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Abstract
We study the Bernstein-Landau paradox in the collisionless motion of an electrostatic plasma in the presence of a
constant external magnetic field. The Bernstein-Landau paradox consists in that in the presence of the magnetic field,
the electric field and the charge density fluctuation have an oscillatory behavior in time. This is radically different from
Landau damping, in the case without magnetic field, where the electric field tends to zero for large times. We consider
this problem from a new point of view. Instead of analyzing the linear magnetized Vlasov-Poisson system, as it is

O usually done, we study the linear magnetized Vlasov-Ampere system. We formulate the magnetized Vlasov-Ampere
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system as a Schrédinger equation with a selfadjoint magnetized Vlasov-Ampere operator in the Hilbert space of
states with finite energy. The magnetized Vlasov-Ampere operator has a complete set of orthonormal eigenfunctions,
that include the Bernstein modes. The expansion of the solution of the magnetized Vlasov-Ampere system in the
eigenfunctions shows the oscillatory behavior in time. We prove the convergence of the expansion under optimal
conditions, assuming only that the initial state has finite energy. This solves a problem that was recently posed in the
literature. The Bernstein modes are not complete. To have a complete system it is necessary to add eigenfunctions
that are associated with eigenvalues at all the integer multiples of the cyclotron frequency. These special plasma
oscillations actually exist on their own, without the excitation of the other modes. In the limit when the magnetic
fields goes to zero the spectrum of the magnetized Vlasov-Ampere operator changes drastically from pure point to
absolutely continuous in the orthogonal complement to its kernel, due to a sharp change on its domain. This explains
the Bernstein-Landau paradox. Furthermore, we present numerical simulations that illustrate the Bernstein-Landau
paradox. In Appendix B we provide exact formulas for a family of time-independent solutions.

1 Introduction

Collisionless motion of an electrostatic plasma can exhibit wave damping, a phenomenon identified by Landau in [I§],
and that is called Landau damping. It consists in the decay for large times of the electric field. There is a very
extensive literature on Landau damping. See for example, [10, 1] [12] 27, B0, 3], and the references quoted there.
For a recent deep mathematical study of Landau damping in the nonlinear case see [2I]. On the contrary, it is known
that magnetized plasmas can prevent Landau damping [6]. In fact, it was shown by Bernstein [6] that in the presence
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of a constant magnetic field the electric field does not decay for large times, and that, actually, it has an oscillatory
behavior as a function of time. This phenomenon is called the Bernstein-Landau paradox, see for example [32], because
it seems paradoxical that even an arbitrary small, but nonzero, value of the external constant magnetic field can be
the cause of this radical change in the behaviour of the electric field for large times. The standard theory of the
Bernstein-Landau paradox in the physics literature is based on the representation of the solutions to the magnetized
Vlasov-Poisson system of equations in terms of a series of Bernstein modes. See, for example, [30][section 9.16] and
[31][section 4.4.1].

It is the purpose of the present work to revisit the Bernstein-Landau paradox from a new point of view. Instead
of considering the magnetized Vlasov-Poisson system we study the magnetized Vlasov-Ampere system. We write the
magnetized Vlasov-Ampere system as a Schrodinger equation where the magnetized Vlasov-Ampere operator plays
the role of the Hamiltonian. We construct a realization of the magnetized Vlasov-Ampere operator as a selfadjoint
operator in the Hilbert space, that we call H, that consists of the charge density functions that are square integrable
and of the electric fields that are square integrable and of mean zero. Actually, the square of the norm of H is the
energy. From the physical point of view this permits us to use the conservation of the energy in a very explicit way. On
the mathematical side, this allows us to bring into the fore the powerful methods of the spectral theory of selfadjoint
operators in a Hilbert space. There is a very extensive literature in spectral theory, see for example [15] 23] 24] 25|, [26].
This approach has previously been used in the case without magnetic field to analyze the Landau-damping in [IT], [12].
Within this framework the study of the Bernstein-Landau paradox reduces to the proof that the magnetized Vlasov-
Ampere operator only has pure point spectrum, i.e., that its spectrum consists only of eigenvalues. Then, the fact that
the magnetized Vlasov-Ampere operator has a complete set of orthonormal eigenfunctions follows from the abstract
spectral theory of selfadjoint operators. We expand the general solutions to the magnetized Vlasov-Ampeére system in
the orthonormal basis of eigenfunctions of the magnetized Vlasov-Ampere operator. The coefficients of this expansion
are the product of the scalar product of the initial state with the corresponding eigenfunction, and of the phase e~%*,
where ¢ is time and A is the eigenvalue of the eigenfunction. This representation of the solution shows the oscillatory
behavior in time for A # 0, or constant in time for A = 0, that is to say the Bernstein-Landau paradox. Moreover, our
representation of the solution as an expansion in the orthonormal basis of eigenfunctions of the magnetized Vlasov-
Ampere operator converges strongly in #H for any initial data in H, that is to say for any square integrable initial state
without any further restriction in regularity and decay. Note that our result is optimal, since square integrability is
the minimum that we can require, even to pose precisely the problem. A physical state has to have finite energy,
i.e., it has to be square integrable.Note moreover, that we prove that the Bernstein modes are not complete. In fact,
we prove in Theorem that for general initial data with finite energy, and that satisfy the Gauss law, the charge
density fluctuation is a sum of two terms. One of them is oscillatory in time (see (6.16))) and it coincides with the
standard series of Bernstein modes given in [0}, [5]. The other term, given in , is constant in time, and it is a series
of eigenfunctions with eigenvalue zero, of the magnetized Vlasov-Ampére system, and that satisfy the Gauss law. It
appears that the fact that the Bernstein modes are not enough to expand the general charge density fluctuation, and
that one has also to consider static modes is a new result, that has not been observed previously in the literature.
We prove that the spectrum of the magnetized Vlasov-Ampere operator is pure point in two different ways.

In the first one, we actually compute the eigenvalues and we explicitly construct a orthonormal basis of eigen-
functions, i.e., a complete set of orthonormal eigenfunctions. This, of course, gives us much more than just that the
expansion of the charge density fluctuation, and is interesting in its own right, because it can be used for many other
purposes. As we mentioned above, our analysis shows that the Bernstein modes alone are not a complete orthonormal
system. In addition to the eigenfunctions with eigenvalue zero that contribute to the static part of the charge density
fluctuation, to have a complete orthonormal system in the Hilbert space, H of configurations with finite energy, it is
necessary to add other eigenfunctions that are associated with eigenvalues at all the integer multiples of the cyclotron
frequency, including the zero eigenvalue. These other eigenfunctions have nontrivial density function, but the electric
field and the charge density fluctuation are zero. Recall that the charge density fluctuation is obtained averaging the
density function over the velocities. In consequence, these other eigenfunctions do not appear in the expansion of the
charge density fluctuation. Anyhow, these eigenfunctions are physically interesting because they show that there are
plasma oscillations such that at each point the charge density fluctuation and the electric field are zero. Some of them
are time independent. Note that since our eigenfunctions are orthonormal, these special plasma oscillations actually
exist on their own, without the excitation of the other modes. It appears to us that this fact, or at least the exact form
of these eigenfunctions, with zero charge density fluctuation and zero electric field, has not been observed previously
in the literature.

In the second one we use an abstract operator theoretical argument based on the celebrated Weyl theorem on the



invariance of the essential spectrum of a selfadjoint operators in Hilbert space. This argument allows us to prove that
the magnetized Vlasov-Ampere operator has pure point spectrum. It gives a less detailed information about where
the eigenvalues are located, and it tells us nothing about the eigenfunctions. However, it is enough for the proof of
the existence of the Bernstein-Landau paradox without going through the detailed calculations of the first approach.
It also tells us why the Bernstein-Landau paradox exists from a general principle in spectral theory.

On the contrary in the case where the magnetic field is zero, it was proven in [I1], 2] that the spectrum of the
magnetized Vlasov-Ampere operator is made of an absolutely continuous part and of a kernel. The Landau damping
follows from the well known fact that for a selfadjoint operator H, the operator e~**H Py goes weakly to zero as t — +00
(here P, is the projection on the absolutely continuous part of the spectrum). It has been remarked in [I0] that there
are ”interesting analogies with Lax and Phillips scattering theory ” [I9]. In fact, the results of [111 [I2] prove that it is
not just an analogy, but the consequence of a convenient reformulation of Landau damping in terms of the magnetized
Vlasov-Ampere system. The sharp change in the spectrum of the magnetized Vlasov-Ampere operator when the
magnetic field goes to zero, i.e. from pure point to absolutely continuous in the orthogonal complement to its kernel,
may appear to be paradoxical because the formal magnetized Vlasov-Ampere operator is formally analytic in the
magnetic field. The issue is that the domain of the selfadjoint realization of the magnetized Vlasov-Ampere operator
changes abruptly when the magnetic field is zero. It is a well known fact in the spectral theory of families of linear
operators that the spectrum can change sharply at values of the parameter where the domain of the operator sharply
changes. For a comprehensive presentation of these results the reader can consult, for example, [15]. Summing up,
this shows that there is no paradox in the Bernstein-Landau paradox, just a well known fact of spectral theory, but, of
course, in the physics literature the domains of the operators are usually not taken into account. Perhaps the reason
why the absence of Landau damping for arbitrarily small magnetic fields is considered as paradoxical is related to the
fact that the magnetized Vlasov-Poisson system somehow hides the underlying mathematical physics structure of our
problem, in spite of the fact that it is a convenient tool, particularly for computational purposes. Let us explain what
we mean. The full Maxwell equations consist of the Maxwell-Faraday equation, the Ampere equation, the Gauss law,
and the Gauss law for magnetism, i.e., the divergence of the magnetic field is zero. In our case the Maxwell-Faraday
equation and the Gauss law for magnetism are automatically satisfied. So, of the Vlasov-Maxwell equations, only
the Vlasov equation remains, as well as the Ampeére equation, and the Gauss law. Furthermore, the Gauss law is a
constraint that is only necessary to impose at the initial time, since it is propagated by the magnetized Vlasov-Ampere
system. Further, both the Vlasov and the Ampeére equations are evolution equations. So, the natural way to proceed
is to solve the magnetized Vlasov-Ampére system as an evolution problem, and to restrict the initial data to those who
satisfy the Gauss law. The situation with the magnetized Vlasov-Poisson system is somewhat different because the
Ampere equation is not explicitly taken into account. So, one could think that the magnetized Vlasov-Poisson system
is incomplete. The remedy is that instead of imposing the Gauss law only at the initial time, it is required at all times.
We actually prove in Section [2] that the magnetized Vlasov-Poisson system is indeed equivalent to the magnetized
Vlasov-Ampere system plus the validity of the Gauss law at the initial time. However, the magnetized Vlasov-Poisson
system is a hybrid one where the Vlasov equation is an evolution equation and the Poisson equation is an elliptic
equation, without time derivative. This is one way to understand why in the magnetized Vlasov-Poisson system the
basic mathematical physics of our problem is not so apparent. On the contrary, as we mentioned above, the magnetized
Vlasov-Ampere system is an evolution problem, that moreover, as we already mentioned, and as we explain in Section
has a conserved energy that is explicitly expressed in terms of the density function and the electric field that appear
in the magnetized Vlasov-Ampere system. These two facts are the reasons why the magnetized Vlasov-Ampere system
has a selfadjoint formulation in Hilbert space, and then, it is clear that there is no paradox in the Bernstein-Landau
paradox, as we explained above.

Once the selfadjointness of the magnetized Vlasov-Ampere formulation is established, it is a matter of explicit
calculations to determine the eigenfunctions. The technicalities of the calculations are related to the fact that three
different natural decomposition are combined. The first one is based on Fourier decomposition (factors ei"®), the
second one is based on a direct sum of the kernel of the operator and its orthogonal (it will be denoted as H =
Ker[H| @ Ker[H]1) and the third one starts from the determination of the eigenfunctions with a vanishing electric field
(it will be denoted as F' = 0). The combination of these three decompositions is made compatible with convenient
notations.

Passing to the limit w. — 0 in the representation formulae is possible in principle. This requires a careful analysis.
We do not consider this problem in this work except in the very last remark in Appendix B. Nevertheless, in Lemma
two consecutive eigenvalues are different by the constant w, and in Lemma two consecutive eigenvalues are
different by a value that is smaller than 2w.. Therefore, at the limit w, — 0, the discrete spectrum fills the entire real



line with density and so it approaches the spectrum of the limit problem without magnetic field. A recent mathematical
work [5] studied the Vlasov and the Vlasov-Fokker-Planck equations in a box, in three dimensions in configuration and
in velocity space, and with a constant background magnetic field. They consider the Landau damping, the Bernstein-
Landau paradox and the enhanced collisional relaxation in the limit when the collision frequency goes to zero. Since
in this paper we study the case when there are no collisions, we will only comment on the results of [5] when the
collision frequency is zero. We denote by 72 the three-dimensional torus, ie., 72 := [0, QTF]ger. In the collisionless case
[5] considers the following linearized magnetized Vlasov-Poisson system for (x,v) € T2 x R?, where x = (z,y, 2), and

v = (v1,v2,v3),

WG (t,x,v) + v -V G(t,x,v) + %}"(t,x) Vo fov) + %V x Bg - VyG(t,x,v) =0, G(0,x,v) = Gin(x,V),
F(t,x) = —Vx /7_3 W(x —y)p(t,y)dy,

/ G(t,x,v)d*xd*v =0,
T3xR3

where,
p(t,x) := G(t,x,v)d>v,
R3
and 1 )
q ik-x
W(x) = L
S EE I A
kez3\{0}

o) = 5o ( il +f<v§>>, (12

with T) > 0.
To state the results of [5] we first introduce some notation. Let us define the Fourier coefficients of f € L?(T?3) as
follows,

F) = /T RS k= (hy ks ks) € 2

Then,

109 = s 2 < 0.

keZ3

Denoting < v >:= /1 + |v|?, the HZ, norm of a function f is defined as follows [5],
£ 11%0 = / <v > <V > f(x,v)|?dPxdv,
" T3 xR3

with V = Vi , the differential operator both in x and v.
In [5] the following theorem is stated.

THEOREM 1.1. (Bedrossian and Wang, Theorem 1, [3]) Let < v >™ Gy, € H?, for 0 > 0, and m > 2. Suppose
that || f|| gor < b0, with o' > 0 4-5/2, and |T) — 1|+ ¢ sufficient small depending on universal constants and Bo. Then,
the following holds.

a) The Landau damping for z—dependent modes:

|||(3Z|1/2 <V,0.t>7 p(t)“Lng <U,U’,m Hgin”H;;-

~

b) If k3 = 0,and we additionally have o > 5/2, then for all ki := (k1,k2,0) and n € N, 3! by = b, k(L Bo) €
(n,n+1) and coefficients r1, x depending on Gi, such that (with the convention that r_g is distinct from ro k),

oo
by, kaBo by, k9Bo
P 1—=——1 —1— t
p(t,k,,0) = E Tnk€ ™ +r_pke mov (1.3)
n=0



and further, there holds,
1

< - -
T <k>r<n>Y
where a, 8,7 are such that v = min(8 + 1,25 — 1), a + 25 — % <o, and B+ 1< m.

|74k Ginll g, »

Item a) of Theorem 1 of [5] (Theorem [L.1]above) is concerned with the Landau damping of the z—dependent modes
(see also [6]), that is to say, of the modes that depend on the coordinate, z, along the direction of the magnetic field
By. In this work we do not consider this problem, since as we work in 1 + 2 dimensions our modes only depend on
the coordinate x that is orthogonal to the direction of the magnetic field By.

Item b) of Theorem 1 of [5] (Theorem above) considers the expansion of the Fourier coefficients, p(t, k,,0) of
the charge density fluctuation in terms of the Bernstein modes, that is to say the Bernstein-Landau paradox, in the
case of 3 + 3 dimensions. This is the problem that we consider in 1 + 2 dimensions in this work. We now proceed to
discuss this result. Let us first show that if p(¢, k. ,0) in is time independent, then it has to be identically zero.
Assume then, that 5(¢,k,,0) = p(ko,0). Since all the b, i are different from each other, and different from zero, then
one deduces b aBy

0 = limroe fy plki,0)e™ =5t dt

. T b, kaBo . bn,kaBo .bj kaBo
= limp_ o fo (ZZOZO Tpk€' ™ t+1"_n7ke ) et gt (1.4)

= T:tj,k~

Hence, r4,x =0 for all n € N, and all k = (k, ,0). Therefore, item b) of Theorem 1 of [5] (Theorem above) implies
that for the time independent solutions to (|1.1)) the Fourier coefficient of the charge density, p(k 0), is identically zero
for all k; . Recall that p(k) is the Fourier coefficient of p(x), that is to say,

p(k) = /7’3 p(x) e~ > dx.

