the vibrational spectrum of HC 3 N is depicted sideways adopting two different normalisation factors. The intensity of the red trace is adjusted to show the prominent ν 1 , ν 5 , and ν 6 bands, whereas the dark blue spectrum is expanded 50 times in order to show the weaker bands. Note that the 2ν 5 overtone (labelled with paler colour in the plots) is the only major spectral feature not covered by the present analysis (see text).

The 450-1050 cm -1 region

This spectral window, dominated by the very strong ν 5 fundamental and the strong ν 6 and ν 6 +ν 7 bands, has been discussed in detail in Paper I. However, some new features have been identified and analysed in this work. They are the ν 7 -associated hot-bands of the ν 4 and 2ν 6 bands, the ν 6 -associated hot-band of the ν 6 + ν 7 combination, the 2ν 7 -associated hot-band of the ν 5 vibration, plus the new ν 4 + ν 7ν 6 difference band.

The 1900-3400 cm -1 region

As summarized in the introduction, this region had been studied in the past by several authors, who employed different spectroscopic techniques, such as tunable diode lasers and FTIR. The re-investigation of this region was motivated by the need to have a complete coverage at a homogeneous high-resolution of the three higher energy stretching bands ν 1 (∼ 3327 cm -1 ), ν 2 (∼ 2274 cm -1 ), and ν 3 (∼ 2079 cm -1 ) and of their strongest associated hot bands. The analysis of these bands has been reported in a recent paper focused on DC 3 N [START_REF] Jiang | High-resolution infrared spectroscopy of DC 3 N in the stretching region[END_REF].

The fundamentals ν 1 , ν 2 , and ν 3 are all intense bands of Σ -Σ symmetry, for which many P and R transitions could be assigned, up to J = 110 for ν 1 , J = 105 for ν 2 , and J = 110 for ν 3 . The identification of the first hot bands ν 1 + ν 7 (Π)ν 7 (Π), ν 2 + ν 7 (Π)ν 7 (Π), ν 3 + ν 7 (Π)ν 7 (Π) was rather straightforward and also for these bands many transitions could be assigned. The Q branches of the hot bands, although allowed by symmetry, were not detected. No evidence of strong perturbations has been found.

Rotational spectrum

The rotational spectrum of HC 3 N has already been studied extensively in the ground and in many vibrationally excited states (see Paper I and references therein). In the context of the present investigation, we have recorded additional mm-and submm-wave data for a subset of vibrational states located between 1050 and 1200 cm -1 : they are

v 4 = v 7 = 1, (v 6 = 2, v 7 = 1), (v 5 = 1, v 7 = 2)
, and v 7 = 5. The new measurements have been performed in Bologna and Garching focusing on selected frequency windows in the 80-450 GHz interval (an example is given in Fig. 3). A particular attention has been devoted to the J = 40 -46 region (340-420 GHz) where the lines belonging to the nearly-degenerate (v 5 = 1, v 7 = 2) and v 7 = 5 vibrational states show large deviations from their unperturbed positions owing to the avoided crossings between the various interacting sub-levels.

Analysis and Results

The computation of the ro-vibrational energy terms of HC The green labels identify the strong components belonging to some lower-energy vibrationally excited states. The purple dots mark the lines of the (v 5 = v 6 = v 7 = 1) three-bending combination states which have not been analysed in this study. Spectrum recorded with the CASAC spectrometer [START_REF] Bizzocchi | Accurate Laboratory Measurement of the Complete Fine Structure of the N = 1 -0 Transition of 15 NH[END_REF] using a scan speed of 1.2 MHz s -1 and RC = 3 ms.

6 = 7 = 1 7 = 2 6 = 1, 7 = 2 7 = 3 • • • • • • • 6 = 2, 7 = 1 5 = 1, 7 = 2
Hrv is diagonal in all quantum numbers, whereas Hl-type gives rise to several matrix elements off-diagonal in the l t quantum numbers and according to the selection rules ∆k = 0, ±2, ±4. Hres contains terms connecting the sub-blocks of the nearly-degenerate, interacting vibrational states. The complete expressions of the Hamiltonian is given in Paper I.

Below 1050 cm -1 two networks of anharmonic interactions have been identified: (i ) we obtain some terms of the resonance system (ii ), whereas the same operation on (ii ) generates a new network of interacting states located approximately at 1100 cm -1 :

v 5 = 1 ∼ v 7 = 3 around 660 cm -1 and (ii ) v 4 = 1 ∼ v 5 = v 7 = 1 ∼ v 6 = 2 ∼ v 7 =
v 4 = v 7 = 1 ∼ (v 5 = 1, v 7 = 2) ∼ (v 6 =
2, v 7 = 1) ∼ v 7 = 5. This resonance system has been investigated thoroughly for the first time in this work. In addition to the Hres terms cited above, for this analysis we considered further contributions produced by the H32 transformed Hamiltonian:

v 4 , v l5 5 , v l6 6 , v l7 7 ; J, k H32 v 4 + 1, (v 5 -1) l5±1 , v l6 6 , (v 7 -1) l7±1 ; J, k ± 2 = √ 2 2 C 32 [(v 4 + 1) (v 5 ± l 5 )(v 7 ± l 7 )] 1/2 f ±2 (J, k) , (2) 
where the k-dependent term of the matrix element is given by (see Eq. (3b) of Paper I for the general formula):

f ±2 (J, k) = [J(J + 1) -k(k ± 1)] [J(J + 1) -(k ± 1)(k ± 2)] . (3) 
This interaction has been considered in association with the classic cubic anharmonic resonance H30 involving the (v 4 = v 7 = 1) and (v 5 = 1, v 7 = 2) states and provides additional ∆k ± 2 couplings.

The ro-vibrational basis functions are chosen as product of one-/two-dimensional harmonic oscillator wave-functions and a rotational symmetric-top wave-function, v s , v l5 5 , v l6 6 , v l7 7 ; J, k , with k = l 5 + l 6 + l 7 . In this notation v s summarizes the stretching mode vibrational quantum numbers v 1 , v 2 , v 3 and v 4 . Symmetryadapted basis functions are then obtained by the Wang-type linear combinations [START_REF] Yamada | Effective Hamiltonian for polyatomic linear molecules[END_REF]:

v s , v l5 5 , v l6 6 , v l7 7 ; J, k e/f = 1 √ 2 v s , v l5 5 , v l6 6 , v l7 7 ; J, k ± (-1) k v s , v -l5 5 , v -l6 6 , v -l7 7 ; J, -k , (4a) 
v s , 0 0 , 0 0 , 0 0 ; J, 0 e = v s , 0 0 , 0 0 , 0 0 ; J, 0 .

The upper and lower signs (±) correspond to e and f wave-functions [START_REF] Brown | The labeling of parity doublet levels in linear molecules[END_REF], respectively. For Σ states (k = 0), the first non-zero l t is chosen positive.

