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Abstract. We consider the multistage framework introduced in (Gupta
et al., Eisenstat et al., both in ICALP 2014), where we are given a time
horizon and a sequence of instances of a (static) combinatorial optimiza-
tion problem (one for each time step), and the goal is to find a sequence
of solutions (one for each time step) reaching a tradeoff between the qual-
ity of the solutions in each time step and the stability/similarity of the
solutions in consecutive time steps. We first introduce a novel rounding
scheme, tailored for multistage problems, that accounts for the mov-
ing cost (or stability revenue) of adjacent solutions. Using this rounding
scheme, we propose improved approximation algorithms for the multi-
stage variants of Prize-Collecting Steiner Tree and Prize-Collecting Trav-
eling Salesman problems. Furthermore, we introduce a 2-approximation
algorithm for multistage Multi-Cut on trees, and we also show that our
general scheme can be extended to maximization problems, by providing
a 0.75-approximation algorithm for the multistage variant of MaxSat.

Keywords: Multistage optimization · Approximation algorithms · LP-
rounding.

1 Introduction

In many applications data are evolving over time (e.g. in data centers [1], video
streaming [30], or electricity production [35]). Different models have been intro-
duced in the literature in order to capture the dynamic changes of the data, such
as for example, dynamic algorithms [16], temporal graphs [31], etc. Here, we fo-
cus on a recently introduced model, the multistage model [15, 26], where we are
given a discrete time horizon and a set of instances of a combinatorial optimiza-
tion problem, one for each time step, and we aim to find a sequence of solutions,
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one solution per instance, optimizing the solution quality in each time step and
the stability (moving cost or profit) between solutions in consecutive time steps.
For a sequence of solutions of a minimization multistage problem, the service
cost is defined as the sum of the cost of the solutions of each individual instance
over the time horizon, while the moving cost is defined as the sum of the costs
induced by changing the solution in consecutive time steps of the time horizon.
The goal is to find a sequence of solutions minimizing the sum of the service
cost and the moving cost. Clearly, choosing the best solution in every time step
minimizes the service cost, but may induce a huge moving cost. On the other
hand, keeping the same solution in every time step will minimize the moving
cost, but may induce a huge service cost. Hence, a tradeoff between the service
and the moving costs is needed. Surprisingly, some polynomially-time solvable
problems in the static case, become very hard in the multistage framework [2,
7, 15, 26]. For instance, while the minimum cost perfect matching problem is
polynomially-time solvable in the static case, it becomes hard to approximate
even for very restricted cases (when the edges have zero-weights, the time hori-
zon is of only two time steps, or when the graph is bipartite) [7, 26, 12]. Another
polynomially-time solvable problem in the static case that becomes hard in the
multistage framework is the minimum spanning tree problem [26]. For other
problems the situation is much better. This is the case for the multistage variant
of the minimum (s, t)-cut problem which remains polynomially-time solvable by
a simple reduction to the static (s, t)-cut problem [6]. In this later work, it has
been proved that monotone and IP2-non-monotone problems [29] retain their
properties in the multistage setting and thus can be solved by efficient approx-
imation algorithms. Furthermore, the authors introduced a new deterministic
rounding scheme, called two-threshold rounding scheme, designed for multistage
problems in the sense that it is able to take into account both moving costs
and service costs when rounding. Using these rounding scheme, they were able
to acquire upper bounds on the approximation ratio of the multistage variant
of various important optimization problems, including Prize-Collecting Steiner
Tree and Prize-Collecting Traveling Salesman problems [3, 5, 11, 25].

1.1 Problem formulation and preliminaries

Linear-programming (LP) based methods are arguably one of the main tech-
niques for the design of approximation algorithms for usual (static) problems,
and have already been fruitfully applied in the multistage setting, see e.g. [2, 6,
15].

One of the first problems that have been considered in the multistage frame-
work is the facility location problem. Facility location problem formulations clas-
sically use two kinds of variables: variables, say yj , to express the fact that the
facility is open or not, and variables xij assigning clients to open facilities, with
a formulation min(c ·x+d ·y) s.t. (x, y) ∈ Δ, xij , yj ∈ {0, 1}, where Δ contains
feasibility constraints (of the form xij ≤ yj and

∑
j xij = 1). In the multistage

version [15], distance from clients to facility evolve with time, and we have a
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sequence of T distance functions. Then, we may modify the solution at each
time step t = 1, . . . , T (because of the modification of the distances), but mov-
ing a client from one facility (at some time t) to another one (at time t + 1)
comes at some cost w. Then, globally, the objective function to minimize is
the sum of the global service cost

∑
t(ctx

t + dty
t), and the global moving cost

w
∑

t

∑
i,j |xt

i,j − xt+1
i,j | (where xt

i,j = 1 if client i is affected to facility j at time
t). Note that there is a moving cost on variables x but not on variables y.