Then, inverting the Fourier series,

o) = g 2 i) (15)

Further, by (1.5)

1 (e et ko)
/ p(l’,y72) dz = W Z ez(k11+k2y) P(k17k270)°
T (k1 ko) €22

Hence, as for time independent solutions, if (1.3) holds, p(k,,0) = 0, we have proven that for the solutions given in
Item b) of Theorem 1 of [5] (Theorem [I.1| above), if their are time independent, necessarily

/ plxy,x3)des =0. (1.6)
-

However, in Appendix B we construct an explicit family of time-independent solutions to 7 that satisfy the
hypotheses of item b) of Theorem 1 of [5] (Theorem [L.1] above) with g(k.,0) that is not identically zero, and where
does not holds. This shows that the result of item b) of Theorem 1 of [5] (Theorem [1.1] above) is devoted to the
behaviour of a special class of solutions. This is clear by comparison with the physical literature [4, [0 [32] which is
based on the study of a dispersion relation. The dispersion relation is mathematically justified in [5], in particular with
a summability argument of the contributions of all poles of the dispersion relation. Nevertheless the pole 1/z, that
corresponds to time-independent solutions, is discarded in equation (2.14) in [5], and in this sense, the works [4 [6, [5]
focus on a subclass, or special class, of solutions. In our work, we do not make such hypothesis or restriction and that is
why we recover a time-independent solution as in [32], eq. (55)]. Note that in Appendix B we write the model for ions,
as in [5], for the purpose of making the comparison with the results of [5] more transparent. In the rest of our paper
we write the model for electrons. Actually, the models for ions and electrons are the same, up to a change in the sign
of the cyclotron frequency and of the electric field. See Remark [2.1] This is actually in agreement with our theoretical
expansions in - that show that in general the charge density fluctuations have a time-independent part
and a time-dependent part. Further, our result in — solves, in the case of one dimension in space and two
dimensions in velocity, the problem posed in Remark 3 of [5] of justifying the expansion in the Bernstein modes of
the charge density fluctuation, without the regularity in space and decay in velocity that they assume in Theorem 1



of [5] (Theorem above). Our model is one dimensional in space and two dimensional in velocity. However, there
is no difficulty to write it in three dimensions in space and velocity, because Maxwellian functions have a natural
compatibility with separation of variables techniques. In principle, the extension of our results to three dimensions in
space and velocity is possible with due attention paid to the anisotropy introduced by the magnetic field. It is left for
further research.

The organization of this work is as follows. In Section [2] we introduce the magnetized Vlasov-Poisson and the
magnetized Vlasov-Ampere systems, and we prove their equivalence. In Section [3]we give the notations and definitions
that we use. In sections [4] we consider the case of a pure magnetized Vlasov equation without coupling. We construct
a selfadjoint realization of the magnetized Vlasov operator, we explicitly compute the eigenvalues and we explicitly
construct an orthonormal system of eigenfunctions that is complete, i.e., it is a basis of the Hilbert space. In Section
] we construct a selfadjoint realization of the magnetized Vlasov-Ampere operator, we compute the eigenvalues, and
we construct an orthonormal systems of eigenfunctions that is complete, that is to say that is a basis of the Hilbert
space. In Section [6] we obtain a representation of the general solution to the magnetized Vlasov-Ampere system as
an expansion in our orthonormal basis of eigenfunctions. In particular we prove the convergence of the Bernstein
expansion [6], [5], under optimal conditions on the initial state. In Section [7| we give a operator theoretical proof of
the existence of the Bernstein-Landau paradox, with an argument based on the Weyl theorem for the invariance of
the essential spectrum. In Section [§] we illustrate our results with numerical calculations. In Appendix A we study
the properties of the secular equation. Finally, in Appendix B we construct explicit families of time-independent
solutions to the linearized magnetized Vlasov-Poisson system.

2 The magnetized Vlasov-Poisson and the magnetized Vlasov-Ampere
systems

We adopt the Klimontovitch approach [16], 14] where the Newton equation of a very large number of charged particles
with velocity v moving in an electromagnetic field is approximated by a continuous density function f(¢,z,v) > 0. The
variable t is time. We assume that the charged particles undergo a one dimensional motion, and that the real variable
x is the position of the charged particles. Furthermore, we suppose that the velocity, v, of the charged particles is two
dimensional, i.e., v = (vy,v2) € R2. Further, we take the motion of the charged particles along the first coordinate
axis of the velocity of the charged particles. The density function is a solution of a Vlasov equation,

Ouf + 010, f +F - Vof =0. (2.1)

We assume, for simplicity, that the motion of the charged particles is a 27m-periodic oscillation, that is a usual assump-
tion [I0]. Hence, we look for solutions to (2.1)), f(t,z,v), for t € R,z € [0,27],v = (v1,v2) € R?, that are periodic in
z, i.e., f(t,0,v) = f(t,2m,v). The electromagnetic Lorentz force,

F(t,z) = % (E(t,z) + v x B(t,x)), (2.2)

is divergence free with respect to the velocity variable, that is V,, - F = 0. The Maxwell’s equations are simplified,
assuming that the magnetic field B(¢,x) = By is constant in space-time. Following the convention adopted in [4,[32], we
suppose that the two dimensional velocity v is perpendicular to the constant magnetic field, i.e., Bqg = (0,0, By), By > 0.
Moreover, we assume that the electric field is directed along the first coordinate axis, E(t,z) = (E(t, x),0,0). We adopt
a convenient normalization adapted to electrons, that is gref = —1 and myer = 1, where gyef is the charge of the electron,
and m,er 1S the mass of the electron. The electric field satisfies the Gauss law,

0. E(t,x) = 2w — fdv, (2.3)
R2
where 27 is the constant density of the heavy ions, that do not move. We take the density of the ions equal to 27 to
simplify some of the calculations below. The term — fR2 f dv is the charge density of the particles with charge —1.
With these notations and normalizations (2.1]), and (2.3)) are written as the following system,

8tf + vlaxf - Eamf + we (_UQavl + vlavz) f = Oa

(2.4)
0. E(t,z) =21 — fdv.
R2

We denote the cyclotron frequency by w. := By.



REMARK 2.1. The model written for positive ions instead of (negatively charged) electrons is similar to , with
the only modification that the sign in front of the electric field and w. is changed in both equations.

We retain the potential part of the electric field

where the potential ¢(¢,x) is a solution to the Poison equation,
—Ap =27 — fdv. (2.6)
R2

The electric field and the potential are assumed to be periodic with period 27, i.e. E(t,0) = E(t,2n), p(t,0) = (¢, 27).
Note that since the potential (¢, ) is periodic it follows from (2.5 that the mean value of the electric field is zero,

2m
E(t,z)dx = 0. (2.7)
0

Two important properties of the magnetized Vlasov-Poisson system (2.40 (2.5), and (2.6) are that the density
function satisfies the maximum principle

inf ini\L, U S t,x,v S sup ini\T, V),
(z,v)G[(),27r]><]R2f ( ) f( ) (m,v)G[O,QW]XRZ'f ( )

where fi,; is the initial value of the solution, f(t,z,v), and that the total energy is constant in time,

d / Els B
— — fdxdv + / ——dx | =0. 2.8
dt < (0,27 xR 2 (0,27] 2 28)

Following [6], a linearization of the equations around a homogeneous Maxwellian equilibrium state fo(v), where,
2

fo(w) :== e~z is performed. Here the Maxwellian distribution is normalized for Tyt kg = 1, where T} is the reference
temperature and kg is Boltzmann’s constant. It corresponds to the expansion

f(t,l’,'U) = fo(’l)) +tev fo(v)u(t,x,v) + 0(52)7 (29)

and
E(t,x) = By +eF(t,z) + O(¢?), (2.10)

with a null reference electric field Ey = 0. Inserting (2.9) and (2.10) into (2.4), and keeping the terms up to linear in
€, one gets the linearized magnetized Vlasov-Poisson system written as,

Ot + v10,u + Foiy/ fo + we (—v20y, + v10y,) u = 0,

0, F = —/Rz uy/ fodv, (2.11)

/ F =0,
[0,27]

where in the third equation we have added the constraint that the mean value of the electric field F' is zero, as in
(2.7). Moreover, the electric field F(t,x) = —0,p(t, z) is obtained from a potential as in (2.5)), where the potential is
periodic, ¢(t,0) = ¢(t, 27), and it solves the Poisson equation,

—Ap=-— /R? u~/fodv. (2.12)

Observe that the second equation in (2.11]) is the Gauss law,

0. F(t,2) = plt, ), (2.13)



where p(t,x) is the charge density fluctuation of the perturbation of the Maxwellian equilibrium state,

p(t,x) == —/R2 u(t, ,v) \/fo(v)dv. (2.14)

The study of the solutions to the magnetized Vlasov-Poisson system is the standard method to analyze the dynamics
of a very large number of charged particles moving in the presence of a constant external magnetic field. For the case
of the Bernstein-Landau paradox see, for example, [6], [32], [30][section 9.16], [31][[section 4.4.1] and [5]. We now
present an alternate method to study this problem. In the full Maxwell equations one of the equation is the Ampere
equation

8tF:/ vy u/ fodv, (2.15)
R2

where we have taken the dielectric constant eg = 1. We consider here the following modified Ampere equation

&gF:I*/ v/ fo udv, (2.16)
R2

where I* is the space operator such that I*g = g — [¢g] and the mean value in space of a function g is denoted by
[9], that is to say, I*g(z) := g(z) — -~ 2 g(y) dy. With this convention the magnetized Vlasov-Ampeére system is

2m JO
written as follows,
Oru + v10,u + Fuiy/ fo + we (—v20y, + v10,,) u = 0,

O F = I*/ v1 v/ foudv.
]RQ

To the magne:tized Vlasov-Ampere system (2.17), we add conditions for Fi,; := F(0,) and wui; = u(0,-,-) : the
integral constraint,

(2.17)

27
Fapi dz = 0, (2.18)
0

is satisfied at initial time, and the Gauss law ([2.13)), (2.14]) is also satisfied at the initial time,

iFmi = —/ Uini\/ fodv. (2.19)
dx R2

LEMMA 2.2. The linearized magnetized Vlasov-Poisson system (2.11)) is equivalent to the magnetized Viasov-Ampeére
system (2.17) with initial conditions that satisfy (2.18]), (2.19).

Proof. Let (u, F') be a solution the magnetized Vlasov-Ampere system (2.17) that satisfy (2.18), (2.19). It follows

from the Ampere equation that
2T 2T
8,5/ F(t,x)da::/ I*/ v\ fou=0
0 0 R2

and consequently the integral constraint ([2.18]) is propagated to all times. The Gauss law (2.19)) is propagated also to
all times by the magnetized Vlasov-Ampere system, as we proceed to prove. Multiplying the first equation in ([2.17)
by v/fo, integrating in v over R?, using that fy is an even function of |v| and using integration by parts, we prove the

following continuity equation,
3t/ uy/ fodv + 33;/ viun/ fodv = 0. (2.20)
R?2 R2
Deriving (2.16) with respect to @ we obtain, 0 = 8, (9, F — I* [p viuv/fodv) = 0y (O4F — [g2 viun/fodv), because

O = 0. I*. Then, by ([2.20))
0:5‘t<3xF+/ U\/fod’l)),
R2

from which the Gauss law follows for all times. We have proven that a solution to the magnetized Vlasov-Ampere

system (2.17)) that satisfies the initial conditions (2.18]), (2.19) solves the magnetized Vlasov-Poisson system (2.11)).




On the contrary let (u, F') be a solution to the magnetized Vlasov-Poisson system (2.11)). Then by the second equation

in (2.11)) and (2.20)),
0= 0,0 F +6t/ uy/ fodv = 0, <8tF —/ vlu\/fodv) .
R2 R2

So O F = [ v1uy/fodv + C(t), where C(t) is constant in space. Then, &, I*F = I* [, viuy/fodv. But F has zero
mean value, so I*F' = F, and it follows that the Ampere law in (2.16|) holds. Hence, the magnetizedVlasov-Poisson
system implies the magnetized Vlasov-Ampere system (2.17) and the initial conditions (2.18]), (2.19)).

O
From now on we only consider the magnetized Vlasov-Ampere system (2.17)) with conditions (2.18]), (2.19). A
(2.17)

fundamental energy relation is easily shown for solutions of the magnetized Vlasov-Ampere formulation

2 F2
4 / u—dmdv—i—/ ~dx | =o0. (2.21)
dt \ Jjo,2x]xr2 2 (0,27] 2

It is the counterpart of the energy identity |j so the term f[o 2] xR fv %dwdv is identified with the kinetic energy

of the negatively charged particles, and the term f[ogﬂ] %2dx is the energy of the electric field. This identity is known
since [I7, [3]. As we show in the next sections, the identity is the basis of our formulation of the magnetized
Vlasov-Ampere system as a Schrédinger equation in Hilbert space, where magnetized the Vlasov-Ampere operator
plays the role of the selfadjoint Hamiltonian.

3 Notations and Definitions

We will write the magnetized Vlasov-Ampere system as a Schrodinger equation with a selfadjoint Hamiltonian in an
appropriate Hilbert space. We find it convenient to borrow some terminology from quantum mechanics. For this
purpose, we first introduce some notations and definitions. We designate by RT the positive real semi-axis, i.e.,
Rt := (0,00), and by R? the plane. The set of all integers is denoted by Z and the set of all nonzero integers by
Z*. The positive natural numbers are designated by N*. By C we designate the complex numbers. We denote by C
a generic constant whose value does not have to be the same when it appears in different places. By C>°([0, 27]) we
designate the set of all infinitely differentiable functions in [0,27], and by C§°(R?) we denote the set of all infinitely
differentiable functions in R? with compact support. Let B be a set of vectors in a Hilbert space, H. We denote by
Span[B] the closure in the strong convergence in H of all finite linear combinations of elements of B, in other words,

N
Span[B] := closure Zanj ta; €C,X; € BN e N

j=1
Let M be a subset of a Hilbert space H. We define the orthogonal complement of M, in symbol, M, as follows,
ML ={feH: (f,u)g =0, for allu € M}.

Let H be a Hilbert space, and let Hj,j =1,...,N,2 < N < oo, be mutually orthogonal closed subspaces of H, that is
to say,
H; C H;,, and H,, C Hj, j#m,1<j,m<N.

Note that if H; and H, are mutually orthogonal, then one has (f,u)m = 0, f € H;, u € H,,. We say that H is the
direct sum of the H;,j =1,...,N,2 < N < oo, mutually orthogonal closed subspaces of H, and we write,

H= @é‘vzl va

if for any f € H, there are f; € H;,j =1,..., N, such that, f = Zjvzl fj. Note that the f;,j =1,..., N are unique

for a given f, and that [|f]I = S, I1fill%

Let A be an operator in a Hilbert space H, and let us denote by D[A] the domain of A. We say that the operator
B is an extension of the operator A, in symbol, A C B, if D[A] C D[B], and if Au = Bu, for all u € D[A]. Suppose
that the domain of A is dense in H. We denote by At the adjoint of A, that is defined as follows,

D[AT] := {v € H : (Au,v)y = (u, f)u, for some f € H, and for allu € D[A]},



and
Afy = f, v € D[AT].

We say that A is symmetric if A C A', and that A is selfadjoint if A = AT, that is to say if D[A] = D[A'], and
Au = ATu,u € D[A] = D[AT]. An essentially selfadjoint operator has only one selfadjoint extension. For any operator
A we denote by Ker[A] := {u € D[A] : Au = 0} the set of all eigenvectors of A with eigenvalue zero. For more
information on the theory of operators in Hilbert space the reader can consult [I5] and [23].