Global fit

The analysis of the extended ro-vibrational data set has been performed following the same procedure 

described
= v 7 = 1, (v 6 = 2, v 7 = 1), (v 5 = 1, v 7 = 2),
and v 5 , plus 10 more resonance coefficients. In addition, the states

v 1 , v 2 , v 3 , v 1 = v 7 = 1, v 3 = v 7 = 1, v 3 = v 7 = 1,
already studied in Ref. [START_REF] Jiang | High-resolution infrared spectroscopy of DC 3 N in the stretching region[END_REF] have been included in the present global analysis. For the constants which could not be directly determined from the fit procedure, we adopted suitable constraints. These have been derived from other states belonging to the same manifold assuming, whenever feasible, a linear v-dependence. This approach is implemented into the fitting code as described in Paper I and the whole procedure was repeated until the convergence of such derived values was achieved .

As briefly introduced in § 4, in HC 3 N each level of the v 4 manifold is the pivot of the polyad of interacting states:

v 4 ∼ (v 4 -1, v 6 + 2) ∼ (v 4 -1, v 5 + 1, v 7 + 1) ∼ (v 4 -1, v 5 + 4
). The fundamental polyad centered at ∼ 880 cm -1 has been discussed in Paper I; in the following, we refer to it as the first resonance system (I RS).

In this paper we investigated the polyad located at ∼ 1100 cm -1 which includes the states

v 4 = v 7 = 1, (v 6 = 2, v 7 = 1), (v 5 = 1, v 7 = 2)
, and v 7 = 5 (second resonance system, II RS, hereafter). In such a coupling scheme, a cubic interaction takes place between the v 4 = v 7 = 1 Π states and the Π sublevels of the (v 6 = 2, v 7 = 1) and (v 5 = 1, v 7 = 2) bend-bend combination; also a weak quintic interaction exists between v 4 = v 7 = 1 and v 7 = 5 states (Π -Π). In addition, the (v 5 = 1, v 7 = 2) and v 7 = 5 states are coupled by a quartic resonance which produces effects on all their Π, Φ sublevels. The detailed scheme of the energy-level manifolds involved in this resonance system is depicted in Figure 4.

A remarkable feature of the II RS is the close vicinity of the (v 5 = 1, v 7 = 2), and v 7 = 5 states which are coupled by the H40 Hamiltonian term. The resulting perturbations affect both Π and Φ sub-levels, and the corresponding lines show increasing differences from their unperturbed positions, as J approaches the value at which a given pair of interacting sublevels comes close to an exact degeneration. This is well illustrated in 345678. Filled crosses label measured inter-state cross-over transitions, while the purple "times" symbols (×) are used for those predicted by the actual model. The "plus" signs (+) are used for the (v 5 = 1, v 7 = 2) intra-state (1, 2) e /(1, -2) e cross-overs occurring at J = 12. The most perturbed transitions are labelled using the method implemented in the SPFIT code [START_REF] Pickett | The fitting and prediction of vibration-rotation spectra with spin interactions[END_REF]. The bottom panel shows a detail of the upper plot in the ν red range from 4568 to 4634 MHz.

a strong mixing between blocks of ro-vibrational wave-functions occurs, the labelling of the corresponding transitions become ambiguous. Our analysis tool, which uses SPFIT as the core computation routine, follows the method described by Pickett in Ref. [START_REF] Pickett | The fitting and prediction of vibration-rotation spectra with spin interactions[END_REF].

As was the case for the I RS, we were able to completely analyse the II RS without any assumption on the energy position of the interacting levels. The network of resonances has been modelled with the same terms adopted for the I RS, the only addition being the C 32 parameters which connects the v 4 = v 7 = 1 and (v 5 = 1, v 7 = 2) sublevels with ∆k = ±2. The final fit returned a weighted root-mean-square (rms) of σ w = 1.098 thus indicating that, on average, the totality of the analysed data have been reproduced

within the estimated experimental uncertainties. The complete list of the fitted transitions and their obscalc residuals has been deposited as supplementary material. The optimised spectroscopic constants and resonance parameters are reported in Table 3-8.

Table 3: Spectroscopic constants derived for HC 3 N in the ground and Σ + excited states.

Constant Unit

Ground state Constant Unit Constant Unit 

v 4 = 1 v 3 = 1 v 2 = 1 v 1 = 1 Gv cm -

Constant Unit

v 4 = v 7 = 1 v 3 = v 7 = 1 v 2 = v 7 = 1 v 1 = v 7 = 1 G v cm -
v = v = v = v = v = G v cm -
v 6 = v 7 = 1 v 6 = 1, v 7 = 2 v 6 = 2, v 7 = 1 v 5 = v 7 = 1 v 5 = 1, v 7 = 2 G v cm -1 720 

Interacting states

Parameter Unit Value

(v 5 = 1) -(v 7 = 3) C 40 MHz 791.17(98) (v 5 = 1) -(v 7 = 3) C J 42 MHz -0.0253(30) (v 5 = v 7 = 1) -(v 7 = 4) C 40 MHz 742.2(51) (v 5 = v 7 = 1) -(v 7 = 4) C J 42 MHz 0.1339(67) (v 4 = 1) -(v 6 = 2) C 30 cm -1 16.0313(95) (v 4 = 1) -(v 6 = 2) C J 32 MHz -0.5164(23) (v 4 = 1) -(v 5 = v 7 = 1) C 30 cm -1 -2.4109(40) (v 4 = 1) -(v 7 = 4) C 50 MHz 3498(29) (v 4 = 1) -(v 7 = 4) C J 52 kHz 35.4(14) (v 5 = v 7 = 1) -(v 7 = 4) C 42a kHz 21.08(84) (v 5 = v 7 = 1) -(v 7 = 4) C 42b kHz 8.33(51) (v 5 = 1, v 7 = 2) -(v 7 = 5) C 40 MHz 938.0(32) (v 5 = 1, v 7 = 2) -(v 7 = 5) C J 42 MHz -0.0283(17) (v 4 = 1, v 7 = 1) -(v 6 = 2, v 7 = 1) C 30 cm -1 15.94393(30) (v 4 = 1, v 7 = 1) -(v 6 = 2, v 7 = 1) C J 32

MHz

-0.53450(52)

(v 4 = 1, v 7 = 1) -(v 5 = 1, v 7 = 2) C 30 cm -1 -2.2338(33) (v 4 = 1, v 7 = 1) -(v 5 = 1, v 7 = 2) C J 32 MHz -0.0626(65) (v 4 = 1, v 7 = 1) -(v 7 = 5) C 50 MHz 2825.8(30) (v 5 = 1, v 7 = 2) -(v 7 = 5) C 42a kHz 1.11(18) (v 5 = 1, v 7 = 2) -(v 7 = 5) C 42b kHz -3.917(88) (v 4 = 1, v 7 = 1) -(v 5 = 1, v 7 = 2) C 32 kHz -18.8(16)
Numbers in parentheses are one standard deviation in units of the last quoted digit.