Let us express this in a more general way, and consider any traditional min-
imization problem (for simplicity of notation, we focus on minimization prob-
lems in the first part of this article and then extend our results for maximization
problems as well). As in the previous example, we consider a general multistage
setting where a subset of variables, denoted by x, are subject to moving costs,
while the other variables, denoted by y, are not. Then, let us consider an Integer
Linear-Program (ILP ) of this minimization problem

min(c · x+ d · y) s.t. (x, y) ∈ Δ, xi, yj ∈ {0, 1}.

where Δ is some set of linear constraints on the sets of variables x, y and c, d are
some non-negative cost vectors.

Then, if T is the time horizon (number of time steps), nx = |x| and ny = |y|,
the multistage variant of the problem can be written as the following ILP :

⎧
⎨

⎩

min
∑T

t=1

∑nx

i=1 c
t
ix

t
i +

∑T
t=1

∑ny

i=1 d
t
iy

t
i +

∑T
t=2

∑nx

i=1 w
t
i |xt

i − xt−1
i |

s.t.

∣
∣
∣
∣
(xt, yt) ∈ Δ ∀t ∈ [T ]
xt
i, y

t
j ∈ {0, 1} ∀t ∈ [T ], ∀i ∈ [nx], ∀j ∈ [ny]

(1)

In (1), we have T sets of variables (xt, yt) that must satisfy the set of con-
straints Δ in each time-step and T non-negative cost vectors ct, dt, wt. The
x-variables are associated to a movement cost for changing between time-steps
t− 1 and t that is given by

∑
i∈[nx]

wt
i |xt

i − xt−1
i |. For the purposes of this arti-

cle, we will focus on multistage minimization problems where the movement cost
between adjacent solutions can be expressed as a linear combination of the abso-
lute differences between the coordinates of a set of variables x, as this is the case
for a large variety of multistage problems. We will refer to the three quantities
that define the objective function as the service cost w.r.t. to the x-variables,
the service cost w.r.t. to the y-variables and the movement cost.

We first note that (1) is not (formally) an ILP -formulation due to the term
|xt

i − xt−1
i |. Yet, we can easily overcome this obstacle by substituting this term

using an extra variable zti that is subject to the constraints: (i) zti ≥ xt
i − xt−1

i

and (ii) zti ≥ xt−1
i − xt

i. Then, it is trivial to show that in any optimal solution
of (1) it holds that zti = |xt

i − xt−1
i |. For the rest of this work, we will slightly

abuse the notation and formulate our ILP ’s using these absolute values, since
they can always be substituted with z-variables without loss of generality.
Our Contribution. We introduce a rounding scheme that is arguably simpler
than the two-threshold rounding scheme introduced in [6]. Our method allows
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to improve some approximation results presented in [6] and we show how it can
be applied to other multistage minimization or maximization problems. Namely,
we improve the approximation ratio for multistage Prize-Collecting Steiner Tree
from 3.53 to 2.54 and for multistage Prize-Collecting Traveling Salesman from
3.034 to 2.06. Furthermore, by slightly extending our general scheme we are
able to acquire a 2-approximation algorithm for multistage Multi-Cut on trees.
Finally, we show that our method can also be applied to maximization problems,
by presenting a 0.75-approximate algorithm for a multistage variant of MaxSat.

In Table 1.1, we present for each of the problems considered in this article
the best known bounds on their approximation ratio in the traditional (static)
case, the previously best known upper bounds on their ratio for their multistage
extension and our novel bounds that were obtained via the general rounding
scheme discussed above.

Problem Static Hardness Static Approx.
Multistage Approx.
(Previously Known)

Multistage Approx.
(This Article)

f-Set Cover f − ε [32] f [28] 2f [6] f

Prize-Collecting ST 1.991 [3] 3.53 [6] 2.54

Prize-Collecting TSP 1.990 [3] 3.034 [6] 2.06

MultiCut on Trees 2− ε [24] 2 [24] − 2

Max Sat 7/8 + ε [27] 0.7968 [4] − 0.75

Table 1. Known results and our contribution

Related Work.