We denote by L?(0,27) the standard Hilbert space of functions that are square integrable in (0, 27). Furthermore,
we designate by L3(0,2) the closed subspace of L?(0,27) consisting of all functions with zero mean value, i.e.,

Li(2,7) = {F € L*(0,2n) : /027r F(z)dx = 0} . (3.1)

Note that since all the functions in L?(0,27) are integrable over (0,2m) the space L3(0,27) is well defined. Further,
we denote by L?(R?) the standard Hilbert space of all functions that are square integrable in R2. Let us denote by A
the tensor product of L?(0,27) and of L?(R?), namely,

A= L?*(0,27) ® L*(R?). (3.2)

For the definition and the properties of tensor products of Hilbert spaces the reader can consult Section 4 of Chapter I1
of [23]. We often make use of the fact that the tensor product of an orthonormal basis in L?(0,27) and an orthonormal
basis in L%(R?) is an orthonormal basis in .A. As shown in Section 4 of Chapter II of [23], the space A can be identified
with the standard Hilbert space L?((0,27) x R?) of square integrable functions in (0, 27) x R? with the scalar product,

(ua f)L2((0,27r)><R2) = / ’U;(J?,U) f($,’U) dxdv,
(0,27) xR2
where z € (0,27) and v = (v1,v2) € R2. Our space of physical states, that we denote by #, is defined as the direct
sum of A and LZ(0,27).
H = A® LE(0,27). (3.3)

u) where u(z,v) € A and

We find it convenient to write H as the space of the column vector-valued functions, ( r

F(z) € L3(0,27). The scalar product in H is given by,

((11;) ’ <cf;> > L (u, f)a + (F, Q) 12(0.27)-

Note that by the identity the H-norm of the solutions to the magnetized Vlasov-Ampere system is constant in
time. This is the underlying reason why we will be able in later sections to formulate the magnetized Vlasov-Ampere
system as a Schrodinger equation in H with a selfadjoint realization of the magnetized Vlasov-Ampere operator playing
the role of the Hamiltonian. Moreover, the square of the norm of H is the constant energy of the solutions to the
magnetized Vlasov-Ampere system.

Let us denote by H()(0,27) the standard Sobolev space [2] of all functions in L?(0,27) such that its derivative in
the distribution sense is a function in L?(0,27), with the scalar product,

(F, G)H(l)(0,2ﬂ') = (F,G)r2(0,27) + (0o F, 0:G) 12(0,27)-
We designate by H (10 (0,27) the closed subspace of H(1)(0,27) that consists of all functions in F € H™(0,2n) such
that F(0) = F(27) and that have mean zero. Namely,
2
H®9(0,27) := {F e HM(0,2n) : F(0) = F(2r), and / F(z)de = o} .
0

Note [2] that as the functions in H(Y)(0,27) have a continuous extension to [0,27], the space H19(0,27) is well
defined.
We denote by L?(R*,rdr) the standard Hilbert space of functions defined on R* with the scalar product,

(7, 1) 3 e ) = / () () -
0
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4 The magnetized Vlasov equation without coupling

In this section we consider the case without electric field, i.e. the magnetized Vlasov equation. The results of this
section will be useful in the study of the full magnetized Vlasov-Ampere system, that we carry over in Sections
The magnetized Vlasov equation can be written as the following Schrodinger equation in A,

10w = 1 (—v10; + we(va Oy, — V1 Oy,)) U (4.1)
In the following proposition we obtain a complete orthonormal system of eigenfunctions for the magnetized Vlasov
equation (4.1). To this end, we introduce the polar coordinates (7, ) of the velocity v € R2.
PROPOSITION 4.1. Let {7;}52, be an orthonormal basis of L*(R", rdr). Let ¢ € [0,2m),r > 0, be polar coordinates
in R?,v1 = rcos p,vy = rsing. For (n,m,j) € Z2 x N* we define,

m(@E—32) gime

Unmj = ——F—— ——Tj
e Ver o Vor

Then, the tup m j, (n,m,j) € Z? x N* are an orthonormal basis in A. Furthermore, each Un,m,j 15 an eigenfunction for
the magnetized Vlasov equation (4.1) with eigenvalue ,\ﬁ,?) = mwe,

(r). (4.2)

i (—v10; + we(v2 Oy, — V1 Ouy)) Unym,j = )\sg) Un,mjs (n,m,j) € 72 x N*. (4.3)

©

Moreover, the eigenvalues Ay’ ,m € Z, have infinite multiplicity.

Proof. We first prove that the w, m ;, (n,m, j) € Z* x N* are an orthonormal basis in A. Clearly, it is an orthonormal
system. To prove that it is a basis it is enough to prove that if a function in A is orthogonal to all the w, m ;, (n,m, j) €
72 x N*, then, it is the zero function. Hence, assume that u € A satisfies,

(U, un,m,j)A = 07 (na ma]) € Z2 X N* (44)

Denote g, (v) := 027r e~ y(z,v)dz. By the Cauchy-Schwarz inequality, one has |g,(v)|* < 2r fo% |u(x,v)|? dx.

Further, since u € A, it follows that g, € L?(R?). By (4.4), for each fixed n € Z,
/ gn (V) it gmime 7i(r)derdr =0, (m,j) € Z x N*.
(0,27) xR+

As the functions \/% ™ 5(r),m € Z,j € N* are an orthonormal basis in L2(R2), one has that g, (v) "% = 0 for

a.e. v € R2. Moreover, as ¢4 is never zero, we obtain, gn(v) =0, for a.e. v € R? i.e., fo% e~ y(z,v)dx = 0,n € Z.
As the functions \/%ei"“’,n € 7 are an orthonormal basis in L?(0,27), it follows that u(x,v) = 0. This completes
the proof that the uy m j, (n,m,j) € 7Z? x N*, are an orthonormal basis of A. Equation follows from a simple
calculation using that 9,, = - 0, — 13 0,, Oy, = “2 O0r + % 0, and v2 0y, — v1 O, = —0,,. Note that the eigenvalues
)\%2; have infinite multiplicity because all the uy, , ; with m fixed and n € Z, j € N* are orthogonal eigenfunctions for
AR O

Let us denote by hg the formal magnetized Vlasov operator with periodic boundary conditions in x, that we define
as follows,
hou := 1 (—v10z + wWe(v2 Oy, — v1 Oyy)) U, (4.5)

with domain,
Dlhy) :=D, (4.6)
where by D we denote the following space of test functions,

di

D = {uc C5([0,27] x R?) : %u(O,v) = —u(2mv),j=1,...}, (4.7)

dzi

where by C§°([0,27] x R?) we designate the space of all infinitely differentiable functions, defined in [0, 27] x R?, and
that have compact support in [0, 27] x R2.
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We will construct a selfadjoint extension of hg. For this purpose, we first introduce some definitions. Let us denote
by 12(Z? x N*) the standard Hilbert space of square summable sequences, s = {snym’j, (n,m,j) € Z* x N*} with the
scalar product,

(s, d)12(z2 xnve) = E Sn,m,j Anm,j-
(n,m,j)€Z2 xN*

Let U be the following unitary operator from A onto I2(Z? x N*),
Uu = {(u, up,m,j) 4, (n,m, j) € 72 x Z}. (4.8)
We denote by H, the following operator in 1?(Z? x N*),

{(Ho $)nms (n,m, ) € 22 x N} o= {ADs0m s (n,m. ) € 22 x W' (4.9)

—

with domain, D[Hy], given by,
DIHs] i= {{snm (em.j) € Z2 x N} € B(Z2 x N+ {AD s, (n,m, ) € 22 x N'} € B(Z2 x N') }. - (4.10)

The operator fl\o is selfadjoint because it is the multiplication operator by the real eigenvalues )\53) defined on its
maximal domain.

PROPOSITION 4.2. Let us define

Hy=U'HyU, D[Hy]:={u€ A:Uue D[Hy|}. (4.11)
Then, Hy is selfadjoint. Its spectrum is pure point, and it consists of the eigenvalues Agg),m € 7Z. Moreover, each
etgenvalue ,\SS),m € Z, has infinite multiplicity. Further, hg C Hy.

Proof. Hy is unitarily equivalent to the selfadjoint operator I/{B, and in consequence H is selfadjoint. Let us prove
that hg C Hp. Suppose that u € D[hg]. Integrating by parts we obtain,

(hOU7 un,m,j)A = (ua ho Un,m,j)_A = )‘52) (u7 un,m,j)_A > (n7 m:]) €7Z° x N*.

Hence,
Uhou = {(hott, Un,m.j) .4, (n,m, j) € Z* x N*} = {Agp (U, U ) A5 (N, §) € Z2 X N*} € (2 xN*), (4.12)

where we used that hou € A, Hence, .
Uu e D[Ho]

Moreover,
Hou = UTl/i\oUu =Uf {A,(fj) (W, Un,m,j) a4, (n,m, ) € 72 x N*} = U Uhou = hou.

This completes the proof that hy C Hy. As hg C Hy and one has the completeness of the eigenfunctions of hy by
Proposition it follows that the spectrum of Hy is pure point, it consists of the eigenvalues )\52), m € Z, and each
oi lue A P .

genvalue Ay, m € Z, has infinite multiplicity. O

We write the magnetized Vlasov equation (4.1)) as a Schrédinger equation with a selfadjoint Hamiltonian as follows,

i@tu = Hou.

We call Hy the magnetized Vlasov operator.
Actually, we can give more information on hg.

PROPOSITION 4.3. Let hg be the formal magnetized Viasov operator defined in (4.5)) and (4.6), and let Hy be the
magnetized Viasov operator defined in (4.11)). We have that,

hi = Ho,

and, furthermore, hg is essentially selfadjoint, i.e., Hy is the only selfadjoint extension of hyg.

12



Proof. suppose that f € D[hg)]. Then
(how, f)a = (u, h{f).a. (4.13)
Hence, by (I.12) and (.13)
(h0u7 f)A = (Uhoua Uf)lz(ZQXN*) = Z(n,m7lj)eZQ < N* )\5”2) (U, Un,m,j)A (fa un,m,j)A =
(4.14)
Z(n,m,j)EZ?XN* (u, un,m,j)A (thJ s un,m,j)A-
Since (4.14)) holds for all u in the dense set D[hg] we obtain,
D tnmg)as (0, 5) € 22 x N} = L]t g) 4, (nym, ) € 22 x N | € (22 < N, (4.15)
It follows that,
(Dt mg)as (mm, ) € Z2 x N' | € (22 < NY). (4.16)

This implies that f € D[Hy] and that hgf = Hyf. Then, h;r) C Hy. We prove in a similar way that if f € D[Hy], then
f € D[hl] and that, Hof = h{ f. This implies that H, C h. Hence the proof that hl = Hy is complete. Finally let A
be a selfadjoint operator such that hg C A. Then, AT C Rl = Hy. But as A = A", we obtain that A C Hy, and then,
Hg C Af, but as A = AT, Hy = Hg, we have Hy C A, and finally A = Hg. This proves that Hj is the only selfadjoint
extension of hg. O]

5 The full magnetized Vlasov-Ampere system with coupling

In this section we consider the full magnetized Vlasov-Ampere system. We write the system as a Schrodinger equation

in the Hilbert space H as follows
. U U
a(2)-n(2) -

where the magnetized Vlasov-Ampere operator H is the following operator in H,

2

H . —v® . .2 e 02 102
H= 07,02 et (Where we use the notation e & =e~ 1 =e T . (5.2)
iI* [ vieTa - dv 0

In a more detailed way, the right-hand side of ([5.1)) is defined as follows,

2
H (;ﬁ) _ [ Hou—iu i; Fy (5.3)
il fR2 vie 1 udv

We recall that I* gives zero when applied to constant functions in L?(0,27). The domain of H is defined as follows,

D[H] := D(Hy) ® L(0,2). (5.4)
We write H in the following form,
H=H,+V, (5.5)
where
__|Ho O
H, = [ 0 O] , (5.6)
and )
T o, e (5.7)
iI* [ vie T - dv 0

Clearly, Hy is selfadjoint with D[Hy] = D[H]. Moreover, V, with D[V] = H, is bounded in H. Observe that the
presence of I* in 'V assures us that V sends H in to H. Further, it follows from a simple calculation that V is symmetric
in H. Then, by the Kato-Rellich theorem, see Theorem 4.3 in page 287 of [I5], the operator H is selfadjoint. We
proceed to prove that H has pure point spectrum. Actually, we will explicitly compute the eigenvalues and a basis of
eigenfunctions. We do that in several steps.
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REMARK 5.1. The Gauss law in strong sense for a function (u}(jﬁ’xg)) € H reads,

/ u(x,v) e dv + F'(z) = 0. (5.8)
R2

Later, in Remark we write the Gauss law in weak sense, and we show that it can, equivalently, be expressed as a
orthogonality relation with a subset of the eigenfunctions in the kernel of the magnetized Vlasov-Ampere operator H.

5.1 The kernel of H

In this subsection we compute a basis for the kernel of the magnetized Vlasov-Ampere operator H. We have to solve

the equation
u
H ( F) =0. (5.9)
Inserting ([5.3)) in (5.9)) we obtain,

2
1 (=010, + we(va Oy, — 1 Op,))u—ivie & F =0,

2 (5.10)
iI*/ vie 4 udv=0.
]R?
Denote,
27 1 27
o) = [ Fwdy- o [ uFay (511)
x ™ Jo

Then, as F' € L3(0, 27), we have that ¢ € H(19(0,2r). Further,

F(x) = —¢'(z). (5.12)

—v2

Let us designate v(z,v) := u(x,v) — e 2 (x). Hence, the first equation in (5.10]) is equivalent to the following
equation

Hyvy=0. (5.13)
Then, the general solution to the first equation in (5.10)) can be written as
_y2
u(z,v) =e 1 () +v(z,v), (5.14)

with F' = —¢/, where 1 € H(1:9(0,27), and v solves (5.13). Furthermore, by (5.14) the second equation is (5.10) is
equivalent to,

—’112
I*/ vie 1 ydv=0. (5.15)
R2

Then, we have proven that the general solution to (5.10) can be written as,

(B)- (")

where 1 € H1:0(0,27), F = —/, and v solves (5.13)). By Proposition the general solution can be written as

7= Z (V5 Un,0,5).A Un,0,5- (5.17)
(n,j)€LXN*

Using (4.2)) we prove by explicit calculation that u, o ;, n € Z and j € N*, satisfies (5.15). So the general solution

(5.17) satisfies (5.13) and (5.15).

In the following lemma we construct a basis of Ker[H], using the results above.
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LEMMA 5.2. Let H be the magnetized Viasov-Ampeére operator defined in (5.3) and, (5.4)). Let u, o ; be the eigen-
functions defined in (4.2)). Then, the following set of eigenfunctions of H with eigenvalue zero,

V(O) _ # etnT e%ﬁ nez*\u {M(O). — (Un,o,j) (n j) c7 x N*} (5 18)
T V2r+n? V2r \—in)’ md 0 ) ’ '

is linearly independent and it is a basis of Ker[H].

Proof. Let us first prove the linear independence of the sets of functions . We have to prove that if a linear
combination of the eigenfunctions (|5.18]) is equal to zero then, each of the coefficients in the linear combination is equal
to zero. For this purpose we write the general linear combination of the eigenfunctions in with a convenient
notation. Let M be any finite subset of Z* and let My be any finite subset of Z x N*. Then, the general linear
combination of the eigenfunctions in can be written as follows,

U0,
> f”a,p)( 6)]”)’

(1,p)EM2

Zan ! 76”” e% +
V2 +n? /21 \ —in

neM;

for some complex numbers a,,n € My, and B ), (I, p) € Ma. Suppose that,

1 eine [ =22 <ul 0 p)
O ——— + P = (.
Z V2r +n? V21 (z n) Z Ap) 0

neM; (I,p)EM2

Since thg second component of the functions in the second sum is zero, we have ZneMI ay, \/ﬁ % n = 0. Further,
as the \/Z—;L;,n € M are orthogonal to each other, we have that, a,, = 0,n € M;. Furthermore, as the a,,n € My
are equal to zero, we obtain E(l.p)eMz B,pyut,0,p = 0. Moreover, since the w0y, (I,p) € My are an orthonormal set,
Bapy = 0, (l,p) € My. This proves the linear independence of the set . Moreover, by with ¢(z) = %, n e

Z*, and f = 0, each of the functions

1 eina: 7:2
_— ) n ez,
V21 4+ n? /21 \ —in
is an eigenvector of H with eigenvalue zero. Similarly, by (5.16)) with ¥(x) = 0, and f = w0 ;, one has that each of
the functions,

(“”g)’f) . () €Zx N,
is an eigenfunctions of H with eigenvalue zero. By the Fourier transform, the set of functions, %, n € 7, is a

complete orthonormal set in L?(0,27). Then, in particular, any v € H(l’o)(O, 27), can be represented as follows,

ein:c ein:r
_ L ‘. 5.19
o= 3 (v m)m(o,%) Vo (519)

nezZ*

where the series converges in the norm of L?(0,27). Note that there is no term with n = 0 because the mean value of

1 is zero. Then, by ,
e @) _ ( )
< —(a) ) 2 ") gy Vi (n) 20

neN*

Finally, it follows from (5.16)), (5.17)) and (5.20]) that the set (5.18)) is a basis of the kernel of H. O
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5.2 The eigenvalues of H different from zero and their eigenfunctions

In this subsection we compute the non-zero eigenvalues of H and we give explicit formulae for the eigenfunctions that
correspond to each eigenvalue. By (5.3)) we have to solve the system of equations

—v2
Hou —ivie ™t F = )u,
2 (5.21)
iI*/ vie + udv=\F,
]R2

with A € R\ {0}, and <;) € D[H]. We first consider the case where the electric field, F', is zero, and then, when it
is different from zero.