Ab initio calculations

Very accurate predictions of molecular structures as well as of spectroscopic properties can be obtained by combining calculations at the coupled-cluster (CC) level of theory, with single and double excitations augmented by a perturbative treatment of triple excitations, i.e. CCSD(T) [START_REF] Raghavachari | A fifth-order perturbation comparison of electron correlation theories[END_REF], within composite schemes for incorporating both the basis-set truncation and core-correlation effects. In the present work, the equilibrium structure of HC 3 N has been obtained by applying the approach based on the additivity of the most relevant terms directly to the geometrical parameters (see, for example, [START_REF] Charmet | Accurate vibrational-rotational parameters and infrared intensities of 1-bromo-1-fluoroethene: a joint experimental analysis and ab initio study[END_REF][START_REF] Puzzarini | Accurate molecular structures of small-and medium-sized molecules[END_REF][START_REF] Puzzarini | Diving for accurate structures in the ocean of molecular systems with the help of spectroscopy and quantum chemistry[END_REF]). Complete basis set (CBS) extrapolations were performed for both the Hartree-Fock self-consistent-field (HF-SCF) energy and the CCSD(T) correlation energy within the frozen-core (fc) approximation, employing the formulas of Halkier et al. [START_REF] Halkier | Basis-set convergence of the energy in molecular HartreeFock calculations[END_REF] for the former, while the two-parameter correction of Helgaker et al. [START_REF] Helgaker | Basis-set convergence of correlated calculations on water[END_REF] was used for the latter.

The correlation-consistent polarised basis sets cc-pVnZ (n=Q,5,6) by Dunning et al. [START_REF] Dunning | Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen[END_REF][START_REF] Woon | Gaussian basis sets for use in correlated molecular calculations. V. Corevalence basis sets for boron through neon[END_REF] were used, with n=Q,5,6 for HF-SCF and N =Q,5 for CCSD(T). The core-valence (CV) correlation term was computed (at the CCSD(T) level of theory) as the difference between the all-electron (ae) and frozen-core data using the cc-pCVQZ basis set [START_REF] Woon | Gaussian basis sets for use in correlated molecular calculations. V. Corevalence basis sets for boron through neon[END_REF]. By combining the CBS and CV terms, the best-estimate geometry, hereafter referred to as CCSD(T)/CBS+CV, was obtained. All the calculations were carried out using the CFOUR suite of programs [START_REF] Matthews | Coupled-cluster techniques for computational chemistry: The CFOUR program package[END_REF] and its implementation of analytic second derivatives [START_REF] Gauss | Analytic CCSD(T) second derivatives[END_REF], while the anharmonic contributions to vibrational data and spectroscopic constants were calculated within the framework of 2 ndorder vibrational perturbation theory (VPT2) and using an appropriate suite of programs [START_REF] Pietropolli-Charmet | Benchmarking fully analytic DFT force fields for vibrational spectroscopy: A study on halogenated compounds[END_REF] implementing the formulas reported in the literature (see Refs. [START_REF] Papoušek | Molecular vibrational-rotational spectra[END_REF][START_REF] Aliev | Molecular Spectroscopy: Modern Research[END_REF][START_REF] Watson | Higher order l-doubling of linear molecules[END_REF]). The cubic and quartic semi-diagonal force constants needed to obtain these corrections were calculated at the fc-CCSD(T) level of theory and using the cc-pVQZ basis set.

The comparison between a selection of ab initio computed parameters and the corresponding experimental values are reported in Table 9. They include, vibration-rotation interaction constants (α r ), l-type doubling coefficients (q and q J ), anharmonicity constants (x L(tt ) ), and vibrational l-type doubling parameters (r tt ). The agreement between experimentally derived and ab initio computed values is excellent for all the ro-vibrational parameters, except for α 4 , (∼ 5%), α 5 , (∼ 9%), q 5 , (∼ 5%), and q 5J , (∼ 30%).

These constants are derived from vibrational fundamentals affected by anharmonic resonances (v 4 = 1 and v 5 = 1), thus their experimental values may include spurious contributions, not completely removed by the variational treatment.

It is worthwhile to note that our best-estimate geometry is in remarkable agreement with the semiexperimental equilibrium structure determined by Botschwina [START_REF] Botschwina | Accurate equilibrium structures for small polyatomic molecules, radicals and carbenes[END_REF]. Actually, the comparison between our values (r HC = 1.0624 Å, r CC = 1.2049 Å, r CC = 1.13776 Å and r CN = 1.1606 Å) and those of Ref. [START_REF] Botschwina | Accurate equilibrium structures for small polyatomic molecules, radicals and carbenes[END_REF] (r HC = 1.0623 Å, r CC = 1.2059 Å, r CC = 1.3761 Å and r CN = 1.1606 Å) points out an average error around 0.7 m Å with a maximum deviation of 1.5 m Å.

Focusing on the vibrational anhamonicity constants, it should be noted that some of the x L(tt ) and r tt coefficients contain near-singular denominators in their VPT2 formulation when ω s ≈ 2ω t or ω s ≈ ω t + ω t [START_REF] Papoušek | Molecular vibrational-rotational spectra[END_REF]. Such terms should be removed from the theoretically computed constants in order to allow for a meaningful comparison with the values derived from the spectral analysis, in which the resonances are explicitly treated, thus yielding "deperturbed" Hamiltonian coefficients. These corrected parameters have been marked with an asterisk in Table 9 and the problematic terms have been be factored out as follows:

x L(tt) = x * L(tt) - 1 32 φ 2 stt (2ω t -ω s ) -1 , (5a) 
x L(tt ) = x * L(tt ) -

1 16 φ 2 stt (ω t + ω t -ω s ) -1 , (5b) 
r tt = r * tt + 1 8 φ 2 stt (ω t + ω t -ω s ) -1 . (5c) 
As it can be seen, the experimental values of these anharmonic quantities compare generally well with their ab initio counterparts, but two cases of strong disagreement are present: x L(66) and r 57 . Both these parameters derive from the analysis of heavily perturbed energy level manifold, thus they retain certain degree of effectiveness. From the theoretical side, it should be noted that the magnitude of the singular terms expressed by Eq. (5a) and (5c) is large: contributions of about 100 GHz and 21 GHz have been removed from the VPT2 computed x L(66) and r 57 , respectively, to obtain the final (actually smaller) deperturbed values. As a result, the theoretical estimates of these quantities should be regarded with caution as they are very sensitive to any small numerical inaccuracy in the involved quadratic and cubic potential constants. a From constants of Tables 345678.

b Derived from VPT2 formulas using the force constants computed at the fc-CCSD(T) level in conjunction with cc-pV5Z (harmonic) and cc-pVQZ (cubic and quartic force field) basis set.