Multistage setting. The multistage model has been introduced by Eisenstat et al.
[15] and Gupta et al. [26]. In [15], two multistage versions of the facility location
problem have been studied where clients are moving in some metric space over
time. Algorithms with logarithmic approximation ratios have been proposed for
both versions, namely the fixed opening cost version where a facility once opened
remains open and where its opening cost is paid once; and the hourly opening
cost where the opening cost of a facility is paid at every time step when it is open.
An et al. [2] proposed an improved constant factor approximation algorithm for
the hourly opening cost variant. Fairstein et al. [18] considered the case where
only the location of the clients change over time.

Gupta et al. [26] studied the multistage Maintenance Matroid problem (which
includes multistage Spanning tree as a subcase) for both the offline and the online
settings. They also introduced the multistage Minimum Cost Perfect Matching
problem. They showed that it is hard to approximate even for a constant num-
ber of stages. In [7], this negative result has been strengthened since it has been
proven that the multistage problem is hard to approximate even for bipartite
graphs and for a time horizon with only two time steps. Furthermore, different
versions of the problem of maintaining a perfect matching on a multistage graph
such that the changes between consecutive matchings are minimized, have been
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studied in [12], and new complexity results and efficient approximation algo-
rithms have been proposed.

A multistage variant of the Minimum Linear Arrangement problem, which is
related to a variant of the List Update problem [36], has been studied in [34],
both in the online and offline frameworks. Fotakis et al. considered in [22] the
multistage K-Facility Reallocation problem on the real line when the locations
of the agents are stage-dependent. In [23], the authors consider the online mul-
tistage Facility Location problem and they present an efficient online algorithm.

Multistage maximization problems have also been studied. For instance, in
[8], the multistage Max-Min Fair Allocation problem has been considered in the
offline and the online settings. For the multistage variant of the Knapsack prob-
lem, positive and negative results have been presented in [10]. In [17], an approx-
imation scheme has been proposed for the Generalized Multistage d-Knapsack
problem. In [9], general techniques have been introduced for a large family of
online multistage problems, called Subset Maximization problems, leading to a
characterization of the variants that admit a constant-competitive online algo-
rithm.

Multistage optimization problems also received an increasing attention from a
parameterized complexity perspective, where typically moving cost and service
cost are interesting and natural parameters. In that perspective, in [19] it is
proved that Multistage 2-SAT is NP-hard even in quite restricted cases, and
parameterized algorithms (including kernelization) are presented and proved to
be asymptotically optimal. Other problems such as path or vertex cover have
also been studied, see e.g. [20, 21].
Static setting. The Prize-Collecting Metric Traveling Salesman problem that
has been introduced in [5]. In [11], a 2.5-approximation algorithm has been pre-
sented. In addition, a 3-approximation algorithm for the Prize-Collecting Steiner
Tree problem has been proposed. Goemans and Williamson [25] provided 2-
approximation algorithms for both problems, based on the primal-dual scheme.
Later, Archer et al. [3] devised a (2−ε)-approximation algorithm, for some ε > 0,
for both problems. These results are valid for the rooted and the unrooted vari-
ants of both problems. For MaxSat, a classical 3/4 approximation algorithms has
been improved in a sequence of articles, up to a ratio 0.7968 [4]. Garg et al. [24]
provided a 2-approximation primal-dual algorithm for the multicut problem in
trees, and a reduction from which a matching lower bound of 2− ε, under UGC,
follows.

2 General Rounding Scheme

In this Section, we will present a general rounding scheme for multistage min-
imization problems that can be formulated as the ILP in (1). Then, we will
present a direct application of this scheme to obtain an f -approximation algo-
rithm for multistage f -Set Cover.

As mentioned, the hardness of multistage optimization arises from the intro-
duction of a moving cost between consecutive solutions of different instances for
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an optimization problem. The general rounding scheme we give allows the use of
traditional algorithms for an optimization problem, while achieving theoretical
guarantees for the approximation ratio of the solution w.r.t. the moving cost.

On a high level, the general scheme fixes the variables x (which are subset
to the moving cost) by using an LP relaxation for the multistage problem and
a randomized rounding. Then, xt being fixed for every t, we have T unrelated
instances and we compute yt independently on each time step.