5.2.1 The case with zero electric field
We have to compute solutions to (5.21)) of the form,

(g) € DH], (5.22)

with w € D[Hp]. Introducing ([5.22)) into the system (5.21]) we obtain,

Hyu = A\u,
_ .2 (5.23)
ZI*/ vie 1 udv=0.

]RZ

We seek for eigenfunctions of the form,

u(z,v) = L @) !

e Var

where (r, ) are the polar coordinates of v € R?, and the function 7 will be specified later. We first consider the case
when n = 0. In this case the second equation in is satisfied because the operator I* gives zero when applied to
functions that are independent of z. Hence, we are left with the first equation only, that is the problem that we solved
in Section 4] Then, as we seek non zero eigenvalues we have to have m # 0 in . Using the results of Section
we obtain the following lemma.

eme (1), (n,m) € 72, (5.24)

LEMMA 5.3. Let H be the magnetized Viasov-Ampére operator defined in (5.3) and, (5.4). Let {7;}52, be an
orthonormal basis of L?*(R*,rdr). Let ¢ € [0,27),r > 0, be polar coordinates in R? vy = rcosp,vy = rsing. For
(m,j) € Z* x N* let ug m,; be the eigenfunction defined in (4.2]). Then, the set

Vinj = {(uo’é”’j> ,(m,j) € Z7 x N*} ; (5.25)

is an orthonormal set in H. Furthermore, each function on this set is an eigenvector of H corresponding the eigenvalue
A0 = muw. # 0,
HV, ;= A0V,  (mj)€Z xN". (5.26)

Moreover, each eigenvalue )\579,) has infinite multiplicity.

Proof. The lemma follows from Proposition and since the second equation in ([5.23)) is always satisfied for functions
that are independent of x. O

Let us now study the second case, namely n # 0. We have to consider the second equation in the system (5.23)).
We first prepare some results. For m € Z let J,,(2), z € C, be the Bessel function. We have that

Im(=2) = (=1)™ T (2),  Jom(—2) = Jm(2). (5.27)
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For the first equation see formula 10.4.1 in page 222 of [22] and for the second see formula 9.1.5 in page 358 of [I].
The Jacobi-Anger formula, given in equation 10.12.1, page 226 of [22], yields,

el#sing — Z e J o (2). (5.28)
mEZ
The Parseval identity for the Fourier series applied to (5.28)) gives,

Y Jm(2)*=1,  z€eR (5.29)

meZ

Differentiating the Jacobi-Anger formula with respect to ¢ we obtain,
zcos peFsine = Z me™? Jo(2). (5.30)
mEZ

Taking in (5.30) z = —nr/w, with n # 0, recalling that v; = 7 cos p, v = 7 sin ¢, and using the first equation in ([5.27))
we get,

ve e = 0 N meime (LM g, (”T> . n#£0. (5.31)
n We
meZ
From ([5.31)) we obtain,
2
/ v e~ ime g = o T (_qym g (W> —on e g (”T) . n#0, (5.32)
0 n c n We

where in the last equality we used both equations in (5.27)). Using (5.31)) and taking n, m # 0 we prove that the second
equation in (5.23)) with u given by (5.24) is equivalent to,
o0 7‘2
/ T (’”) r(r)rdr = 0. (5.33)
0 We
Taking m = 0 is possible, but it will be discarded below in Lemma Let us denote by V,, ,, the orthogonal

7‘2 .
complement in L?(R*,7dr) to the function, e~ 7 J,, (%) that is to say,

)
c

nr

Vim i={ f € L*(RY, rdr) : (f,er42 Im <)> =0,,n,méeZ". (5.34)
We / / L2(R+ rdr)

Note that V}, ,,, is an infinite dimensional subspace of L?(R™, rdr) of codimension equal to one. We prove the following
lemma using the results above.

LEMMA 5.4. Let H be the magnetized Viasov-Ampére operator defined in (5.3) and (5.4). Let Ty m. ;,n,m € Z*,j €

N* be an orthonormal basis in V,, ,, and define,

1 . v 1,
= TR = Ty () nem € 27, €N (5-35)

fn,m,j = \/% \/ﬁ

Then, the set
{Wn,m,j = (fn’én’]> y T, TN € Z*a.] S N*} (536)

s an orthonormal set in H. Furthermore, each function on this set is an eigenvector of H corresponding the eigenvalue
2D = mwe #0,
Hwn,m,j = )\gg) Wn,m,j n,m e Z*7j c N*. (537)

Moreover, each eigenvalue )\53) has infinite multiplicity.

Proof. The lemma follows from (5.23)), (5.33), (5.34) and (5.35)). Note that the case m = 0 does not appear because

we are looking for eigenfunctions with eigenvalue different from zero. Furthermore, the eigenvalues )\7(2) have infinite
multiplicity because all the eigenfunctions W, ,,, ; with a fixed m and all n € Z*, j € N*, are orthogonal eigenfunctions

for the eigenvalue, )\579).
O
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5.2.2 The case with electric field different from zero

From the physical point of view this is the most interesting situation, since it describes the interaction of the electrons
with the electric field. Moreover, it is the most involved technically. We look for eigenfunctions of the form,

\/% <em(zel§é7(v)> , (5.38)

where GG is a constant. Since we wish that the electric field is nonzero we must have G # 0. Hence, to fulfill that

fo% F(z)dx =0, we must have n # 0. The eigenvalue system ([5.21]) recasts as,

. . —v? int2
(—iweOp, — A)T =iG v e 2 e,

2 (5.39)
MG = z/ vie 3 e e 7(v) dv.
RQ
Changing n into —n in ([5.31)) and using the first equation in (5.27)) we obtain,
vt El = 28 me™? Jo (W> ) n # 0. (5.40)
n We
meZ
Plugging (|5.40) into the first equation in the system (5.39) we get,
(—iwedy — N)7(r, ) = iGe T - = Z me™? J, <nr) ; n # 0. (5.41)
mezZ* We
A solution to ([5.41)) is given by
o =21 m we ime nr
— - e _gim = 42
T(r,p) =iGe ™7 n m%* mwc_)\e Im (Wc> ) n#0, (5.42)

for A\ # mw.,m € Z*. Introducing (5.42) into the second equation in the system ([5.39)), and simplifying by G # 0 we
get,

1 mw 2 N nr
A=—= E —_— z "M e e J,, [ — dv, 0, A o) S/ 5.43
mefA/Rze M e <w)vlv n # #+ mwe, m (5.43)

n
meZ* ¢

Plugging (5.32)) into (5.43)) and using that dv = rdrdy, we obtain,

27 m?w? N
Azfﬁ %* mamm, n#0, N#mw., méeEZL". (5.44)
where we denote
2 nr\ 2
U = / ez Jn () rdr >0, m€Z. (5.45)
0 We

Equation is a secular equation that we will study to determine the possible values of A. Remark that

coincides with the secular equation obtained by [6] and [6]. First we write it in a more convenient form. Note

that thanks to the two equations in we have J_,,(2) = (=1)"J,(2) and then a, _m = anm. Using also
res =1+ —=—, this allow to obtam that

m? w? mwe muw
< n,m — c & n,m — =A c n,m- 5.46
Z mwc—)\a" Z (mw+mwc—)\>a Z mwc—)\ ( )
mez* mez* mez*
Simplifying by A # 0 and using (5.46) we write (5.44) as
2w mwe *
1= - mg* moun,m, n#0, AN#mw., meZ". (5.47)
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By (5.29) we have Z an,m < 400 and thus the series in (5.47) is absolutely convergent. Secondly we proceed to

mezZ*
write (5.47) in another form that we find convenient. Using again an,_m = ay,m we have

oo 2.2
mwe mew
Do A =2 ) e e (5.48)
mezZ* ¢ m=1 c
Let us denote
= mu *
g(A) =4 Z ma»mm, A 7é mwe, m € Z~. (549)
Then using (5.48)), (5.47)) is equivalent to
g(\) = —n? neZ*, A # muwe, meZ". (5.50)

Since the function ¢ is even it is enough to study it for A > 0. It has simple poles as A = mw,,m € N*. It is well
defined for A\ € U°_I,,,, where,

I == [0,w.), Iy = (mwe, (m + 1)w.), m € N*. (5.51)

LEMMA 5.5. The function g is positive in Iy. For m > 1, g is monotone increasing in the interval I,, and the
following limits hold,

lim A — (mw.)™ = +oo, lim\ — (mw.)™ = —cc. (5.52)
Proof. The fact that g is positive in Iy follows from the definition of g in (5.49). Furthermore, since a,, ., > 0,m > 1,

2 2
and the functions A — % are monotone increasing away from the poles, we have that g is increasing in I,,,,m > 1,

and that the limits in (5.52)) hold. O

In the following lemma we obtain the solutions to ([5.50))

LEMMA 5.6. For n € Z*, the equation has a countable number of real simple roots, Ay m in (Mmwe, (m +
Dwe)ym > 1. By parity Apm = —An—m, m < —1 is also a root. There is no root in (—we,wc). Furthermore,
At ma = Anams 4 and only if ng = na, and my; = ma,

Proof. The first two items follow from Lemma and the parity of ¢g. The third point is true because g is positive
in (—we,we). Finally, if Apy m; = Any,me, We have, m; = mag, because Ay, m, € (Miwe, (M1 + Dwe) and A, m, €
(mawe, (M2 + 1)w). Furthermore, if ny # ng, then, Ay, m # An,.m, because, otherwise, —n? = g(Ap,.m) = g(Anym) =

—n32, and this is impossible. O
Using (5.38) and (5.42) we define,
L i (€75 i (0)
Y, = ——e"" n,m , n,m € Z~, (5.53)
' V2m ( —ni
where
2 . ) .
nn,m(v) = e % Z ﬁ e'?¥ Jq (Z:) 5 n,m e 7. (554)

qEZ*

For m € Z*, A, , is the root given in Lemma Note that we have simplified the factor % in (5.42)) and we have
taken G’ = 1. Remark that, formally, Y, ,,, is an eigenfunction of H,

HYn,m = )\n,m Yn,m~ (555)

However, we have to verify that Y,, ,, € H. We have

2
||Yn,m||7-£ = \/“nn,mHLz(Rz) + TLQ,
and

2
W
@) ey =27 3 (25— ) o (5.56)

qEZ* qWe — )\n,m

where we used the first equation in (5.27). We now prove that ||nn,m(v)||2Lg(R2) < 400 and exhibit an asymptotic
expansion of this quantity which will be used later.
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LEMMA 5.7. We have,

nt 1 1 1
||77n,m(v)||iz(R2) = 9 a <1 +0 (7712)> +0 <mQ> , m — to0.

Proof. Recall that for m < —1, A\, p, = —Ap,—m. Then,

2 2
Hnn,m(v>||L2(R2) = ||77n,7m(v)||L2(R2) ) m < —1.

Hence, it is enough to consider the case m > 1. We decompose the sum in ((5.56) as follows,

4
”nn,m ||L2 R?) * Zh
j=1

where,
2
(1)
R (Apm) =27 Z (qwc_ nm) Qn,q,
g<—1
qw ?
(2) — __4%c
o) =r 3 () e
1<q<m—1 ’
3 (Apm) := 27 - M i a
n,m MW — )\n’m n,ms
and

2
R M e T
qWe — n,m

m+1<q

2

Since (qwcflfilﬂn) < (m(fn?’ g < —1, we have,
1) ¢ 1

h An m ‘ <2 T 1\ Yn,— < Cia

‘ ( ’ )— WZ (m+1)2a7(J— (m+1)2

g<—1

where in the last inequality we used (A.2). Assuming that m is even, we decompose h(2)()\n,m) as follows,

D Apn) = BEY (N\) + 3D (N ),

where,
2
o) - _ 9%
h ()‘n,m) =27 Z <qwc - m) o>
1<q<m/2 7

and

2
R (N, ) =27 Z <qwc> g,

We — A
m/2<q<m—1 qee T,

2
Since (L) < 47%—22, 1< ¢ <%, and, using (A.2) we obtain,

qwc_kn,m

2
‘h@l)(An,m)( <or S 4La,< C’—
m

1<q<m/2

2
Furthermore, as, (%) <¢*>, m/2<q<m—1,and by (A.2)), we have

_An,m

1
’h(2’2)()\n,m)‘ <or Z q2 tng < C, —

m/2<q<m—1
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(5.64)
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(5.66)

(5.67)

(5.68)

(5.69)



for all p > 0. When m is odd we decompose h(?(\,, ,,) as in (5.65) with
2
qw
S Y () I
1<g<(m—1)/2 ’

and

2
(2,2) — 4
W5 (Apm) = 2w g (qwc —w m) n,q,
(m—1)/2<qg<m—1 ’

and we prove that (5.68]) and (5.69)) hold arguing as in the case where m is even. This proves that,

1
\h‘Q)(An,m)\ <C—.

n2

1 1
B m) = 5= = <1+0(m2>> m — 0o.

Moreover, by (A.2) and (A.22) there is an mg such that

The technical result (A:22)) in Appendix A is Apm = mwe + 2rmwe <25 + ay, | O (%) It yields

2
qwc_)\n,m

Then, using (A.2)) we obtain for all p > 0,
1
‘h(4) ()\n,m)‘ S 47T Z (]2 an,q S Cp ﬁy
m+1<q

m > mg.

Equation (5.57) follows from (5.58), (5.59), (5.64), (5.65), (5.72), (5.73), and, (5.74).

Since Y, ., € H we can define the associated normalized eigenfunctions as follows. Let us denote,

2
bm = /I mll gy + 12 = [Yomllae

The normalized eigenfunctions are given by,
Zo =—Ypm, n,m € Z~.

The normalized eigenfunctions (5.76) are the Bernstein modes [6].
Then, we have,

(5.70)

(5.71)

(5.72)

(5.73)

(5.74)

(5.75)

(5.76)

LEMMA 5.8. Let H be the magnetized Viasov-Ampére operator defined in (5.3) and, (5.4). Let Ay m,n,m € Z*,
be the roots to equation (5.50) obtained in Lemma . Then, each Ay m,n,m € Z*, is an eigenvalue of H with

eigenfunction Zy, m,.