Asterisks denote deperturbed values (see text).

Line list

Given the importance of HC 3 N as astrochemical tracer, the set of spectroscopic constants obtained from the global fit has been used to predict an extended line list of rest frequencies which includes all observed lines, both rotational and ro-vibrational, and many other transitions of both types that could be predicted within their expected experimental uncertainty. The line list of about 90 000 transitions was calculated in the region 0-3600 cm -1 with 68 927 transitions from this list adapted for the HITRAN2020 database [START_REF] Gordon | The HITRAN2020 molecular spectroscopic database[END_REF].

A coherent computation of the line relative intensities for a comprehensive data set as such described in this work requires some care. More specifically, when dealing with the various sub-bands of a transition involving multiply-excited bending states, one should consider the various numerical factors arising from the different v t , l t excitation and from the symmetrised form of the rovibrational basis. The issue has been already recognised in Ref. [START_REF] Jolly | New infrared integrated band intensities for HC 3 N and extensive line list for the ν 5 and ν 6 bending modes[END_REF] and beforehand treated in some details by Fayt et al. [START_REF] Fayt | Analysis of the ν 9 band complex of dicyanoacetylene and application of a theory of relative intensities to all subbands[END_REF]. In this latter work, however, the formulation is specifically tailored for the ν 9 band systems of NC 4 N and cannot be applied directly to our HC 3 N data set. The procedure adopted in this work to carry out accurate and consistent intensity calculations is reported in detail in Appendix A.

Briefly, we derived the transition moment of a single ro-vibrational line from the only experimental data available in literature, namely the integrated band intensities of Ref. [START_REF] Jolly | New infrared integrated band intensities for HC 3 N and extensive line list for the ν 5 and ν 6 bending modes[END_REF]. As far as the pure rotational transitions are concerned, DeLeon et al. [START_REF] Deleon | Molecular beam electric resonance study of the ground and excited states of cyanoacetylene[END_REF] reported the experimental determination of the dipole moments in the ground, v 7 =1 and v 6 =1 states. All dipole moments relative to rotational transitions in other excited vibrational states were either derived from the experimental ones, when feasible, or fixed to the ground state value. Such transition and dipole moments were used as input information for the SPCAT routines [START_REF] Pickett | The fitting and prediction of vibration-rotation spectra with spin interactions[END_REF] in order to obtain a calculated value for the intensities of all the transitions included in the database we produced. The comparison with the intensity values [START_REF] Jolly | New infrared integrated band intensities for HC 3 N and extensive line list for the ν 5 and ν 6 bending modes[END_REF] reported in HITRAN2016 database [START_REF] Gordon | The HITRAN2016 molecular spectroscopic database[END_REF] shows a substantial agreement. On the contrary, there is a discrepancy with the intensity of the ν 1 fundamental band at ∼ 3µm (which was not provided in HITRAN2016) calculated in Ref. [START_REF] Villanueva | Modeling of nitrogen compounds in cometary atmospheres: Fluorescence models of ammonia (NH 3 ), hydrogen cyanide (HCN), hydrogen isocyanide (HNC) and cyanoacetylene (HC 3 N)[END_REF] to model cometary atmospheres.

The values from Ref. [START_REF] Villanueva | Modeling of nitrogen compounds in cometary atmospheres: Fluorescence models of ammonia (NH 3 ), hydrogen cyanide (HCN), hydrogen isocyanide (HNC) and cyanoacetylene (HC 3 N)[END_REF] are approximately three times greater than those derived in this work. Since our calculations reproduce accurately the relative intensity of the observed infrared bands over a wide range and they match the values reported in HITRAN2016 for the FIR bands, we are confident about their reliability.

Conclusions

In this paper we present the most detailed and extended analysis of the rotational and high-resolution About 90 000 rotational and ro-vibrational transition energies have been predicted on the basis of the molecular constants obtained from the global fit. This calculated database includes a large number of unobserved transitions, which however were confidently predicted within their expected average experimental uncertainty. Intensity calculations have been performed for all the lines of the database. If compared to the HITRAN2016 database, the ro-vibrational intensities show a general agreement. As far as the rotational lines are concerned, the new database HITRAN2020, which includes our line list, contains a much larger number of transitions. Also, some sets of transitions mislabelled or with a wrong intensity value have been corrected.

Although the line list in HITRAN2016 [START_REF] Gordon | The HITRAN2016 molecular spectroscopic database[END_REF] includes almost 180 000 transitions, no ro-vibrational data are present below 463.6 cm -1 or above 759.0 cm -1 . Therefore, our list is more complete in terms of total spectral window, since it covers all vibrational modes. It is less complete in terms of vibrational transitions, as hot and combination bands involving highly excited vibrational states were not considered because of their negligible intensity. The HITRAN2020 edition of the database [START_REF] Gordon | The HITRAN2020 molecular spectroscopic database[END_REF] now employs our line list below 463.6 cm -1 and above 759.0 cm -1 .

In conclusion, this paper provides an accurate and precise set of spectroscopic constants for HC 3 N, which can be used to test high level ab initio calculations. Moreover, a reliable list of rest frequencies and intensities is presented. This database is of considerable importance when the detailed and quantitative interpretation of spectra of remote environments, such as planetary atmospheres or any other space environment is required.

where all rotational terms have been removed. The constants in equation (A.6) are taken from CODATA 2018 [START_REF] Tiesinga | Codata recommended values of the fundamental physical constants: 2018[END_REF] and are: n L = 2.686780111 × 10 19 mol cm -3 , T 0 = 273.15 K, p 0 = 1 atm, h = 6.62607015 × 10 -27 erg s, c = 2.99792458 × 10 10 cm s -1 , 1/4π 0 = 10 -36 erg cm 3 D -2 . Since Θ 2 ab is measured in D 2 and ν 0 in cm -1 , the intensity is expressed in units of cm -2 atm -1 . Moreover, we can safely assume that ν rv is equal to the band origin ν 0 . The purely vibrational exponential is equal to 1, as the ground state vibrational energy is set to zero. By substitution of the above constants we eventually have:

I rv (T ) = 3054.74207 γ i ν 0 Θ 2 ab W ab (1 -e -hν0/kT ) T Q v (T ) . (A.7)
The factor 3054.74207 is the same reported in Ref. [START_REF] Hachtouki | Absolute line intensities in acetylene: The 1.5-µm region[END_REF]. If a band system is considered, the total intensity is given by a sum over all populated vibrational states obtained by multiplying I rv (T ) by the vibrational partition function. We therefore obtain:

I BS rv (T ) = 3054.74207 γ i ν 0 Θ 2 ab W ab (1 -e -hν0/kT ) T . (A.8)
I BS rv (T ) is directly comparable with the integrated band intensities given in Ref. [START_REF] Jolly | New infrared integrated band intensities for HC 3 N and extensive line list for the ν 5 and ν 6 bending modes[END_REF].