We will now present the general algorithm scheme, which we refer to as GS.
GS requires one threshold parameter α ∈ (0, 1] and an algorithm ALG that given
a solution xt for the problem produces a solution yt such that (xt, yt) ∈ Δ.

GS(α,ALG):

1. Solve the continuous relaxation of the multistage problem (the ILP (1) where
xt
i, y

t
i ∈ [0, 1]), to find an optimal solution x̄, ȳ.

2. Choose a threshold h uniformly at random in [0, α].
3. For each t ∈ [T ] and i ∈ [nx], set x̂

t
i = 1 if x̄t

i ≥ h, otherwise set x̂t
i = 0.

4. For each t ∈ [T ], produce ŷt = ALG(x̂t).
5. Output (x̂t, ŷt) for each t ∈ [T ].

Formally, ALG also depends on the instance, that is the set of constraints
Δ and the weight vectors ct, dt, wt at time t in order to compute ŷt. Yet, we
will slightly abuse the notation for the convenience of the reader and omit this
dependency, writing ŷt = ALG(x̂t).

In order for this general rounding scheme to work, we need to make sure that
the rounded values x̂, combined with the output ŷ of ALG satisfy the linear set
of constraints Δ at each time step. In order to achieve this, both the parameter
α used to draw the random threshold and the underlying algorithm ALG need to
be selected appropriately.

The main benefit of this rounding scheme is that it allows the use of a tra-
ditional optimization algorithm ALG for each (now unrelated) instance, while
achieving theoretical guarantees both for the service cost and the moving cost
of the x-variables. This can be formalized in the following theorem:

Theorem 1. Assuming feasibility, the output of GS(α,ALG) is 1
α -approximate to

the optimal (fractional) solution both w.r.t. the service cost of the x-variables,
and to the moving cost, that is:

1. E(
∑T

t=1

∑nx

i=1 c
t
ix̂

t
i) ≤ 1

α

∑T
t=1

∑nx

i=1 c
t
ix̄

t
i.

2. E(
∑T

t=2

∑nx

i=1 w
t
i |x̂t

i − x̂t−1
i |) ≤ 1

α

∑T
t=2

∑nx

i=1 w
t
i |x̄t

i − x̄t−1
i |.

Proof. Fix any time step t ∈ [T ] and any variable index i ∈ [nx]. By linearity
of expectation and the fact that all weights cti, w

t
i are non-negative, it suffices to

show that (i) E(x̂t
i) ≤ 1

α x̄
t
i and (ii) E(|x̂t

i − x̂t−1
i |) ≤ 1

α |x̄
t
i − x̄t−1

i |.
If x̄t

i ≥ α ≥ h then with probability 1 we have that x̂t
i = 1 ≤ x̄t

i

α . If x̄t
i < α,

then x̂t
i becomes 1 only if h ≤ x̄t

i which happens with probability
x̄t
i

α due to the
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uniform selection of the threshold; otherwise it is rounded to 0. So, on expectation

we have E(x̂t
i) ≤

x̄t
i

α as required.
For the moving cost, a simple case-analysis suffices:

– If x̄t
i ≥ α and x̄t−1

i ≥ α then both are rounded to 1 and the algorithm does
not suffer any moving cost.

– If x̄t
i < α and x̄t−1

i < α then the algorithm suffers a moving cost of 1 only
if these variables are rounded to different values. This happens only if the
threshold h is drawn between them. Since h is drawn uniformly at random

from [0, α] we get that E(|x̂t
i− x̂t−1

i |) = |x̄t
i−x̄t−1

i |
α which satisfied the required

property.
– If x̄t

i < α and x̄t−1
i ≥ α (or the symmetrical case which is equivalent), then

we have that x̂t−1
i = 1 and x̂t

i = 0 only if the threshold h is in [x̄t
i, α], so on

expectation we get E(|x̂t
i − x̂t−1

i |) = α−x̄t
i

α ≤ x̄t−1
i −x̄t

i

α .
��

Basically, this theorem bounds the approximation ratio of the solution with
regard to the x variables. To summarize, all we need in order to use this general
rounding scheme is to select a parameter α (that is as large as possible in order to
achieve the lowest possible approximation ratio) and an algorithm ALG such that
the feasibility of the output is ensured. Observe that some theoretical guarantee
about the approximation ratio of ALG w.r.t. the y-variables has to be derived
in order to obtain a (collective) approximation ratio for the output (x̂, ŷ) of
GS(α,ALG).