Proof. The fact that the A, ,,,n,m € Z*, are eigenvalues of H with eigenfunction Z, ,, follows from , ,

and (557,

In preparation for Lemma [5.9 below, we briefly study the asymptotic expansion for large |m| of the normalized

eigenfunction. By (5.54)), (5.64), (5.72), and (5.74), we have,

—r2 mwe ; nr
nn,m —e 4 /\ ezmw Jm -
mwe — n,m We

1
=0 () , m — +oo.
L2(R?) m|
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Note that (5.64)), (5.72)), and ([5.74]) were only proven for m > 1, and then, they only imply (5.77)) for m — oo. However,
using both equations in (5.27)) and as A, —n, = — A m Wwe prove that (5.77) with m — oo implies (5.77) with m — —oo.
Then, by (5.57)),

‘ L — et e gme <m>

= \/@n |m|O <ni2> , m — +oo. (5.78)

bn,m bn,m mwe — )\n,m We L2(R?)
Let us denote,
1 —r2 nr
(@) .=~ i eme g [ — n,m e 7. 5.79
nn,m \/m m We ) ) ( )

By (23 and (50,

1 mw, 1 1
< __ 1+o(2)), — oo, 5.80
R - m( * (|m|)> m = oo (5:80)

Then, by (5:79) and, (5:80)

‘ 1 6,‘:2 MW cime g (m‘) - 77£La7)n
w ,

bn,m mwe — /\n,m c
Let us now define the asymptotic function that is the dominant term for large m of the normalized eigenfunction Z,, ,,

-0 (|7711|> . m— +oo. (5.81)

L2(R2)

1 1 —ingZ (a)
yAQNEE emn (e ‘n”’m) , n,m € Z*. (5.82)

o bn,m 2 —mn

In the next lemma we show that for large m the eigenfunction Z,, ,, is concentrated in Z%azn

LEMMA 5.9. Let a, n be the quantity defined in (5.49), let Z,, ,, be the eigenfunction defined in (5.76), and let
Z%a,)n be the asymptotic function defined in (5.82)). We have that,

1
Hznm—z%H <C—, m-— too,nel". (5.83)
’ Tl T ]
Proof. The lemma follows from (A.2]), (5.78]), and ([5.81]) O

5.3 The completeness of the eigenfunctions of H

In this subsection we prove that the eigenfunctions of the magnetized Vlasov-Ampere operator H are a complete set
in H. That is to say, that the closure of the set of all finite linear combinations of eigenfunctions of H is equal to H,
or in other words, that H coincides with the span of the set of all the eigenfunctions of H. For this purpose we first
introduce some notation. By

L2(0,27) = &,,czSpan [em} , 5.84
(0,2m) ezSpan | —= (5.84)
and,
L2(0,27) = @pez-Span [em} . 5.85
0(0,2m) ez-Span | Zo= (5.85)
Furthermore, by (5.84) and (5.85)),
H = Bnez Han, (586)
where
Ho := L*(R?) @ {0}, (5.87)
and, ‘
eznw
., := Span ® (L*(R?) @ C), nez. 5.88
pun| S| @ (@) 0 ) (5.89
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Alternatively, Ho can be written as the Hilbert space of all vector valued functions of the form (u,0), u € L?(R?),
where the injection of L?(R?) onto the subspace of A consists of all the functions in A that are independent of z. In
other words, we identify f(v) € L*(R?) with the same function f(v) € A that is independent of z. Moreover, H,, can
be written as the Hilbert space of all vector valued functions of the form,

inx

3% (ug)>, u € L*(R?),a € C.

Furthermore, H can be written as the Hilbert space of all vector valued functions of the form

(") 2 7 ()

nez*

where u,, € L*(R?), a, € C,n € Z*, and, further, Y, _,. un||%2(R2) <00, and 3, ;. |oy|? < oo. The strategy of the
proof that the eigenfunctions of H are complete in H will be to prove that the eigenfunctions of a given n are complete
on the corresponding H,,. For this purpose we introduce the following convenient spaces. A first space is defined as
follows,

W, := Span [{Mg?;}jew} ® Span [{Vin s}z jen- | © Ho (5.89)

where the eigenfunctions M(()?;, j € N*, are defined in (.18]) and the eigenfunctions V,, ;,m € Z*, j € N* are defined

in (5.25)). Next we introduce the space,

W = Span [{anj} } CHp, n#0, (5.90)

n,meL*,jeEN*
where the eigenfunctions W, ,, ;,n,m € Z*, j € N* are defined in (5.36]). We also need the following space,
W .— Span [{zn,m}n’mez*} C Hpy n#£0, (5.91)

where the eigenfunctions Z, ,,,n,m € Z* are defined in (5.76]). Finally, we define the space,

W = Span {{Vg))}new U {Mw)

o ] C H, NKer[H], n#0, (5.92)
W) nelx,jeEN*

where the eigenfunctions VY and Mglog are defined in (5.18).

THEOREM 5.10. Let H be the magnetized Viasov-Ampére operator defined in (5.3) and (5.4). Then, the eigen-
functions of H are a complete set in H. Namely,

Ho = W, (5.93)
Hyo=WHagW2Daw® ez (5.94)

Furthermore,
H=Wo@nez- (WP & WD & WD), (5.95)

Proof. Note that Wy is orthogonal to WS), Wg), and WS’) because Wy, is the span of eigenfunctions with n = 0 and
W,&l), W,(?), and W,({?') are the span of eigenfunctions with n different from zero. Furthermore, the ngl), Wg), and
WS’) are orthogonal among themselves because they are the span of eigenfunctions with different eigenvalues. Further-
more the W,(Il), W,(Jl), with n # g, are orthogonal to each other because they are the span of eigenfunctions that contain
the factor, respectively, e™™*, ?*. Similarly, Wg),W((f),n # q are orthogonal to each other and st),Wég),n #*q
are also orthogonal to each other. Equation is immediate because the span of ug m, ;,m € Z,j € N* is equal to
L?(R?). We proceed to prove (5.94). We clearly have,

WO aW2DaoW® cy, nezt (5.96)
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Our goal is to prove the opposite embedding, i.e.,
H, cWHaW2Daow®  nez* (5.97)

Consider the decomposition,

1
H, = WD o (W;”) : (5.98)
1
where (Wg} )) denotes the orthogonal complement of W%l) in H,,. Recall that
1L

W2 o W® (wg)) n ez (5.99)

Our strategy to prove (5.97)) will be to establish,

1L
(W;l)) cWRawW®, pezr (5.100)

It follows from the definition of W' in (5.91) and of W in 5.92)) that the following set of eigenfunctions is a basis
of W o W)

Zym,n,m € Z",

M;O},TLEZ*,]'EN*, (5.101)

v ez

Furthermore, it is a consequence of the definition of W in (5.90) and of the definition of Zﬁ{’ln in 1} that the

following set of functions is an orthonormal basis of (Wg,l))

Z”(VLtfer7n7m € Z*7
MO n ez jeN, (5.102)

n,j’

b

where the asymptotic functions Z;%,n,m € Z* are defined in (5.82)), the eigenfunctions M,(loz,n € Z*,7 € N* are
defined in ((5.18]), and Q is given by,

Q:= (?) : (5.103)
@\* . .
Any X € (Wn ) can be uniquely written as,
X=2, (X’ Zg“gzn)ﬂ Zitn+ D (XM&OE)H M)+ (X, Q) Q. (5.104)
mezZ* JEN*

1L 1
We define the following operator from (ngl)) into (WS)> ,

— (a) (0) (0) (0)
AR mze;* (X’ Zn””)?—t Znm * J%\T:* (X’ M”’j>7-[ M, 5+ (X, Qn V. (5.105)

1
We will prove that (5.100) holds by showing that A is onto, (Wg)) . We write A as follows,

A=T+K, (5.106)
where K is the operator,
KX:= Y (X.20.), (Zom—20.) + X.Qu (VI - Q). (5.107)

meZ*
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We will prove that K is Hilbert-Schmidt. For information about Hilbert-Schmidt operators see Section 6 of Chapter VI
of [23]. For this purpose we have to prove that K* K is trace class. Since the functions in ([5.102)) are an orthonormal

1
basis of (WS)) , we can verify the trace class criterion under the form,

S (Kzgfzn,Kz;‘f)) + Z (xm), KM(O)) + (KQ,KQ),, < . (5.108)

mezZ*

2
‘(Zn,m - ZS?LT)‘H < 00, where we used, ((5.83]). Moreover,

However, by (5.107) 32,z (Kz%, KZ%?%)H .
ZjeN* (KMELOE, KMELO;)H = 0, and, clearly, (KQ,KQ),, < co. Hence, K is Hilbert-Schmidt, and then, it is compact.

It follows from the Fredholm alternative, see the Corollary in page 203 of [23], that to prove that A is onto it is enough
X
to prove that it is invertible. Suppose that X E( ,(11)) satisfies AX = 0. Then, by (5.105))

S <X7Zf;f) ) Zovn + > (X M 0)) MY 4+ (X, Q) V) = 0. (5.109)

me”Z* jEN*

However, as the eigenfunctions Z, ,, are orthogonal to the Mfzoz and to V;O), we have,

X, Z ) Zpm =0, (5.110)
m%* ( 7 )H
and,

> (X7 Mg)ﬂ M)+ (X, Q) V¥ =0. (5.111)

jEN*
Since the eigenfunctions Z,, ,, are mutually orthogonal, it follows from ([5.110) that (X, Zgﬁ)n> =0, m e Z".
H
Moreover, by Lemma the eigenfunctions M j € N* and ,V%O) are linearly independent, and, then (5.111))

.3’

implies (X,MS);) = 0, j € N*, and (X,Q)y = 0. Finally, as the set (5.102)) is an orthonormal basis of
I H
1 1
( %1)) we have that X = 0. Then, A is onto ( 7(11)) and ([5.100) holds. Since also ([5.99) is satisfied we obtain
1
Wg) @ Wff’) = (WS)) , n € Z*. This completes the proof of the theorem O

THEOREM 5.11. Let H be the magnetized Viasov-Ampére operator defined in (5.3) and, (5.4)). Then, H is selfad-
joint and it has pure point spectrum. The eigenvalues of H are given by.

1. The infinite multiplicity eigenvalues, /\( = Mmwe,m € Z.
2. The simple eigenvalues Ay m,n,m € Z*, given by the roots to equation (5.50)) obtained in Lemma .

Proof. We already proven that H is selfadjoint below . The spectrum of H is pure point because it has a complete
set of eigenfunctions, as we proven in Theorem The fact that the eigenvalues of H are equal to the /\7(2)7 m € Z,
and the A, n,,n,m € Z* follows from Lemmata and The )\,(2)7m € Z have infinite multiplicity
because by Lemmata and each )\7(2) has a countable set of orthogonal eigenfunctions. Let us prove that
the eigenvalues A, ,, are simple. Suppose that for some n,m € Z* the eigenvalue ), ,, has multiplicity bigger than
one. Then, there is an eigenfunction, P, such that HP = A, ,,, P, and with P orthogonal to Z,, ,,,. However since by
Lemma Anima = Ang,m, if and only if n; = ne, and m; = ma, it follows that P is orthogonal to the right hand
side of (5.95)), but hence, P is orthogonal to H, and then P = 0. This completes the proof that the A, ,, are simple
eigenvalues. O
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5.4 Orthonormal basis for the kernel of H

In Subsection [5.1] we constructed a linear independent basis for the kernel of the magnetized Vlasov-Ampere operator
H. In this subsection we prove that, for an appropriate choice of the orthonormal basis of L2(R*,rdr) that appears

in the definition of the eigenfunctions M in (5.18)), we can construct an orthonormal basis for the kernel of H. The

n,J

choice of the orthonormal basis is n dependent. For n € Z*, let T]("),j =1,... be any orthonormal basis of L2(R™, rdr)
where the first basis function is
n 1 —r2
() = e Jo (W) , meZL, (5.112)
Gn,0 We

with a0 defined in (5.45). Note that this implies that the T;n),j = 2,... is an orthonormal basis of the subspace V;, o

that we defined in ([5.34). Moreover, in the definition of the uy, o ; in (4.2)) let us use this basis. In particular it yields

in(z—-2)
e we 1 1 —r2 nr
Up.o.1 = e T Jg[— ), nezZ". 5.113
01 V2r \27m \/ano 0 <wc) ( )

n,J 0
defined in ([5.18). However, we keep the same notation for Mglog for a sake of readability.
For the other eigenfunctions we can use different orthonormal basis of L?(RT,rdr), if we find it convenient. It
follows from simple calculations that the eigenfunctions Véo), n € Z*, defined in ((5.18)) are mutually orthogonal and that
(n,7) € Z* x N*, are also mutually orthogonal. Moreover, since the functions e!"®, n € Z* are

The eigenfunctions MO = (u"70’j) ,n € Z* j €N of H precised with (5.112)) are now a particular case of the ones

the eigenfunctions MS)&-,

orthogonal in L?(0, 27) to the function equal to one, the eigenfunctions V%O), n € Z*, and M(()?j)-, j € N* are orthogonal.
Let us compute the scalar product of the VS«LO), n € Z*, and the M e Z¥,5=1,....

n,J7

V21 4+ n?

Moreover, by the Jacobi-Anger formula (5.28]), with z = =L,

We
L2 i
e+, Wor ()| =|e
2m A

—v? ; —-nr
i ime -
(e (2
Hence, by (5.112)) and the second equation in ([5.27))

1 2 —in 2
(V;O),Mﬁg?j)?{ = Opym—— (e 1 eTj(r)> , nezZ*,melZl", jeN. (5.114)
A

1 . *
))\/%Tj(r)>A’ neZ" je N,

meZ

)
—inl2

—v2 we
(e i, Tj(@) =0;1V2m\fano, nEL. (5.115)
A

VoY

By (5.114) and (5.115),

\/2ma,
(V;‘)),Mfﬁ).) = G 0y Y peZF,m e, jeN. (5.116)
I H 21 + n?
This proves that the Véo),n € Z*, and the Mg{;,n € Z*,j = 2,..., are orthogonal to each other, and also that

V%O), and M € Z*, are not orthogonal. We apply the Gramm-Schmidt orthonormalization process to V&O), and

n,l»
Mgg)l, n € Z*, and we define the eigenfunctions,
B = MY - (MS{,VS”)H VO pezr (5.117)
and the normalized eigenfunctions,
EY
F .= —g i nEL. (5.118)
[ER"]



By (5116). (19, and (G119,

POy 2mdn’ 0) _ V20 o) nez (5.119)
no n,1 n ’ . :
27(1 — an,0) +n? T V2m 4 n?

Note that by (5.29)) and (5.45) an,0 < 1, and then 1 —a, o > 0.

Using the results above we prove the following theorem.

THEOREM 5.12. Let H be the magnetized Viasov-Ampére operator defined in (5.3) and (5.4)). Then, the following

set of eigenfunctions of H with eigenvalue zero,

{Vg‘”,n c Z*} U {Mg?;,j e N*} U {M;;n €T j=2,. } U {Fgf’),n c Z*}, (5.120)
is an orthonormal basis of Ker[H]. The eigenfunctions v , and M(()j, are defined in (5.18)), and the eigenfunctions,
M9 and F;), are defined, respectively, in (5.18) with (5.113)), and (5.118)).

n,J?

Proof. The lemma follows from Lemma O

5.5 Orthonormal basis with eigenfunctions of H

In this subsection we show how to assemble a orthonormal basis for H with eigenfunctions of H, using the eigenfunctions
that we have already computed. We first obtain a orthonormal basis for Ker[H]*, with the eigenfunctions of H with
eigenvalue different from zero.

THEOREM 5.13. Let H be the magnetized Viasov-Ampére operator defined in (5.3) and, (5.4). Then, the following
set of eigenfunctions of H with eigenvalue different from zero,

{VinjymeZ*,je NYU{W, pnj,n,meZ"jeN}YU{Z, ,,n,m e Z"}, (5.121)

is a orthonormal basis of Ker[H]L. Moreover, the eigenfunctions Vi, j, W, m iy and Zy, ., are defined, respectively in

EZ). 39, and E79).

Proof. Equation (5.95)) can be written as follows,

H = [Span [{Mg?;}jew] - w@] @ [span [{Vm,j}mez*yjew aWD oW (5.122)
Moreover, by Lemma [5.2]
Ker[H] = Span [{M@}JEN} ez WO, (5.123)
Further, as H = Ker[H] @ Ker[H]*, it follows from (5.122)),
Ker[H]* = Span [{Vm,j}mez*,jEN*} oW oW, (5.124)

Finally, using the definitions of wi i n (5.90) and of W in 5.91) we obtain that the set (5.121]) is an orthonormal
basis of Ker[H] . O

In the following theorem we present a orthonormal basis for H with eigenfunctions of H.