The line strength of Eq. (A.2) gives rise to rotational and vibrational factors symbolically defined as L and W ab . Following the procedure of Refs. [START_REF] Aliev | Molecular Spectroscopy: Modern Research[END_REF][START_REF] Hansson | A comment on Hönl-London factors[END_REF], the line strength of an allowed rovibrational transition (a, J ← b, J ) can be expressed as

S aJ ,bJ = f,M ,M | aJ M | M f |bJ M | 2 , (A.9)
where a and b collect all the quantum numbers not indicated explicitly (see later), and M f are the space-fixed components of the electric dipole moment.

The following steps are then taken:

i. the dipole moment operator is expressed in terms of the molecule-fixed components µ γ and the rotation matrices D

(1)

f γ (ω) * through M f = γ D (1) 
f γ (ω) * µ γ [START_REF] Brown | Rotational Spectroscopy of Diatomic Molecules[END_REF];

ii. the dipole moment components µ γ are expanded as a function of the normal coordinates q r : µ γ = µ γ e + r µ γ r q r + r,s µ γ rs q r q s + . . . = µ γ 00 + µ γ 10 + µ γ 20 + . . . ; µ γ r and µ γ rs are the first and second derivatives of the dipole moment with respect to the normal coordinates;

iii. if only the µ γ 10 and µ γ 20 terms are maintained, the fundamental, overtone, combination, and difference bands with r |∆v r | = 2 are accounted for, and the M f components become M f = D

f γ (ω) * µ γ 10 + D (1) f γ (ω) * µ γ 20 = M f 11 + M f 21 ; (1) 
iv. the ro-vibrational wave-functions are factorised as |aJM = l,k a vlk |v, l |J, k, M , where v and l represent all vibrational quantum numbers and k = t l t .

The line strength expression thus becomes:

S aJ ,bJ = f,M ,M aJ M | M f 11 + M f 21 |bJ M 2 , (A.10a) S aJ ,bJ = f,M ,M l ,l ,k ,k a v l k b v l k v , l | µ γ 10 + µ γ 20 |v , l J , k , M | D (1) f γ (ω) * |J , k , M 2 . 
(A.10b) By evaluating the integral over the rotation matrices, the sum over the space-fixed variables f, M , M , and applying the sum rules for the 3j-symbols, the intensity integral becomes [START_REF] Hansson | A comment on Hönl-London factors[END_REF]:

S aJ ,bJ = k ,k a v l k b v l k v , l | µ k -k 10 + µ k -k 20 |v , l ×[(2J + 1)(2J + 1)] 1/2 J 1 J -k k -k k 2 . (A.11)
The sum in Eq. (A.11) can include one, two, or four terms, because it runs over degenerate states described by the symmetry-adapted basis functions defined in Eqs. [START_REF] Kunde | C 4 H 2 , HC 3 N and C 2 N 2 in Titan's atmosphere[END_REF]. In this work, Eq. (A.11) has been implemented in a automatic routine that computes the vibrational intensity factors using the appropriate symmetrised basis functions.

As already mentioned, the dipole moment operators in Eq. (A.11) will apply to different vibrational transitions: M f 11 to the fundamental bands and M f 21 , to the first overtones, combinations, and difference bands. Their dependence from the vibrational coordinates can be conveniently expressed in terms of products of the ladder operators [START_REF] Wagner | The Infrared-Spectrum of HC 15 NO in the Range 170-1300 cm -1[END_REF]. For instance, the dipole moment for fundamental vibrational transitions is:

µ γ 10 = 1 2 s Θ s L + s + L - s + t Θ t L + t,+ -L + t,-+ L - t,--L - t,+ , (A.12)
where Θ r (r = s, t) is a coefficient proportional to the dipole moment derivatives and s and t denotes non-degenerate (stretching) and doubly-degenerate (bending) normal modes, respectively. The sums of operators above are needed to ensure that the operator is Hermitian. To give an example, the line strength of a J ← J P or R transition of the ν 7 fundamental perpendicular band can be derived from Eq. (A.12), if we consider only the terms for t = 7, as µ Ref. [START_REF] Fayt | Analysis of the ν 9 band complex of dicyanoacetylene and application of a theory of relative intensities to all subbands[END_REF] for the P, R branches1 .

The Θ r ,Θ rs coefficients, used as input for the SPCAT routines [START_REF] Pickett | The fitting and prediction of vibration-rotation spectra with spin interactions[END_REF], have been derived from the absolute band intensities reported in Tables 1 and2 Note that the following points should be taken into account in doing this calculation:

i. In Ref. [START_REF] Jolly | New infrared integrated band intensities for HC 3 N and extensive line list for the ν 5 and ν 6 bending modes[END_REF] it is assumed that γ i = 1 for all vibrational bands belonging to the same band system.

ii. The S BS V value reported for the ν 4 band is most likely to be the sum of ν 4 and ν 5 + ν 7 bands (in fact, the same feature was assigned as ν 5 + ν 7 by Khlifi et al. [START_REF] Khlifi | Absolute intensity of the IR bands of propynenitrile[END_REF]). These two bands are very weak and separated by only ∼ 24 cm -1 , so that the R branch of ν 4 completely overlaps with the P branch of ν 5 + ν 7 . Based on our high-resolution measurements, we have estimated a relative intensity ratio ν 4 :(ν 5 + ν 7 ) of 1:1.4

The reported value of 0.68 cm -2 atm -1 [START_REF] Jolly | New infrared integrated band intensities for HC 3 N and extensive line list for the ν 5 and ν 6 bending modes[END_REF] has been then split between these two bands, accordingly.