Furthermore, observe that the approximation ratios that stem from this The-
orem are w.r.t. the optimal fractional solution, which is even stronger than an
approximation ratio w.r.t. the optimal integer solution.

Finally, let us make a comment on derandomization. The only random choice
we make is selecting h uniformly at random from [0, α]. The way variables are
rounded only depends on the comparisons between h and the values of xt

i. In
other words, there are at most nT + 1 different executions of the randomized
algorithms: h = xt

i for any t, i (such that xt
i ≤ α), and possibly h = α (if all xt

i

are smaller than α, then h = α corresponds to the case where all variables are
rounded to 0). In other words, GS can be easily derandomized (at the price of
applying O(nT ) times algorithm ALG).

Warm-Up: Multistage f-Set Cover. Before we use GS to solve more de-
manding problems, like Prize-Collecting Problems, we provide the reader with
a simple application of the scheme that gives an f -approximation algorithm for
multistage f -Set Cover.

In the (weighted) Set Cover problem, we have as input a ground set C and a
collection (S1, . . . , Sn) of subsets of C, each given with a weight ci. The goal is to
find a collection of minimum weight the union of which is C. In f -Set Cover, each
element of the collection appears in at most f sets of the collection. We consider
the multistage variant of this problem, where the weights on the n subsets of C
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change over time, and a moving cost is associated with choosing set i at time
step t but not at time step t + 1 (or vise versa). The ILP formulation for this
problem is (note that there is no y-variable here):

⎧
⎨

⎩

min
∑T

t=1

∑n
i=1 c

t
ix

t
i +

∑T
t=2

∑n
i=1 w

t
i |xt

i − xt−1
i |

s.t.

∣
∣
∣
∣

∑
i:e∈Si

xt
i ≥ 1 ∀t ∈ [T ], ∀e ∈ C

xt
i ∈ {0, 1} ∀t ∈ [T ], ∀i ∈ [n]

In [6], the authors provide a 2f -approximation algorithm for multistage f -Set
Cover. Yet, since the static version of the problem is hard to approximate only
within a ratio of f−ε under UGC [32], this previous result possible had room for
improvement. Indeed, we show that using GS allows for an optimal approximation
ratio of f to be achieved. Since there are no y-variables in the formulation of the
problem, we only need a parameter α that guarantees feasibility in order to use
GS. This is captured by the following Theorem:

Theorem 2. GS( 1f , ∅) is an f -approximation algorithm for Multistage f -Set
Cover.

Proof. For α = 1
f and the fact that there are no y-variables, Theorem 1 immedi-

ately guarantees an approximation ratio of f , provided that x̂ is feasible. From
the linear constraints on the optimal solution and the fact that each element ap-
pears in at most f sets of the collection, we know that for any t ∈ [T ] and e ∈ C,
there exists at least one set Si such that x̄t

i ≥ 1
f = α ≥ h. This guarantees that

the value will be rounded to 1, and thus the feasibility of the rounded solution
that the algorithm outputs.

We note that Vertex Cover is the special case for f -Set Cover when f = 2.
Thus, our results also translate to a 2-approximation algorithm for multistage
Vertex Cover, which is also optimal under UGC [32], as an alternative proof of
a result in [6].

3 Prize-Collecting problems

In this section, we study the multistage variants of Prize-Collecting Steiner Tree
and Prize-Collecting Metric Traveling Salesman that were also considered in [6].

In a Prize-Collecting problem, clients that are represented as vertices v of a
graph G(V,E) address a request and come with a penalty cv for not serving their
request. An algorithm has to select some vertices of the graph to serve some of
the requests, in order to minimize the sum of the service cost (sum of costs de
of selected edges) and the penalties of not-served vertices. These problems can
be formulated via the following ILP

⎧
⎨

⎩

min
∑

v∈V cvxv +
∑

e∈E deye

s.t.