THEOREM 5.14. Let H be the magnetized Viasov-Ampére operator defined in (5.3)), and (5.4). Then, the following

set of eigenfunctions of H,

7’ n,J’?
{V’rn,jym € Z*vj € N*} ) {Wn,m,_]vnam € Z*v.] € N*} U {Zn,man7m S Z*}7

(Vi mez oM jenfu(Minez,j=2. Ju{FPnezju (5.125)

is a orthonormal basis of H. The eigenfunctions, Vn , and Mé?; are defined in (5.18). The eigenfunctions, M( ) and

FSLO) are defined, respectively in (5.18)) with (5.113)), and (5.118)). Moreover, the eigenfunctions Vm,j,Wn’m,j, and
Z,, . are defined, respectively in (5.25)), (5.36)), and ( m

Proof. The result follows from Theorems [5.12] and [5.13] O
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6 The general solution to the magnetized Vlasov-Ampere system, and
the Bernstein-Landau paradox

In this section we give an explicit formula for the general solution of the Vlasov-Ampére system with the help of the
orthonormal basis of ‘H with eigenfunctions of H. Let us take a general initial state,

Gy = (;) e H.

Then, by Theorem [5.14] the general solution to the magnetized Vlasov-Ampere system with initial value at ¢t = 0
equal to Gg is given by,

G(t) == e ™M Gy, (6.1)
and, furthermore,

G(t) = Gy + Gaf(t), (6.2)
where the static parts Gy is time independent, and the dynamical part Ga(t) is oscillatory in time. They are given
by,

0 0 0
G =Y (GO,V£?)> VO + 3 (Go, M, >) MO+ > (Go MY >)H M)
nez* JEN* nez*,j>2 (6 3)
+ Z <G07F’SLO)) F£10)a .
nez* H
and NG NG
Gy(t) = Z e " (Go, Vingy )gy Vimj + Z e (Go, W)y Wamj
meZ*,jeEN* n,mez*,jeN* (64)
+ Z —zt)\,, m G07Zn,m)7.[ Zn,’m-
n,mez*

We still have to impose the Gauss law (2.13), (2.14)), or equivalently (5.8, to our general solution to the magnetized
Vlasov-Ampere system (2.17). For the elgenfunctlon MO e Z*,j > 2, the Gauss law (5.8) is equivalent to

n]’

(M), Vi) =0,
H

TL]’

that is valid by the orthogonality of the M( ) and the V(O) We prove in the same way that the Gauss law holds
for the eigenfunctions FSL ), W, m,;, and me. We prove that V,, ; satisfies the Gauss law by direct computation. It

remains to consider the eigenfunctions M(()?J)-, j € N*| defined in (5.18)). For the Mgoj), the Gauss law (5.8]) reads,

2
/ e d 1idv=0, j e N™. (6.5)
0

We can make sure that (6.5]) holds for all but one j by choosing the orthonormal basis in L?(R*, rdr) that we use in
the definition of the M(()?j,j € N*, as follows. As we proceed in ((5.112))-(5.113)) for n € Z*, we specify the choice of the

orthonormal basis (7;)jen+ in (4.2)) and (5.18)) for n = 0. We take a orthonormal basis, T](O),j € N*, in L?(R*,rdr),
such that,

2
71(0) (r)i=e . (6.6)
With this choice of the 7'( ) , 7 € N*  the Gauss law (5.8 holds for M((] ), j=2,.... Hence, with this choice7 the general

solution of the magnetlzed Vlasov- Ampere system glven in and that satisfies the Gauss law can be written
as in (6.2)) with the dynamical part Go(t) as in (6.4), but w1th the static part G given by

Gi= (G0 M) MO+ 3 (Go, M) MY+ 3 (G FY) B, (6.7)
j>2 neZ*,j>2 nez*

This exhibits the Landau-Bernstein paradox. Namely, the general solution contains a time independent part and a
part that is oscillatory time. There is no part of the solution that tends to zero as t — 400, that is to say, there is no
Landau damping in the presence of the magnetic field.
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REMARK 6.1. This remark concerns the space Hg for the Gauss law and its orthogonal complement.
Let us denote,

Hq := Span [{Vflo),n € Z*} UM(()(,)H )

where the eigenfunctions V. are defined in (5.18]) and the eigenfunction Mg’)i is defined in (5.18)), (6.6). Note that
it follows from the results above that the condition that each one of the eigenfunctions that appear in (6.3))

, and (6.4)
satisfies the Gauss law is equivalent to ask that the eigenfunction is orthogonal to Hg. Then, it follows from
, (6.3)), and , that general solution to the magnetized Vlasov-Ampere system given in satisfies the Gauss
law (5.8) if and only if G € HE.

The Hilbert space Hq is a closed subspace of the kernel of H. So, the Gauss law is equivalent to have the initial
state in the orthogonal complement to a closed subspace of the kernel of H. Actually, it is usually the case that when
the Maxwell equations are formulated as a selfadjoint Schrodinger equation in the Hilbert space of electromagnetic
fields with finite energy, the Gauss law is equivalent to have the initial data in the orthogonal complement of the kernel
of the Maxwell operator. See for example [34]. Let us further elaborate on the condition Go € Hg. We introduce the

space of test functions Dy := {¢ € C*[0, 27] : dd—;lw(O) = dd—;lap(%r),l =0,...}. Let us expand ¢ € Dr in Fourier series

1 ) 1 21 )
o(x) = Z Wors e on, where ©n = E/o p(x)e """ dx,n € 7. (6.8)

nez
Integrating by parts we prove that
C N
\wnléw, leN,nelZ" (6.9)

By a simple calculation, and using and we prove that,

2
<so<x>e : ) Y VI F VO 4 VIR M) € Ho (6.10)

—%gﬁ(l’) ner*

Suppose that
u(z,v) n
( F() > € HE. (6.11)
Then, by (6.10)

u($,v) x 677712 N m 2m d B
<< F(x ) ’ (Sp_(dqu(m)>>ﬂ - /0 p(x) p(x) do — ; F(x)@so(fﬂ) dr =0, ¢ € Dr, (6.12)

where p(z) is defined in (2.14). By (6.12)) we see (u, F))T satisfies the Gauss law (2.13)), (2.14)), or equivalently (5.8)), in

weak sense, where the weak derivatives are defined with respect to the test space Dr. Conversely, if (u, F)T satisfies
(6.12) for all ¢ € Dr, we prove in a similar way that (6.11]) holds taking ¢(z) = " n € Z.

REMARK 6.2. Observe that the general solution of the magnetized Vlasov-Ampere system, G(t) = (u(t, z,v), F (¢, z))T
given in (6.1) and that satisfies the Gauss law (5.8]) fulfills the condition that the total charge fluctuation is equal to

zZero,

—u2
/ u(t,z,v)e 2 dxdv=0. (6.13)
[0,27] xR2

This true because each one of the the eigenfunctions that appear in the expansion (6.2), with Ga(t) as in (6.4]) and
G1(t) as in (6.7)) satisfy this condition.

O

Let us now consider the expansion of the charge density fluctuation of the perturbation to the Maxwellian equi-
librium state, p(t, z), that we defined in . We compute the expansion of p(¢, ) multiplying the first component
of the left- and right- hand sides of , by e=v/ 4. integrating both sides of the resulting equation over v € R? |
and using (6.4), and (6.7). For this purpose, note that for a function in (u,0)” € H with electric field zero the Gauss
law , (2.14) implies that the charge density fluctuation of the function is zero. In particular the charge density
fluctuation of the eigenfunctions Mé?}j > 2,M(0) nez,j>2,Vyj,mecZ,jc N Wy, ,inmecZ'jcNis

n,5°
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equal to zero. Then, if we apply the expansion (6.2), with G1(¢) given in (6.7) and G2(¢) given in (6.4) to the charge
density fluctuation of the general solution to the magnetized Vlasov-Ampere system (6.1)) that satisfies the Gauss law,

(0)

only the terms with , Fy,”,n € Z*, and Z,, ,,,n,m € Z* survive. and we obtain,

p(t,x) = pstat(x) + pain(t, ), (6.14)
where,
2
Pstat ‘= — Z (GO)F’EIO) / F(OJ)(xav) e+ dv, (615)
nez* R2
is the static part of the charge density fluctuation, and where F(%Y(z, v) is the first component of F%O). Moreover,
pdin(tax) = Z e HAnm (G07 n m)H pn,m(m)> (616)
n,mezr*

is the time dependent part of the charge density fluctuation. Here, py, () is the charge density fluctuation of the
eigenfunction Z,, ,,, that is given by

2 .
1 eina: = _—1

pnm () = .- e e M (V) dv,n,m € ¥ (6.17)
n,m 77 R2

where we used . The right-hand side of is the expansion of the charge density fluctuation in the Bernstein
modes, [6], [5]. Note however, that for general initial data there is also the static part of the charge density fluctuation
, that is not reported in [6], [5]. This means that the Bernstein modes Z,, ,,,n,m € Z* are not complete, and
that to expand the charge density fluctuation, p(t,z) with the general initial data, Gy that has finite energy and that
satisfies the Gauss law, one has to add the contribution of the static part pstat(x) given by the modes, FSIO), nezZ . It
appears that this fact has not been observed before.

In the following theorem we prove that the expansion (6.14]), (6.15), (6.16) of the charge density fluctuation
converges for initial data in .

THEOREM 6.3. Let p(t,x) be the charge density fluctuation defined in (2.14). Then, for any initial state, Gy € H,
that satisfies the Gauss law, the expansion, (6.14)), (6.15)), (6.16) converges strongly in the norm of L*(0,2m).

Proof. We denote by G(t,z,v) the following quantity,

=3 (GoFD) FOV 4+ 3 e (GoyZum)yy 2 (6.18)

nez*, n,mez*

where ZS}Zn is the first component of the eigenfunction Z, ,,. Then,

p(t,x) = — G(t,x,v) e 1 dv. (6.19)
R2

Hence, since G(t,z,v) € A, it follows from Fubini’s theorem that for a.e. = € (0,27), G(¢,, ) € L%(R?), and as also

2
et € L*(R?), the integral in the right-hand side of (6.19) exists, and then, the charge density fluctuation p(t,z) is
well defined. Furthermore, by the Cauchy-Schwarz inequality p(t,z) € L%(0,27). We denote,

n€ez*,|n|<N

> e~ (Go, Znym) gy Prom(t, @) (6.20)
n,mezZ* |n|+|m|<N

We will prove that px(t,z) converges to p(t,z) in norm in L?(0,2n), i.e. that the series, (6.14), (6.15) and (6.16)
converges strongly in L?(R?). We designate,

v Y (GE) R S ot Gt B em
neZ*,|n|<N n,mEZ* In|+|m|<N
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We have that

]\}E)r})o |G —Gn|la=0. (6.22)
Furthermore,
~ L. GN(t,x,v)e%Zdv = pn(t, x). (6.23)
Hence,
p(t,x) — pn(t,x) = — /}R2 (G(t,z,v) — Gn(t, z,v)) e_TUZ dv. (6.24)

Finally, by (6.22)), (6.24)), and the Cauchy- Schwarz inequality,

27 27
| lotto) - puteopaa = [
0 0

27
§27T/ / (G(t, x,v) — Gn(t, z,0))* dedv =27 |G — Gn|% — 0, as N — oc.
RQ

(6.25)
This completes the proof that the expansion (6.14), (6.15]), (6.16]) converges strongly in the norm of L2(0, 27). O

2

/ (G(t,xz,v) — GN(t,w,U))e# dv| dz
R2

REMARK 6.4. The eigenfunctions M{),j > 2, M\ n € Z*,j > 2,V j,m € Z*,j € N*, W, j,n,m € Z*,j €
N*) do not appear in the expansion (]m[) (6.15), (6.16) of the charge density fluctuation. Still, as we mentioned in
the introduction, these eigenfunctions are physically interesting because they show that there are plasma oscillations
such that at each point the charge density fluctuation is zero and the electric field is also zero. Some of them are time
independent. Note that since our eigenfunctions are orthonormal, these special plasma oscillation actually exist on
their own, without the excitation of the other modes. It appears that this fact has not been observed previously in
the literature.

7 Operator theoretical proof of the Bernstein-Landau paradox

We first study the operator Hy that appears in the formula for H that we gave in (5.5] - E Let us recall the
representation of H as the direct sum of the H,, given in . Using Proposition we see that the functions
(Un, )T in H,, can be written as

Uun(z,0)\ Z Un,m,j (T, V) (Un, Un,m,j) A -
= | mezjen- 7 (7.1)
o N

where for n = 0, o, = 0. Then, by Proposition [£.]]
Un T,V Un (T, v
H,€ < G )) —H,, ( G >> , (7.2)

n n

where by Hy ,, we denote the operator in H,, given by,

0
Hovn <Ungéx, 7.))) — Z <)\»£n)un,m,j (I’ ’UO) (Uyu Un7m7])A) ,

meZ,jEN*

with domain D[Hg ] :== {(un, )7 : ZmezyjeN()\Sg))ﬂ(un,un,m’j)AF < 00. Observe that Hy ,, is the restriction of
Hy to H,, and that,
HO = BPnez HO,n- (73)

Further, the spectrum of Hy ,, is pure point and it consists of the infinite multiplicity eigenvalue Aﬁ,?% m € Z. Then,

also the spectrum of Hy is pure point and it consists of the infinite multiplicity eigenvalues )\52), m € Z. Recall that
the discrete spectrum of a selfadjoint operator consists of the isolated eigenvalues of finite multiplicity, and that the
essential spectrum is the complement in the spectrum of the discrete spectrum. So, we have reached the conclusion
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that the spectrum of Hy coincides with the essential spectrum and it is given by the infinite multiplicity eigenvalues
)\52)7 m € Z. Let us now consider the operator V that appears in (5.7). For e™® (1(v), )T € Ho,

2
Veinw (T(U)> _ einw — e jﬂ 2% .
An iI* [po vieTs T(v)dv

Then, V sends H,, into H,,, and that it acts in the same way in all the H,,. Let us denote by V,, the restriction of V
to H,. Then, we have,

furthermore, by (5.5)), (7.3)), and (7.4]),
H = ¢H,, (7.5)

where H,, = Hy ,, + V,,. Further, it follows from that V,, is a rank two operator, hence, it is compact. Then, it is
a consequence of the Weyl theorem for the invariance of the essential spectrum, see Theorem 3, in page 207 of [7], that
the essential spectrum of H,,,n € Z is given by the infinite multiplicity eigenvalues ,\ﬁ,?),m € Z. Hence, by the
essential spectrum of H is given by the infinite multiplicity eigenvalues )\53), m € Z. However, since the complement
of the essential spectrum is discrete, we have that the spectrum of H consists of the infinite multiplicity eigenvalues
)\7(73), m € Z, and of a set of isolated eigenvalues of finite multiplicity that can only accumulate at the essential spectrum
and at £oo. We know from the results of Section |§| that these eigenvalues are the A\, ,,n,m € Z*, and that they
are of multiplicity one. However, the operator theoretical argument does not tell us that. However, it tells us that
the spectrum of H is pure point and that H has a complete orthonormal set of eigenfunctions. This implies that
the Bernstein -Landau paradox exists. Let us elaborate on this point. As we mentioned in the introduction, it was
shown by [II], [12] that the Landau damping can be characterized as the fact that when the magnetic field is zero
e~ goes weakly to zero as t — +o00. Let us prove that when the magnetic field is non zero this is not true. We
prove this fact using only the operator theoretical results of this section, i.e. without using the detailed calculations
of Section Let us denote by v;, j = 1,..., the eigenvalues of H, repeated according to their multiplicity, and let
X;, j =1,... be a complete set of orthonormal eigenfunctions, where the eigenfunction X, is associated with the
eigenvalue, v;,j = 1,.... We know explicitly from Section [5|the eigenvalues and a orthonormal basis of eigenvectors,
but we do not need this information here. Suppose that e~ goes weakly to zero as t — £o0. Then, for any X,Y € H,

lim (e”"MX,Y), =0. (7.6)

t—too

Let us prove that there is no non trivial X € #H such that ([7.6) holds for all Y € H. We have that,

(eiitHX, Y)H = Z e tm (X, Xl)’;.[ (Xl, Y)q.[
1=1
. . —_itH . —ity; ) . .
However, let us take Y = X;,7 = 1,.... Then, tllrinoc (e ¢ X,Yj)H = tilrinoo e " (X, X,)n, j=1,...,is anon-zero

constant if y; = 0, and it is oscillatory if v; # 0, unless (X, X;)y = 0,7 =1,.... However, if (X,X;)y =0,/ =1,...,
then, X = 0. It follows that ([7.6) only holds for X = 0.