iii. The As far as the pure rotational transition intensities are concerned, DeLeon et al. [START_REF] Deleon | Molecular beam electric resonance study of the ground and excited states of cyanoacetylene[END_REF] reported the experimental determination of the dipole moment in the ground (µ 0 =3.73172(1) D), v 7 =1 (µ 7 =3.7225(2) D), and v 6 =1 (µ 6 =3.7263(1) D) states. In order to derive a value of the dipole moment also for other excited vibrational states observed in our rotational spectra, we expressed the dipole moment as a function of the vibrational quantum numbers, µ v = µ ei δ i v i + di 2 . By analogy with the usual expansion in the vibrational quantum numbers, µ e is the equilibrium value of the dipole moment, δ i are the expansion coefficients and d i the degeneracy of the i-th vibrational mode. In this fashion, a prediction of the dipole moment could be calculated from the experimental values available for all vibrational states which involve excitation of ν 6 and/or ν 7 . For example, µ 67 = µ 6 + µ 7µ 0 = 3.71708 D and µ 7777 = 4µ 7 -3µ 0 = 3.69484 D. Other dipole moments that could not be derived from the experimental information were fixed to the ground state value. This is clearly not correct but we estimated that the error introduced is in general well below 1% of the value of the dipole moment. Ultimately, the final test of the goodness of the intensity predictions was achieved by plotting the calculated spectrum against the experimental one. The consistency of the relative intensity of the infrared bands and rotational transitions confirmed the accuracy of our derivations.
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 11 Figure 1: Schematic representation of the vibrational energy manifold of HC 3 N (complete below 1300 cm -1 ). The states investigated in this work are drawn in black solid lines. Grey dashed lines indicate the levels not considered in the presentanalysis. On the left, the appearance of the vibrational spectrum of HC 3 N is depicted sideways adopting two different normalisation factors. The intensity of the red trace is adjusted to show the prominent ν 1 , ν 5 , and ν 6 bands, whereas the dark blue spectrum is expanded 50 times in order to show the weaker bands. Note that the 2ν 5 overtone (labelled with paler colour in the plots) is the only major spectral feature not covered by the present analysis (see text).
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 76747562 Figure2: Recorded FIR spectrum from 180 to 465 cm -1 (black trace). Synthetic transmission spectrum (orange trace) was computed based on the line list presented in this work using HITRAN Application Programming Interface (HAPI)[START_REF] Kochanov | Hitran application programming interface (hapi): A comprehensive approach to working with spectroscopic data[END_REF]. The simulated spectrum has been displayed as reversed transmittance for a better comparison with the experimental one. Lines belonging to H 2 O were removed from the experimental spectrum. Experimental conditions: T = 298 K, P = 28.6 Pa, L = 150 m, 400 scans, unapodized resolution 0.001 cm -1 .

3 N

 3 follows the procedure described in detail in Paper I. Briefly, the effective Hamiltonian is a sum of a ro-vibrational ( Hrv ) and a l-type interaction ( Hl-type ) contributions, plus a term ( Hres ) describing the accidental anharmonic resonances present in this molecule: H = Hrv + Hl-type + Hres .

Figure 3 :

 3 Figure 3: Excerpt of the J = 10 ← 9 transition of HC 3 N in the region of multiple excited bending states. The stick spectrum indicates the position of the (v 6 = 2, v 7 = 1) state (red) and (v 5 = 1, v 7 = 2) (blue) combinations located at 1100-1200 cm -1 .The green labels identify the strong components belonging to some lower-energy vibrationally excited states. The purple dots mark the lines of the (v 5 = v 6 = v 7 = 1) three-bending combination states which have not been analysed in this study. Spectrum recorded with the CASAC spectrometer[START_REF] Bizzocchi | Accurate Laboratory Measurement of the Complete Fine Structure of the N = 1 -0 Transition of 15 NH[END_REF] using a scan speed of 1.2 MHz s -1 and RC = 3 ms.

1 Figure 4 :

 14 Figure 4: Vibrational energy diagram for the interacting states v 4 = v 7 = 1, (v 6 = 2, v 7 = 1), (v 5 = 1, v 7 = 2), and v 7 = 5 of HC 3 N. Thin arrows indicate the main vibrational couplings relative to ∆k = 0 taken into account: blue, green, and purple colors are associated to cubic ( H30 ), quartic ( H40 ), and quintic ( H50 ) interactions, respectively. Large arrows (red) illustrate the vibrational energy displacements produced by the anharmonic resonances; the unperturbed level positions are plotted with dashed lines. The weak ∆k = ±2 interactions produced by the H32 and H42 Hamiltonian terms are not indicated.

Figure 5 Figure 5 :

 55 Figure5that plots the rotational energy trends for all the (v 5 = 1, v 7 = 2) and v 7 = 5 level manifolds. The region around J = 40 has been extensively sampled in this work. Here the (1, -2) ef and (1, 2) ef levels of the (v 5 = 1, v 7 = 2) state (here defined by the l 5 and l 7 quantum numbers only) become nearly-degenerate with the l 7 = 3 ef levels of the v 7 = 5 manifold. Due to the avoided crossings, displacements up to ∼ 4 GHz have been measured for some highly-perturbed lines and 10 transitions, formally labelled as "inter-state", could also be observed. A very localised anomaly is also present at J = 12 in the manifold of the (v 5 = 1, v 7 = 2) combination. Here the (1, 2) e and the (1, -2) e sublevels, which are almost exactly degenerate, are heavily mixed because of the ∆k = ±2 l-type resonance. As a result, two additional intra-state cross-over lines are generated, having half the relative intensity of the unperturbed ones. It should be underlined that, when

  ro-vibrational spectra of HC 3 N to date. All fundamental bands and a considerable number of hot and combination bands have been observed experimentally. A global fit including all transitions already published and the new set of far infrared and rotational data has been performed and a very accurate set of rotational, centrifugal distortion, vibrational, and l-doubling parameters has been obtained. Moreover, two networks of anharmonic resonances have been observed and included in the total Hamiltonian. Their analysis has allowed the determination of 21 resonance constants. A number of spectroscopic constants have been calculated from an ab initio anharmonic force field. Their agreement with the corresponding experimental parameters is very good.

1 √ 2 {|1, 1 - 2 ×

 1212 µ (±1) = µ x ± iµ y for the spherical components of the dipole moment operator. The wavefunctions of the ro-vibrational states involved in the transition, described with a simplified notation of Eqs. (4) |v 7 , l 7 , are |0, 0 for the ground state and |1, -1 } for the upper state of e parity. By substituting Eq. (A.13) in Eq. (A.11), the non-vanishing terms give rise to the following line strength expression: S ν7,J ←J = (Θ 7 ) (2J + 1)(2J + 1) = 2(Θ 7 ) 2 (2J + 1)(2J + 1) only rotational quantum numbers is the Hönl-London factor. It can be shown, by applying the algebraic expression of the 3j-symbols, that Eq. (A.14) is equivalent to Eqs. (24)-(26) of

  of Ref.[START_REF] Jolly | New infrared integrated band intensities for HC 3 N and extensive line list for the ν 5 and ν 6 bending modes[END_REF] by applying Eq. (A.8) and calculating the vibrational factors W ab for all the fundamentals and for some overtone and combination bands. The results of such derivation are reported in TableA.[START_REF] Rico-Villas | Vibrationally excited HC 3 N emission in NGC 1068: tracing the recent star formation in the starburst ring[END_REF]. The intensity perturbations produced by the various resonances have been taken automatically into account by the SPCAT program.

v 4 = 1 ,

 41 v 5 = v 7 = 1, and v 6 = 2 states are involved in the I RS (see § 4.1) and the intensity of the corresponding ν 4 , ν 5 + ν 7 , and 2ν 6 band are altered by the wave-function mixing. Hence, the direct use of the Θ 4 , Θ 57 , and Θ 66 derived via Eq. (A.8) and experimental intensity data would lead to incorrect line intensity calculations. Deperturbed values (Θ 4 , Θ 57 , Θ 66 ) of these dipole moment derivatives have been obtained via Θ = Θ Ṽ (A.15) where Θ = (Θ 4 , Θ 57 , Θ 66 ) and Ṽ is the transpose eigenvector matrix of the vibrational Hamiltonian which includes the v 4 = 1, v 5 = v 7 = 1, and v 6 = 2 states. The values of Θ 4 , Θ 57 , Θ 66 are also reported in Table A.10.