∣
∣
∣
∣
(x, y) ∈ Δ
xv, ye ∈ {0, 1}
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where variable xv is 1 if vertex v is not served and variable ye is 1 if edge e is
selected. In this formulation, cv denotes the penalty of vertex v and de denotes
the cost of edge e. The set of linear constraints Δ is selected appropriately for
each problem so that (i) the structure of the problem is respected and (ii) the
sets of selected edges and not-served vertices coincide. Specifically:

– For Prize-Collecting Steiner Tree (PCST), we have a (static) root r ∈ V and
need to select a set of edges, while minimizing the cost of the selected edges
and the penalties of the vertices that are not connected to the root via the
selected edges. The set of constraints Δ simply states that xv cannot become
0 unless there is a path of edges with ye = 1 that connect v to the root r.

– For Prize-Collecting Metric Travelling Salesman Problem (PCMTSP), we
assume that the graph G(V,E) is complete and the weights of the edges de
respect the triangular inequality. Once again, we have a (static) depot r ∈ V
and need to select a set of edges that forms a tour that includes r, while
minimizing the cost of the selected edges and the penalties of the vertices
that are not visited in the tour. The set of constraints Δ simply states that
ye must form a circular path that includes r and that xv cannot become 0
unless it is visited by the tour that is formed by edges with ye = 1.

In the multistage version we consider here, the cost of edges and penalties
evolve with time, in a time horizon 1, . . . , T . Depending on these costs, we may
decide to serve different requests at different time steps. However, changing this
decision to serve client/vertex v between t − 1 and t comes with a moving cost
wt

v. Then, the ILP formulation of the problem becomes

⎧
⎨

⎩

min
∑T

t=1

∑
v∈V ctvx

t
v +

∑T
t=1

∑
e∈E dtey

t
e +

∑T
t=2

∑
v∈V wt

v|xt
v − xt−1

v |

s.t.

∣
∣
∣
∣
(xt, yt) ∈ Δ ∀t ∈ [T ]
xt
v, y

t
e ∈ {0, 1}

whereΔ is specified appropriately for multistage PCST and multistage PCMTSP.
Some of the authors of this article have already studied these multistage

problems and have provided upper bounds on their approximation ratio. Using
the same approach, we show that our novel rounding scheme presented in this
work can improve the approximation ratio for both of these problems.

We will use GS to solve these problems: initially, we solve their continuous
relaxation to get optimal fractional solutions (x̄, ȳ). Then, we select an appro-
priate α and a random threshold h ∈ [0, α] to round x̄ to integer solutions x̂t

for each time-step t. This step fixes the sets of vertices that we need to serve at
each time-step and now we need to specify an algorithm that decides on edges
that have to be selected in order to serve these requests (independently at each
time step).

Note that once the set of served vertices is fixed, choosing the edges to serve
these clients is a classical Steiner tree problem (for PCST) and a classical TSP
problem (for PCTSP). Then, for PCST, we will use the Steiner tree algorithm ST

from [25] that is 2-approximate for the Steiner Tree problem, and for PCMTSP
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we will use Christofides’ algorithm TSP from [13] which is 3
2 -approximate for

Metric TSP. The approximation of both of these algorithms is w.r.t. the optimal
fractional solution to the problem, which is a property that we are going to use.
The feasibility of the output is ensured, since for any set of vertices that we need
to serve (as a result of the rounding on the x-variables) these algorithms will
output an appropriate set of edges. Furthermore, the approximation ratio w.r.t.
the penalties and the moving cost is 1

α from Theorem 1. Thus, we only need to
argue about the cost of the edges.

Let (x̄, ȳ) be the optimal fractional solution for either PCST or PCMTSP,
α be the parameter of GS (to be specified), h be the random threshold. Let
also (x̂, ŷ) denotes the solution output by the algorithm, i.e., x̂ obtained in the
rounded scheme and ŷ the set of edges obtained using the Steiner tree algorithm
from [25] (for PCST) or Christofides’ algorithm (for PCMSTP) on the set of
chosen served vertices.

The following property was proven in [6] (see the proofs of Theorem 1 and 3
there):

Lemma 1. [6] If x̄t
v ≥ 1 − β for all v such that x̂t

v = 1, then
∑

e∈E dteŷ
t
e ≤

λ
∑

e∈E dteȳ
t
e, where λ = 2

β for PCST and λ = 3
2β for PCMTSP.

We are now ready to present the main theorems of this section.

Theorem 3. With α = 1−e−1/2, GS(α, ST ) gives a 1
1−e−1/2 ≤ 2.55 approxima-

tion algorithm for multistage Prize-Collecting Steiner tree.