8 Numerical results

The objective of this section is to illustrate the numerical behavior of the eigenfunctions constructed previously. More
precisely, we will construct a numerical scheme that approximates the solution of the magnetized Vlasov-Ampere
system initialized with an eigenfunction and compare this numerical solution with the theoretical dynamics of the
system. The numerical results below show that the difference between the theoretical and numerical solutions is
small, confirming the theoretical analysis. Furthermore, we will use the eigenfunctions to initialize a code solving the
non-linear magnetized Vlasov-Poisson system showing how we can approximate the solution of the non-linear system
with our linear theory. Finally, using the same non-linear code, we will illustrate the Bernstein-Landau paradox, as in
the spirit of [13, B3], by initializing with a standard test function traditionally used to highlight Landau damping and
show how the damping is lost when we add a constant magnetic field.
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8.1 Computing the eigenvalues

As in (5.53)), we consider an eigenfunction

( w};’" ) , (8.1)

of the operator H associated to the Fourier mode n # 0 and the eigenvalue A, _,, = —A,, ,, where w,, ,,, and F,, are
given by
; v 2 w . nr .
w =" T Le”’“ﬂ] () and F,, = —ine'™". 8.2
o pgz:* Pwe + Anm P\ we " (8:2)

Furthermore, A, ., is one of the roots of a secular equation (5.47)), which could be written as
a(N) =0,

where the secular function a(\) is given by

2T mwe

AN)=-1—— E —Qnom- .

o) n? Mwe + A (8:3)
mezZ*

In (8.3)) an,m is defined by (5.45)). The secular function «(\) is a convergent series with poles at the multiples of the
cyclotron frequency w.. Note that the function « in (8.3) and the function ¢ in ((5.50)) are linked by the relation
1

a(d) = 1= —g(3). (8.4)

10.0

7.54

5.0

2.5+

0.01

a(A)

—-10.0 v T v
-30 -25 -20 -15 -1.0 -05 0.0 0.5 1.0 1.5 2.0 25 3.0

A

Figure 1: Secular function for w, = 0.5 and n =1

The plot in Figure [1f illustrates the properties of a (deduced from Lemma and relation ), most notably
that there is unique root (hence an eigenvalue for H) in (mwe, (m+1)w.) for m > 1, and ((m — 1)we, mw,) for m < —1.
With a standard numerical method (dichotomy or Newton), we can determine the roots of . For example, with
(n,m) = (1,2), we find A\ 2 =~ 1.19928. This eigenvalue A » will be used in all the following numerical tests.
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8.2 Solving the linear magnetized Vlasov-Ampeére system with a Semi-Lagrangian
scheme with splitting

To approximate the linear system or , we use a semi-Lagrangian scheme [9] [29], which is a classical
method to approximate transport equations of the form 0;f + F(x,t)d, f = 0, coupled with a splitting procedure. A
splitting procedure corresponds to approximating the solution of d;f + (A + B)f = 0 by solving d:f + Af = 0 and
Oy f + Bf = 0 one after the other.

Hence, the magnetized Vlasov-Ampere system is split so as to only solve transport equations with constant advec-

tion terms.
u u
8t< I >+(A+B+C+D)( P ) =0,

vf 403
010y Fuvie™ = —We20, We10y
AZ( 0 >’B: s ’ :< o ) P=0 0" )

1* [ue™~ 7 vidvidu,

with

The algorithm used to solve the linearized magnetized Vlasov-Ampere system can thus be summarized as follows
1. Initialization U,,; = < }nm ) given in (8.1)).

2. Going from t, to ¢,

Assume we know U, the approximation of U = (u> at time ¢,,.

F

e We compute U* by solving 9, U + AU = 0 with a semi-Lagrangian scheme during one time step At with
initial condition U™.

e We compute U by solving 0, U+ BU = 0 with a Runge-Kutta 2 scheme during one time step At with initial
condition U*.

e We compute U** by solving 0;U + CU = 0 with a semi-Lagrangian scheme during one time step At with
initial condition U.

e We compute U"*! by solving 9; U+ DU = 0 with a semi-Lagrangian scheme during one time step At with
initial condition U**.

8.3 Results for the magnetized Vlasov-Ampere system

The solution of the magnetized Vlasov-Ampere system initialized with an eigenfunctions Uy,; = ( w};’m ) as in (8.1)
n

is simply given by _
U(t) = elkn)mt Uipni. (85)

Recall that is an eigenfunction of H with eigenvalue A\, _,,, = =\, ;. In the following results, we have taken
(n,m) = (1,2), w. = 0.5, N, = 33 (number of points of discretization in position), N,, = N,, = 63 (number of points
of discretization in both velocity variables), L,, = L,, = 10 (numerical truncation in both velocity variables) and,
most importantly, T = ﬁ This means that U(T}) = exp (z%) Uijpn; = iUjpi, and then, the solution of the system at
t = T} corresponds to the initial condition where the real and imaginary parts have been exchanged (up to a sign).
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Figure 3: Modulus of the first component of U(t) given by (8.5) in v; — vy plane for z = 0, and real and imaginary

parts of F.

The figures show that the solution of the system behaves according to the theory.
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8.4 Results for the non-linear magnetized Vlasov-Poisson system

We now look at how the solution of the non-linear magnetized Vlasov-Poisson system behaves when initialized
with an eigenfunction of the Hamiltonian H of the magnetized Vlasov-Ampere system. The idea is that for a certain
time, the solution for the non-linear magnetized Vlasov-Poisson system follows the same dynamics as the solution for
the linearized magnetized Vlasov-Poisson system. We consider the magnetized Vlasov-Poisson system because it is
more convenient for numerical purposes. Recall that the linearized magnetized Vlasov-Poisson and the magnetized
Vlasov-Ampere systems are equivalent. Furthermore, the articles [6] [13] B2, B3] have studied the Bernstein-Landau
paradox using the magnetized Vlasov-Poisson system. We use almost the same numerical scheme as in the previous
subsection to approximate the solution of the system.

The Vlasov equation, namely the first equation in , in the non-linear magnetized Vlasov-Poisson system is
split so as to only solve transport equations with constant advection terms,

Ou+ (A+B+C)u =0,

with A =010, B=— (E 4 wev2) 0,, and C = w.v10,,. To update the electric field, the strategy adopted is the same
as in [9] where the Poisson equation is solved at each time step. On this numerical computation we consider real
valued solutions f, F.

Let us denote by u the perturbation of the charge density function, f, and by F' be the perturbation of the electric
field, E. The functions u, F' solve the linearized magnetized Vlasov-Poisson system . Recall that we proven in
Section 5] that the linearized magnetized Vlason-Poisson and magnetized Vlasov-Ampere systems are equivalent. Then,
we can use the real part of to write the expression of u, F' when initializing with, wini, Fini, With i = Re(wn,m),
Fini = Re(F},). Recall that wy, ,, and F), are defined in . Then, we have,

u(t)) ~ (cos(Amt) Re(wp, m) — sin(Ant) Im(wp, m)
< ) = Re(U(#)) = < cos(Amt) Re(Fy) — sin(Apt) Im(F,) ) (8.6)

where U(t) is given by (8.5). The objective of this subsection is to show that we can approximate the solution of the
non-linear system using, which means that the solutions of both linear and non-linear systems are close to each
other for a certain time.

The algorithm used to solve the non-linear magnetized Vlasov-Poisson system can be summarized as follows:

1. Initialization f;,;, = fo +cv/fo Re(w, ) and Ei,; = € Re(F,) are given, where ¢ is a scalar which controls the
amplitude of the perturbation. We take ¢ = 0.1.
2. Going from t,, to t,11
Assume we know f, and E,,, the approximations of f and F at time t,.
e We compute f* by solving 0;f + v10,.f = 0 with a semi-Lagrangian scheme during one time step At with
initial condition f,.
e We compute E, 1 by solving the Poisson equation with f*.

e We compute f by solving 0;f — (Epnt1 + wev2)0y, f = 0 with a semi-Lagrangian scheme during one time
step At with initial condition f*.

e We compute f"*! by solving d; f + w.v10,, f = 0 with a semi-Lagrangian scheme during one time step At
with initial condition f.

As in Subsection we take (n,m) = (1,2), w. = 0.5, N, = 33 (number of points of discretization in position),
N,, = N,, = 63 (number of points of discretization in both velocity variables), L,, = L,, = 10 (numerical truncation
in both velocity variables) and, T; = ﬁ In the following figures, we are comparing respectively the theoretical

perturbations, u, F), that are given by , and the numerical perturbations,

n __ E™
u"zif fO,andF”:—,

evfo £

where f" and E™ are given by the above algorithm.
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The figures show that we can approximate the solution of the non-linear magnetized Vlasov-Poisson system using
solutions of the linear magnetized Vlasov-Poisson system, initialized with the eigenfunctions of the Hamiltonian, H of
the magnetized Vlasov-Ampere system.

8.5 The Bernstein-Landau paradox

In this subsection we numerically illustrate the Bernstein-Landau paradox, and we compare it with the Landau
damping, using the above algorithm (similarly to [I3]). In order to compare the numerical solutions to the non-linear
Vlasov-Poisson system with the approximate analytical solution found in [28] in the case w. = 0, we take below the
charge of the ions equal to one. With this convention the non-linear Vlasov-Poisson system is written as,

Orf + 010, f — EOy, f 4 we (—020y, +v10,,) f = 0.

O E(t,r)=1-— fdv.
R2

(8.7)

Furthermore, also with the purpose of comparing with the approximate analytical solution of [28], we initialize with
the density function frp given by,

1 —v2

frp(z,v1,v2) = 5 (1+ecoskx)e2, £=0.001,k=04. (8.8)
™

In this simulation the position interval is [0, 2?”]7 since we keep periodic solutions. To introduce the approximate

analytical solution of [28] let us consider the Vlasov-Poisson system with w, =0,

Of +1v10:f — EO,, f =0,

8.9
0 E(t,x)=1— fdv, (8.9)
R2
and initialized with (8.8).
Let us look for a solution of the form,
1 -3
f(t,I,’U) :fl(taxavl) e 2 . (810)
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Then, f(t,x,v) satisfies the and it is initialized with (8.8)) if and only if fi(¢,x,v1) is a solution of the following
Vlasov-Poisson system in one dimension in space and velocity,

Ocfi +v10zf1 — E10y, f1 =0,

8.11
8IE1(LL,$) =1 —/ fld’Ul, ( )
R
initialized with,
1 -7
0,z,v1) = — (1+¢ecoskxr)e 2, &=0.001,k=04. 8.12
Furthermore, note that
E(t,x) = FE1(t,x). (8.13)

Then, we can compute an approximate E(t,z) using the approximate solution to (8.11)), (8.12) given in page 58 of

[28]. Namely,

E(x,t) =~ 4e x 0,424666 exp(—0, 0661¢) sin(0, 4z) cos(1, 2850t — 0, 3357725). (8.14)
We have taken the values given in the second line of the table in page 58 of [28]. This approximate solution is a good
approximation to the exact solution for large times. Further, is a classical test function to highlight Landau
damping, more precisely the damping of the electric energy. In the figures below we report in the black curves.
Moreover, the figure below illustrates how when w. # 0, the damping is replaced by a recurrence phenomenon of
period T, = 2% which follows the behaviour observed in EL [32]. We take w. = 0.1, and as in Subsection [8.3| we use,
N, =33 (number of points of discretization in position), N,, = N,, = 63 (number of points of discretization in both
velocity variables), L,, = L,, = 10 (numerical truncation in both velocity variables).

Landau Damping with k =0.4 Bernstein-Landau paradox with k=0.4 et w.= 0.1
E num E num
E theo

M“”HW”H - E theo

M M” i MU
”HW'W/'W”’” m '; ’WH i f”‘w"(‘w\ li
,,,,, ! fILl H\H i

‘\

wwwww I

i

N\
I W‘\ ’MM "
m

i r"’ﬂ‘fﬁ] My

Norm of the electric field

"“M

Norm of the electric field

Time Time

Figure 5: Damped and undamped electric field

The recurrence visible on the right-hand side figure, i.e. the Bernstein paradox, is a fully ”physical” phenomenon
originating from the non-zero magnetic field and is to be distinguished from the recurrence in semi-Lagrangian schemes
studied in [20], which deals with a purely numerical phenomenon. Let us show that this recurrence is a consequence
of our series based on the eigenvectors expansion in the regime of non zero magnetic field. For this purpose, we take
the charge of the ions equal to 27, and solutions with period 27, to be able to use our results of the previous sections.
We consider the initial data.

U2

2
Go = (uo(x,v), Fo(x)) = (e4 coslz, —Tﬂ sin Zx) ez (8.15)

which satisfies the Gauss law. To compute the electric field with the expansion of the solution to the magnetic Vlasov-
Ampere system given in (6.2), (6.4), (6.7) we only need to consider the eigenfunctions with non zero electric field,
namely, F;O and Z, ,,. Recalling that the electric field is the second component of (6.2)) we obtain,

Fla,)= Y (GO,F( ) FO @)+ Y e Pl (Go, Zm)yy ZE(2) =

nez* n,mez*

(GO,F(O) F%@) + Y et (Go, Zim)y, Zi00 (@), (8.16)

mezZ*
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where we denote by F%OQ), respectively, ZS?}W the second component of FS”, and of Z,, . Then, using (2.10) with
Ey =0, and (8.16]) we get the approximate formula for the electric field,

E(z,t) ~ eRF(t) = R (GO,F§°) F'% (@) +eR > e ™t (Go, Zim)y, Zin(@). (8.17)
meZ*
This approximate formula for the electric field shows the recurrence observed in the right-hand side of figure [5| For

clarity, we indicate real part in (8.17)), but note that since the initial data G in (8.15]) is real valued , and the solution
to the magnetic Vlasov-Ampére system(2.17)) is unique, actually the electric field given by (8.16) is real valued.

A Technical formulas

In this Appendix we further study the properties of the secular equation (5.49| 5.50). For later use we prepare
the following result.

PROPOSITION A.1. Let aym,n € Z*,m =1,..., be the quantity defined in (5.45)). Then, there is a constant, C,
that depends on n, such that,

1 en? 1™
ammSCﬁ |:2(,Jg7’n,:| y mzl,..., (Al)

where e is Fuler’s number. In particular, for any p > 0 there is a constant C, that depends on n and p, such that,

1
Opm < C— (A.2)

= mp-

Proof. By equation (10.22.67) in page 245 of [22]

2 n2
Anm =€ % I, ( ) , (A.3)

w2
wC

with I,,(z) a modified Bessel function. Furthermore, by equation (10.41.1) in page 256 of [22],
n? 1 en? \"
I, (X)) = ) (14 0(1)), . A4
(&) = 7o (gw) Gren moos .
Equation (A.1)) follows from (A.3) and (A.4). Finally, (A.2)) follows from (A.1]). O

We continue the analysis of the secular equation Let A, ,,,m > 2 be the root given in Lemma Recall that
Anym € (Mwe, (m + 1)we). Then, to isolate terms that can be large as Ay, is close to mw. or to (m + 1w, we
decompose g(Ay,m) as follows,

g(An,m) = g(l)(/\n,m) + 9(2)(/\n,m) + 9(3)(/\n,m) + 9(4)(/\n,m)a (A5)
where,
2, 2
(1) — 4~ We
g (An,m) =dm 1<q<zm_1 Pw? — )\%’m Qn,q, (A.6)
m? w?
9(2) (An,m) =47 man,mv (A7)
(m+1)2w?
g(3) (An,m) =47 (m n 1)20.)2 — ;\2 An,m+15 (AS)
9(4)()\n,,m) =4 Z Qgian,y (Ag)
gmz T4 An,m
LEMMA A.2. Let g(l)()\n,m) be the quantity defined in (A.6). Then, there is a constant Cy, such that,
1
’g(l)(/\n,m)‘ <G, e m > 2. (A.lO)
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Proof. First suppose that m is even. Then, m/2 is an integer, and we can decompose g(l)()\mm) as follows,

9D Onm) = 45D ) + 902 ). (A.11)
where,
(L)) — 4 qziwg A.12
g ( n,m) =am Z ng_)\g Qn,q; ( . )
1<q<m/2 q-we n,m
and 5
9(1’2)(>‘n,m) = A Z 2 (2] wc2 An.q- (A-13)
m/2<qg<m—1 rwe = )‘n,m
Note that,
! < 2 —,. (A.14)
PN T S ¢=1...,5 .
Then, by (A.2), (A.12) and, (A.14)
2 W2 1
‘g(l,l)()\mm)‘ < 47 —3 Z FPuwlan, < Cﬁ' (A.15)
¢ 1
Furthermore, we have
1 1 1 m
=—,... — 1. Al
qzwg - A%L,m ‘ We mwc7 a4 2’ 1 ( 6)
Then, by (A.2), (A.13) and, (A.16),
1
(1,2) 1 2,2 L
‘g (An, )‘ <47Twc . Z q wcan,ngpmwp—l,.... (A.17)

m/2<g<m—1

Equation (A.10) follows from (A.11)), (A.15) and, (A.17). In the case where m is odd, (m — 1)/2 is an integer, and we
decompose g'M(\,.m) as in (A.11]) with,

(D) = dr Y e (A.18)
g nm) -— q2w2 — /\ n,q» .
1<q<(m—1)/2 ¢ omm
and -
9(1’2)(>\n,m) = dm Z 2 (2] ch n,q; (A.19)
(m—1)/2<g<m—1 L ¥¢ A
and we proceed as in the case of m even. O

In the following lemma we estimate g(*) (A, ).