Table 1 :

 1 Ro-vibrational bands of HC 3 N recorded and analysed in this work.

	Band	Sub-bands	Freq. range J max No. of lines rms a ×10 4 (cm -1 ) (cm -1 )
	ν 7 2ν 7 -ν 7 3ν 7 -2ν 7 4ν 7 -3ν 7 5ν 7 -4ν 7 ν 6 + ν 7 -ν 6 ν 5 + ν 7 -ν 5 ν 6 + 2ν 7 -ν 6 -ν 7 (Π, Φ) -(Σ + , ∆) Π -Σ + (Σ + , ∆) -Π (Π, Φ) -(Σ + , ∆) (Σ + , ∆, Γ) -(Π, Φ) H -Γ (Σ, ∆) -Π (Σ, ∆) -Π ν 6 -ν 7 Π -Π ν 6 + ν 7 -2ν 7 (Σ + , ∆) -(Σ + , ∆) 2ν 6 -ν 6 -ν 7 (Σ + , ∆) -(Σ + , ∆) ν 6 + 2ν 7 -3ν 7 (Π, Φ) -(Π, Φ) ν 4 -ν 6 Σ + -Π ν 4 + ν 7 -ν 6 -ν 7 Π -(Σ, ∆) 2ν 7 Σ + -Σ + 3ν 7 -ν 7 (Π, Φ) -Π 4ν 7 -2ν 7 (Σ + , ∆) -Σ + , ∆) 5ν 7 -3ν 7 (Π, Φ) -(Π, Φ) ν 6 + 2ν 7 -ν 6 Π -Π ν 4 + ν 7 -ν 6 Π -Π ν 5 + 2ν 7 -2ν 7 (Π, Φ) -(Σ + , ∆) 2ν 6 + ν 7 -ν 6 Π -Π ν 4 + ν 7 -ν 7 Π -Π 2ν 6 + ν 7 -ν 7 Π -Π	194 -257 196 -253 197 -251 199 -249 209 -240 201 -247 202 -248 205 -247 247 -303 249 -302 248 -316 247 -303 331 -387 342 -385 422 -468 420 -467 420 -443 419 -462 426 -467 566 -610 634 -690 702 -756 847 -881 991 -1039	106 99 88 86 51 81 76 71 90 86 89 91 94 72 88 87 83 77 68 73 105 81 55 79	304 654 869 858 115 479 405 266 345 472 439 837 256 564 152 297 420 379 180 267 704 346 87 227	0.4 (0.5) 0.6 (0.5) 0.8 (0.75) 1.2 (1.0) 1.3 (1.5) 1.3 (1.0) 1.2 (1.0) 0.2 (0.5) 0.6 (0.75) 0.5 (0.75) 1.0 (1.0) 1.4 (1.5) 0.5 (0.5) 1.0 (1.0) 0.8 (0.75) 1.0 (1.0) 1.2 (1.0) 1.7 (1.5) 2.0 (2.0) 2.0 (5.0) 2.7 (4.0) 5.5 (5.0) 8.8 (10) 6.6 (5.0)
	a Root mean square deviation of the global fit. The assumed experimental precision of each
	band is given in parentheses (see § 4.1).			

Table 2 :

 2 Rotational transitions of HC 3 N recorded in this work.

	State	Freq. range J max No. of lines	rms a
		(GHz)			(kHz)
	v 4 = v 7 = 1	73 -791	86	83	0.209
	v 6 = 2, v 7 = 1	82 -422	45	157	0.048
	v 5 = 1, v 7 = 2	82 -422	45	155	0.043
	v 7 = 5	83 -508	54	128	0.022
	inter-state	376 -424	45	10	0.038

a Root mean square deviation of the global fit.

Table 4 :

 4 Numbers in parentheses are one standard deviation in units of the last quoted digit. Spectroscopic constants derived for HC 3 N in Π singly-excited bending states.

		1			878.315(21)	2079.306095(63)	2273.994846(61)	3327.371368(61)
	Bv	MHz	4549.058599(35)	4538.0994(25)	4535.1154(16)	4527.4931(15)	4541.7750(14)
	Dv	kHz	0.544252(11)	0.545441(97)	0.54115(24)	0.53795(20)	0.54017(19)
	Hv	mHz	0.0501(14)	0.0373(23)	0.0501 a	0.0501 a	0.0501 a
	Lv	nHz	-0.299(49)		-0.299 a	-0.299 a	-0.299 a	-0.299 a
	Constant Unit		v7 = 1	v6 = 1		v5 = 1
	Gv	cm -1	221.8376749(38)	498.7318990(52)	663.3685022(99)
	x L(tt)	GHz		21.823719768	6.64 a		...
	y L(tt)	MHz	-1.9539208	...		...
	Bv	MHz	4563.525607(54)	4558.301833(61)	4550.62389(12)
	Dv	kHz			0.568213(10)	0.554432(11)	0.545816(19)
	Hv	mHz			0.10844(55)	0.06383(61)	0.04891(95)
	Lv	nHz		-0.299 b	-0.299 b		-0.299 b
	d JL(tt)	kHz		-12.3148 a	12.3200 a		...
	h JL(tt)	Hz			0.03606 a	...		...
	l JL(tt)	µHz		-4.33 a	...		...
	qt	MHz		6.5386416(69)	3.5821933(50)	2.53861(11)
	qtJ	Hz		-16.2807(47)	-2.0650(21)		-1.3352(78)
	qtJJ	µHz		56.55(38)	...		...

a Kept fixed to ground state value.

Numbers in parentheses are one standard deviation in units of the last quoted digit. a Assumed value, see text. b Kept fixed to ground state value.