Proof. Fix any t ∈ T . By the definition of the rounding scheme, if x̂t
v = 1 then

x̄t
v ≥ h. Using Lemma 1 (with β = 1− h) we get:

∑

e∈E

dteŷ
t
e ≤ 2

∑

e∈E

dte
ȳte

1− h

By computing the expectation on the random variable h that is drawn uniformly
in [0, α] we get:

E

(
∑

e∈E

dteŷ
t
e

)

≤ 2
∑

e∈E

dteȳ
t
e

1

α

∫ α

0

dh

1− h
≤ − 2

α
ln(1− α)

∑

e∈E

dteȳ
t
e

Thus, combining with the results of Theorem 1, the approximation ratio of
GS(α, ST) is max( 1

α ,−
2
α ln(1−α)) and the Theorem follows from balancing these

terms by choosing α = 1− e−1/2. ��

Theorem 4. With α = 1− e−2/3, GS(α, TSP ) gives a 1
1−e−2/3 ≤ 2.056 approxi-

mation algorithm for the multistage Prize-Collecting Metric Travelling Salesman
Problem.

Proof. The proof is identical to that of Theorem 3 with the only difference that
the ratio for the cost of edges is 3

2(1−h) . Then, GS(α, TSP) is max( 1
α ,−

3
2α ln(1−

α))-approximate, and the Theorem follows from choosing α = 1− e−2/3. ��
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4 Multi-Cut on Trees

In this section, we will provide a 2-approximation algorithm for multistage Multi-
Cut on Trees, using a slight modification of our general rounding scheme. In the
traditional multi-cut problem, we are given an undirected graph G = (V,E) with
weights c : E → R+ and a set of k-pairs (si, ti) ∈ V × V . A multi-cut C ⊆ E is
any set of edges such that si and ti are disconnected in G′ = (V,E \C) ∀i ∈ [k].
Our objective is to determine a multi-cut on the graph with minimum weight.

For k ≥ 3, it has been shown that the problem is NP -hard. Even when
G is restricted to trees, it has been shown from a reduction from vertex cover
that the multi-cut problem is NP-hard to approximate within 1.3 of the optimal
solution [14]. Furthermore, under UGC, the problem is hard to approximate
within (2− ε) of the optimal solution for any ε > 0 [33].

We focus on the case where G is a tree. In this case, there is only one path Pi

between vertices si and ti and thus, the problem reduces to selecting at least one
edge from every path Pi. Then, the problem can be formulated as the following
integer program:

⎧
⎨

⎩

min.
∑

e∈E cexe

s.t.
∑

e∈Pi
xe ≥ 1, i = 1, . . . , k

xe ∈ {0, 1}, e ∈ E

where xe = 1 means that edge e ∈ E belongs to the multi-cut. A way to achieve
an approximation ratio of 2, which is optimal on trees under UGC, is to use
LP-rounding.

Specifically, the algorithm7 that achieves this results first solves the contin-
uous relaxation of the problem to obtain optimal fractional solutions xe ∈ [0, 1],
picks any vertex r ∈ V as the ”root” and compute d(r, u) to be equal to the sum
of values x∗

e on the edges e of the path between r and any vertex u.
We say that en edge e = (u, v) ∈ E is ”cut” by some a > 0 iff d(r, u) ≤ a and

d(r, v) > a. The algorithms picks a random R ∈ [0, 1
2 ] and rounds to 1 only the

edges that are cut by R+ k
2 for some k ∈ N. It can be shown that this rounding

scheme gives a feasible solution, and that the probability that edge e is selected
is at most 2x∗

e, leading to an approximation ratio of 2.

Multistage Multi-Cut on Trees We consider the multistage version of multi-cut
on trees where we have T costs functions on edges. Since the decision variables
are on the edges, we consider a moving cost for changing an edge (in or out of
the multi-cut) between consecutive solutions. We can easily write the multistage
multi-cut problem as an integer program.

⎧
⎨

⎩

min.
∑T

t=1

∑
e∈E ctex

t
e +

∑T
t=2

∑
e∈E wt

e|xt
e − xt−1

e |
s.t.