LEMMA A.3. Let g(4)(/\n,m) be the quantity defined in (A.9)). Then, for every p > 0 there is a constant C, such
that,

1
(4) =
99 )| <G —, mz2. (A.20)
Proof. Note that,
1 1 1
_ < - > 2. A21
qug_A%,m‘—wC (m+3)wcv q=>m+ ( )

Equation (A.20]) follows from (A.2)), (A.9) and, (A.21). O

In the following lemma we estimate how A, ,,, approaches mw, as m — %oo.

LEMMA A.4. We have,

A lm 1
An,m = Mwe + 2TmM we |2 l + ap,jm| O () , m — too. (A.22)
n m|
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Proof. Note that since A, _n = — Ay it is enough to prove equation (A.22]) when m — oo.
Using (A.10) and (A.20) we write (5.50) as follows

m? w? 2. (3 1
A g5 tnm =1+ 9V M) + 0 —5 |, m oo, (A.23)
Moreover, as g (\,.,) > 0, we get,
m? w? 9 1
4Wman,m2n +O(mz)’ m — oo.

2 2
; m*w 2 2 2 2 2
Then, there is an mg such that 47« Wa”’m > 7, m > my, and then, )\n’m < mAw? + 16m= ws an,m, m > mo,

and taking the square root we obtain

mwe < Apm < Mwey/1+ 16 Gy m, m > mg. (A.24)

This already shows that A, ., is asymptotic to w, for large m. However, we can improve this estimate to obtain (A.22]).

By (A2) and (A2d) for every p > 0,

(4 Dwe — Apn) ' = L (1 +0 (Z)) . m— . (A.25)

We m

Further, introducing (A.8)) and (A.25) into (A.23]), and using (A.2)) we obtain,

m? w? 1
47 m&n7m = n2 + O (W) y m — 0. (A26)
We rearrange (A.26|) as follows,
4 m? w? 1 1
Anym — Mwe = e man,m + - (A,m — mwe) O (m2) , m — 00. (A.27)
By (A.24)
Anym — Mwe < mwe O (an,m) , m — 00. (A.28)
Further,
_ _ 1
Ao + mwe) ™" = (2mwe + Apm — mwe) ' = (140 (anm)),  m— . (A.29)
2mw.
Expansion (A.22) follows from (A.28]) and, (A.29). O

B A family of stationary solutions

In this appendix we construct explicitly a family of time-independent solutions to the linearized magnetized Vlasov-
Poisson system. We first construct the family in dimension 1+2 (one dimension in space, two dimensions in velocity),
that is the situation that we consider in our work. Then, we generalize our family of solutions to the case dimension
343 (three dimensions in space, three dimensions in velocity) that is the case considered by Bedrossian and Wang [5].

B.1 Dimension 1+2

For the purpose of making the comparison with [5] more transparent we consider the Vlasov equation,
6tf + Ulamf +F- vvf =0, (Bl)
with the electromagnetic Lorenz force,

F(t,z) = — (E(t,z) + v x Bo(t,x)) . (B.2)

4
m
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Taking By # 0 the plasma is magnetized. The variable z is in the periodic torus z € 7 = [0, 27]per. The velocity
variables are (vy,v;) € R?. We take the charge ¢ > 0 (Remark the mass m > 0, and we assume, as before, that
the magnetic field B(¢,x) = By is constant in space-time. We suppose again that the two-dimensional velocity v is
perpendicular to the constant magnetic field, i.e., By = (0,0, By), By > 0. Moreover, we assume that the electric field
is directed along the first coordinate axis, E(t,xz) = (E(t, z),0,0), that it has mean zero,

/ E(t,z)dx =0,
-

and that it satisfies the Gauss law,
1
0, E(t, ) = — (—1 + q/ fdv) , (B.3)
47 R2

where as in [5] we introduced the factor ﬁ in the right-hand side of the Gauss law, and we have taken the charge of
the heavy particles equal to minus one. See Remark

We linearize the equations around a homogeneous Maxwellian equilibrium state fo(v), where,

~ 1 —v2
folv) := 5=
- 2
We take as equilibrium state fo(v) := ieT to make the comparison with the results of [5] more transparent. This
corresponds to the expansion, R
f(t,x,0) = fo(v) + eh(t, z,v) + O(e?), (B.4)
and
E(t,x) = Eq +eF(t,x) + O(c?), (B.5)

with a null reference electric field Ey = 0. Inserting (B.4) and (B.5)) into (B.1))-(B.3)), and keeping the terms up to
linear in &, we obtain the linearized magnetized Vlasov-Poisson system

Oih + v105h — L vy fo — LBy (—v28y, +1100,) h =0,
m m

q (B.6)
O F = — hdvld'UQ,/ F(t,z)dx = 0.
47 R2 T
As we look for time-independent solutions, we have to solve,
q :q _
v10,h — EFvlfo — EBO (_'U28v1 + ’Ulavz) h =0,
q (B.7)
O, F = — h dvy dvsg, / F(t,x)dz = 0.
47 R2 T
Note that, 5
(—U28U1 + 1)181)2) f()(’Ul7 ’UQ) =0. (B8)

Our objective hereafter is to construct a family of non trivial smooth solutions to (B.7]) that have fast decay in velocity.

LEMMA B.1. There exists an explicit family of non trivial smooth solutions (h, F') to the time-independent linearized
magnetized Vlasov-Poisson system , where F' = —¢'(z), with ¢ € C*°(T), and where the function h can be taken
with | continuous derivates with respect to v,l = 1,2, ..., or infinitely differentiable with respect to v. Moreover, for
each fized v € T,h € L*(R?). Further, the absolute value of h and of all its derivatives can be taken bounded by
Gaussian functions of v, uniformly in x € T. Moreover, h+ Ly fy can be taken with compact support in v, uniformly
inxeT.

Proof. We introduce an electric potential p € C1(T) as
F(I) - 7<p/('r)a

with ¢(27) = ¢(0) and ¢'(27) = ¢'(0). Plugging in the first equation in (B.7)), we obtain

v10y | (2, v1,02) + %tp(x)fo(vl,vg)} — %BQ (—v20y, +v10y,) h = 0.
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Let us define

G(x,v1,v9) = h(x,v1,v2) + %go(x)fo(vl,vg). (B.9)

Since we have (B.8)), G satisfies the equation
10, G(x,v1,v2) — %BQ (—v20y, +v10,,) G(x,v1,v2) = 0. (B.10)

Let us make another change of function which is valid since By # 0,

H(z,v1,v2) = G(z — w,vl,vg) <~ G(x,v1,v9) = H(z + w,vl,vg). (B.11)
qBo qBo
The equation (B.10)) is rewritten as
iwc (—v20y, +v10y,) H(z,v1,v2) = 0. (B.12)
m

Under this form, it is easy to find a general solution which writes
H(z,v1,v0) = K(z,0? + v3)

where K is an arbitrary smooth function which decreases sufficiently fast at infinity with respect to its second variable.
For example, we can take, ‘

K(z,vf +0)) = e"™g(vf +03),  neZ\{0}, (B.13)
where g(v? +v2) € CY(R?),l =1,2,..., or g(vi+0v3) € C>®(R?), and g(v?+v3) € L*(R?). For example, g can be taken
with compact support, or a Gaussian. Going back to the perturbation h, one obtains the representation formula

m vy

2 2
, 01 +v3),
qBO 1 2)

h(z,v1,v2) = —%cp(x)fo(vl,vg) + K(x+

where the electric potential ¢ remains to be determined. All functions h of this form satisfy the first equation of (B.7)).
It remains to verify the Gauss law, that is the second equation of (B.7]). The right-hand side of the Gauss law is

q q q muva o 2
— hdvidvy = — | —— K — dvy d .
i ) vidvz = - < - o(z) + . (x + Do , 07 + v3) dvy ’Uz)

So the Gauss law is rewritten as

(2)+ L () q/K<+”“’2 2 4 02) doy d
— X e X)) = — X — .,V V. v V9.
v drm ¥ 4Ar Jge qBy '

Using (B.13)), one gets

4mm - Am

This is an equation for the electric potential. The periodic solution is explicit,

2 . muv
—¢"(2) + e pl(z) = — emw/ €40 g(v? + v3) dvy dvs.
R2

1 , in T2
o) = e / €10 (v} + v3)dvy dvs. (B.14)
ne + o R2

The remaining properties of the solution (h, F) follow immediately from the explicit representation of (h, F). O

Remark that the solutions given by Lemma satisfy,

/ h(z,v1,ve)dz =0,
-

and in particular,

/ h(zx,v1,v2) dx dvy dve = 0.
T xR2

The solutions given by Lemma [B.1] are in agreement with (6.1)), (6.2), (6.4), (6.7), and also with (6.14)), (6.15)), (6.16].
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B.2 Dimension 3+3

We now consider solutions to the magnetized Vlasov-Poisson system in 72 x R?, where 72 is the three-dimensional
torus, 72 := [0, 27)3,,. We denote x := (x,y,2) € T3, and v = (v1,v2,v3) € R3. The Vlasov equation is given by,

per*

Oflt,x,v)+v - -Vyif(t,x,v) +F(t,x) Vo f(t,x,v) =0, (B.15)
with the electromagnetic Lorenz force,

F(t,x) = % (E(t,x) + v x Bo(t, %)) , (B.16)

where ¢ > 0,m > 0, and we assume, as before, that the magnetic field B(t,x) = By is constant in space-time, and
that it is directed along the third coordinate, i.e., Bg = (0,0, By), By > 0. Moreover, we assume that the electric field
satisfies the Gauss law,

Vi E(t,x) = 1

Ep(t,x)7 p(t,x) = [-1 Jrq/RS f(t,x,v)d*v]. (B.17)

Further, we assume that the electric field has mean zero,
/ E(t,x)d*x = 0. (B.18)
73

We linearize equations (B.15)-(B.18) around a homogeneous Maxwellian equilibrium state f°(v), where,

FOV) = folvr,v9) ——==€>"1,

where T} > 0 is the temperature along the magnetic field. This amounts to take f =0in 1] This corresponds to

the expansion,
ft,x,v) = fO(v) + G (t,x,v) + O(e?), (B.19)

and
E(t,x) = Eg + e F(t,x) + O(£?), (B.20)

with a null reference electric field Eg = 0. Inserting (B.19) and (B.20) into (B.15)-(B.17)), and keeping the terms up
to linear in €, we obtain the linearized magnetized Vlasov-Poisson system,

KG(t,x,v) +v-ViG(t,x,v) + %}"(t,x) Vo fov) + %v x Bo - VG (t,x,v) =0,

q (B.21)
Vi F(t,x) = — p(t, x), p(t,x) = / G(t,x,v) d*v, F(t,x)d*x = 0.
4 R3 T3
We look for solutions to (B.21)) that satisfy,
/ G(t,x,v)d*xd*v = 0. (B.22)
T3xR3

Under the condition (B.22) the Gauss law, that is the second equation in (B.21)), is equivalent to the following equation,

F(t,x) = —Vx W(x y)p(t,;y)d?’y, (B.23)
E
where,

q 1 T
W(x):= — — X,
4 (2m)3 keﬁz\{o} k|2

Since we are looking for time-independent solutions we have to solve,
v ViG(t,x,v)+ g.7-'(t,x) Vo fP(v) + Ly« By - VG(t,x,v) =0,
m m

(B.24)

Vx - F(t,x) = % p(t,x), p(t,x) == » G(t,x,v)d®v, /7’3 F(t,x)d*x = 0.
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Let (h, F') be one of the solutions to (B.7) given by Lemma We define,

- F(z)
G(x,v) = h(z,v1,v2) el and F(x) = 0 . (B.25)
27T 0

LEMMA B.2. Let (h(z,v1,v2), F(z)) be one of the solutions to the time-independent linearized magnetized Vlasov-
Poisson system given by Lemma . Then, the pair (G(x,v),F(x)) defined in is a solution to the
time-independent linearized magnetized Vlasov-Poisson system in T3 x R3, with F € C*®°(T?), and where the
function h can taken with I continuous derivates with respect to v,l =1,2,..., or infinitely differentiable with respect
to v. Moreover, for each fized x € T3, h € L*(R®). Further, the absolute value of h and of all its derivatives can be
taken bounded by Gaussian functions of v, uniformly in x € T>. Further, the solution (G(x,v), F(x)) satisfies (B.22).

Proof. We detail the calculations for the convenience of the reader. One has

2
1 27|,
)

v - VG (2,y,2,01,v2,v3) = 010 h(x, v1,v2) o) ©

2
—v3
2TH

a’l}lh(x?vl7v2) e

2
—v3

1
A/ 27\'T”
1

VvG(@,y, 2,01,02,03) = | Dy, h(w,v1, v2) \/ﬁem ;
2
h(‘r7v1702) 8113#,1,,” €2TH (B26)
f(:n,y,z) : vva = —F(l‘)vl f07
Bovs
VvV X BO = *BO'Ul ,
0

3

(V X BO) -vVg(xay7Z7vluv27v3) = BO (UQa’Ul _Ulavz)h(xﬂvh'UQ) 1 €2TH

2Ty

Therefore, by (B.26) one gets the first equation in the linearized magnetized Vlasov-Poisson system (B.24]),
v VxG(t,x,v) + %]:(t,x) Vo fPv) + %V x Bg - VyG(t,x,v) = 0. (B.27)

Moreover, one has Vy - F(x) = 0, F(z), and

i%
Jrs G(x,v)dPv = [on h(z, v1,v9)dvrdus X [, \/77”6”” dvg

Jg2 B(, v1, v2)dvydvs.

So one obtains immediately the Gauss law

Vi - F(x) = L p(t,x). (B.28)
4

The fact that (B.22)) holds, and the properties of the solution (G, F) stated in the lemma hold, follow immediate from
the definition of the pair (h, F). O

The solutions (G, F), given by Lemma to the time-independent linearized magnetized Vlasov-Poisson system
(B.24]), and that fulfill (B.22)), satisty the assumption of Theorem 1 of Bedrossian and Wang, [5] (see Theorem
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above). For example, we can take g(vi + v3) = e~viTvs Moreover, the charge density fluctuation is independent of y
and z, and is given by,

1 —q? in MV2
7 € 14 / "B, g(vi +v3) dvidovs. (B.29)
n< + 4‘(111’7m dm R2

The Fourier coefficient p(n,0,0) is, in general, not zero, and it is given by,
2

_ e
2
n? + g Amm

p(n,0,0) = (2m)3 +1

/]R2 e TBy g(v? +v2) dvidu,. (B.30)

B.3 Limit By — 0

An interesting question is passing to the limit By — 0 in the right-hand side of (B.14)). One has weak convergence to
zero of the right-hand side under standard integrability conditions on g since

in T2 9 9
lim e B0 g(vi + v3)dvidve =0
BOHO R2

P

because of the oscillating term B Therefore, by (B.14]) the solutions of 1) given by Lemma satisfy

=0.
BQ*}O

The weak limit recovers the classical results in the non magnetized case.
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