Table 5 :

 5 Spectroscopic constants derived for HC 3 N in Π stretching-bending combination states.

Table 6 :

 6 Spectroscopic constants derived for HC

3 N in bending overtone states.

Table 7 :

 7 Spectroscopic constants derived for HC 3 N in bending combination states.

  Numbers in parentheses are one standard deviation in units of the last quoted digit.

	q t77	u t7	u 77	q 7JJ	q 7J	q 7	q tJ	q t	h JL(t7)	d JL(t7)	l JL(77)	h JL(77)	d JL(77)	d JL(tt)	L v	H v	D v	B v	r t7JJ	r t7J	r t7	x L(t7)	y L(77)	x L(77)	x L(tt)
	Hz ... -0.0909(28) Hz -2.008(83) kHz -2.317(16) ... -14.846(64) ... -0.073(20) ...	Hz -16.359(11) µHz -16.6393(67) 56.55 a 55.41 a -16.427(99) 56.55 a	Hz -2.2691 a MHz -2.4735(94) 6.59296(19) 6.61721(12) -2.0645 a 6.63503(41)	MHz 3.62252(40) 3.67226(27) 3.62253 a	Hz ... ... ...	µHz -4.3349 a kHz -4.3349 a 55.652(83) 50.390(46) -4.3349 a 55.186(68)	kHz -12.3148 a Hz -6.477(56) 0.03606 a 0.03606 a -12.3148 a 0.03606 a	nHz -0.299 b kHz -0.299 b 12.3200 a 12.3200 a -0.299 b 12.3200 a	mHz 0.13130(67) 0.19702(64) 0.04996 a	kHz 0.578247(11) 0.602593(11) 0.587720(33)	MHz 4572.864613(61) 4587.39084(16) 4582.11183(11)	GHz -11.77215(14) -11.49987(62) kHz -12.725(66) -9.810(97) Hz 1.829(80) 2.091(16) -12.2727(42) -12.725 a 1.829 a	MHz -1.955 a -1.955 a GHz 17.12559(10) 17.12588(13) -1.955 a 17.1062(13)	GHz 21.82354 a 21.66088(22) 21.82354 a	GHz 6.64 a 6.64 a 6.64 a	.2880301(52) 941.068193(20) 1219.179425(99)
	-1.00(13) ...	...	-16.281 b 56.55 b	-1.439(11) 6.53864 b	2.56559(26)	-4.3349 a -20.22(72) 0.90(12)	-12.3148 a 0.03606 a	-0.299 b ...	0.10621(76)	0.569732(25)	4565.08437(95)	-0.0269(16) 1.02(10)	7.058(46)	-1.955 a 19.248(23)	21.82354 a	...	885.37212(74)
	-0.912(81) -2.218(54)	...	-16.840(71) 56.55 a	-1.439 a 6.5552(11)	2.5607(13)	0.90 a	-3.9556 a 6.5(13)	-19.49(17) 0.05760 a	-0.299 b ...	0.10628 a	0.592232(83)	4579.4837(28)	-68.4(26) 1.01 a	8.999(40)	-1.955 a 18.322(20)	21.7050(11)	...	1106.6535(14)

a Assumed value, see text. b Kept fixed to ground state value.

Table 8 :

 8 Resonance parameters.

Table 9 :

 9 Comparison between experimental and calculated ab initio spectroscopic constants of HC 3 N.

	Constant Unit Experimental a ab initio b
	α 1	MHz	7.2836	7.030
	α 2	MHz	21.5655	21.585
	α 3	MHz	13.9432	13.765
	α 4	MHz	10.9592	10.445
	α 5 α 6 α 7 q 5	MHz MHz MHz MHz	-1.5653 -9.2432 -14.4670 2.5386	-1.714 -9.234 -14.389 2.4052
	q 6	MHz	3.5822	3.508
	q 7	MHz	6.5386	6.425
	q 5J q 6J q 7J x L(55)	Hz Hz Hz GHz	-1.34 -2.07 -16.28 . . .	-0.896 -1.81 -15.04 159.1
	x * L(66) x L(77)	GHz GHz	6.64 21.823	-29.53 21.52
	x L(56)	GHz	. . .	0.0
	x * L(57)	GHz	19.248	16.24
	x L(67)	GHz	17.126	17.15
	r 56	GHz	. . .	50.07
	r * 57	GHz	7.058	4.44
	r 67	GHz	-11.772	-11.69

Table A .

 A 10: Transition moments of HC 3 N.bandIntensity a / cm -2 atm -1 W ab Θ v

				b / 10 -2 D
	ν 1	249.4	1/2 12.05	
	ν 2	40.7	1/2	5.890	
	ν 3	8.0	1/2	2.73	
	ν 4	0.28 c	1/2	0.80	(1.16)
	ν 5	268.6	2	14.30	
	ν 6	39.0	2	6.447	
	ν 7	0.73 d	2	1.55	
	ν 6 + ν 7	12.1	2	2.897	
	ν 5 + ν 7	0.40 c	2	0.75	(0.527)
	2ν 6	1.72	4	0.643	(0.546)
	Notes:				
	(a) From Ref. [53] except indicated otherwise.	
	(b) values in parentheses denote deperturbed values.	
	(c) Estimated from our experimental measurements (see text).
	(d) From Ref. [64].				

Note that a typo is present in Eq. (25) Ref.[START_REF] Fayt | Analysis of the ν 9 band complex of dicyanoacetylene and application of a theory of relative intensities to all subbands[END_REF]. The correct formula for the P (J) Hönl-London factors is reported in Eq. (13) of the same paper.

Acknowledgement

This study was supported by Bologna University (RFO funds). This work has been performed under the SOLEIL proposal #20190128; we acknowledge the SOLEIL facility for provision of synchrotron radiation and would like to thank the AILES beamline staff for their assistance. Support by the Italian Space Agency (ASI; 'Life in Space' project, N. 2019-3-U.0) is also acknowledged. J.-C.G. thanks the Centre National d'Etudes Spatiales (CNES) for a grant. A.P.C. gratefully acknowledges financial support by University Ca' Foscari Venezia (ADiR funds) and the computational facilities of the SCSCF ("Sistema per il Calcolo Scientifico di Ca Foscari"). B.M.G. and P.C. acknowledge the support of the Max-Planck-Society. IEG contribution was supported through NASA grant 80NSSC20K1059. We thank Ekaterina Karlovets for her help with validating early versions of the line list.

Appendix A. Intensity calculation

The experimental integrated band intensities are reported in Tables 1 and2 of Ref. [START_REF] Jolly | New infrared integrated band intensities for HC 3 N and extensive line list for the ν 5 and ν 6 bending modes[END_REF]. A theoretical description for such quantity can be derived from the expression of an individual ro-vibrational transition a, J ← b, J (J is the rotational quantum number and a and b summarize all other quantum numbers) of a bulk system of N molecules at temperature T .

where ν rv is the transition frequency, γ i the isotopic fractional abundance, Q vr (T ) the total rovibrational partition function at T , n L the Loschmidt number at p 0 = 1 atm and T 0 = 273.15 K, E rv is the energy of the lower state and S aJ ,bJ the line strength. S aJ ,bJ can be factored as follows:

in which Θ ab is the dipole moment derivative for the a ← b vibrational transition, L(J , J , k , k ) the Hönl-London factor and W ab is a numerical factor. S aJ ,bJ will be discussed in more detail later. By re-elaborating Eq. (A.1) we obtain

In the expression above we assumed E rv = E v + E r , and Q rv (T ) = Q v (T )Q r (T ). In order to obtain the integrated band intensity we need to sum over all possible transitions (P , Q and R) of a given band starting from any initial level defined by J . Namely