∑
e∈Pi

xt
e ≥ 1, i = 1, . . . , k, t = 1, . . . T

xt
e ∈ {0, 1}, e ∈ E, t = 1, . . . T

7 Folklore, see https://www.cs.cmu.edu/ anupamg/adv-approx/lecture18.pdf
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We use a modification of GS, where in Step 2 we use as rounding scheme the
one of the static problem given before: pick R ∈ [0, 1

2 ] at random and then at each
time step select edges that are ”cut” by R,R + 1

2 , etc. This will give feasibility
and a 2-approximation w.r.t. the service cost as in the traditional case. What
we need to do now is bound the moving cost. To be able to do this, we pick the
same R for each time step. Let us call this algorithm Mod-GS.

Theorem 5. Mod-GS is 2-approximate for multistage multi-cut on trees.

Proof. By the discussion above, we only have to bound the moving cost. The
proof is similar to the one of Theorem 1.

1. If xt−1
e ≥ 1

2 and xt
e ≥ 1

2 then edge e is rounded to 1 (included) in both
time-steps and the moving cost is 0 and (clearly) at most the optimal.

2. If xt−1
e < 1

2 and xt
e ≥ 1

2 then edge e is rounded to 1 at time t and to 1
at time t − 1 with probability 2xt−1

e . Thus, the expected moving cost is
(1 − 2xt−1

e ) = 2( 12 − xt−1
e ) ≤ 2(xt

e − xt−1
e ) and thus the moving cost is at

most 2 times the moving cost of the optimal solution.

3. If xt−1
e ≥ 1

2 and xt
e <

1
2 we use the same analysis as in 2.

4. If xt−1
e ≤ xt

e < 1
2 since we use the same R randomly picked from [0, 1

2 ]
we know that xt

e and xt−1
e are rounded to different values with probability

|xt
e−xt−1

2 |
1
2

which is exactly 2 times the moving cost of the optimal solution.
��

5 Multistage Maximum Satisfiability

Until this point, we have studied exclusively multistage minimization problems.
However, as we show, the general rounding scheme we have proposed can easily
be transferred to maximization settings as well. To illustrate this, we study a
multistage variant of the Max-Sat problem in this section.

In the traditional (weighted) Max-Sat problem, we are given a set of clauses
C1, C2, . . . Cm that are logical disjunctions of some boolean variables x1, x2, . . . xn.
Each clause Ci comes with a nonnegative weight ci. Our goal is to determine an
assignment for the boolean variables xi, such that the sum of the weights of the
satisfied clauses is maximized.

We consider the problem in a multistage framework by having T weight-
functions ct (ctj being the weight of clause Cj at time t). We also have a stability

revenue wt
i(1− |xt

i − xt−1
i |) that awards the algorithm with wt

i for not changing
the assignment of a boolean variable xi between time steps t− 1 and t.

We note that this setting also captures the case where the set of clauses can
change over time. In fact, this is equivalent to having a (static) set of all the
clauses that appear throughout the instance and simply assigning weight ctp = 0
to clause Cp if it does not appear in time step t.

An ILP formulation for the multistage problem is the following:
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⎧
⎨

⎩

max
∑T

t=1

∑m
i=1 c

t
iy

t
i +

∑T
t=2

∑n
i=1 w

t
i(1− |xt

i − xt−1
i |)

s.t.

∣
∣
∣
∣
(xt, yt) ∈ Δ ∀t ∈ [T ]
xt
i, y

t
i ∈ {0, 1}

Once again, we can use z-variables to substitute the absolute difference of
x-values in the formulation of the problem. xt

i = 1 if at time t the boolean value
of variable xi is TRUE, and yti = 1 if the assignment at time t satisfies clause
Ci. For the set of constraints Δ, we use the traditional modeling of the problem:
based on the structure of a clause Ci, yi is allowed to take the value 1 only if at
least one of the literals is served.

A well-known result for Max-Sat is that we can get a 3
4 -approximation solu-

tion by combining the solutions of two different algorithms [37]: the first one is
based on randomized rounding of an optimal solution of a continuous relaxation,
and the second one simply fixes the truth variables at random independently with
probability 1/2. We will show that the same holds for the multistage variation
of the problem.

Let us first consider the first one, which consists in applying GS with α = 1.
A slight modification of the rounding scheme is that we now draw a separate
threshold hi for each boolean variable xi and use it for every time step. Since the
threshold is drawn uniformly in [0, α], this basically means that each variable is
randomly set to TRUE with probability that is equal to the optimal solution of
the relaxed linear program. This directly gives the set of satisfied clauses at each
time step - so variables y representing clauses can be immediately deduced once
the truth variables xt

i have been fixed.

Lemma 2. GS with α = 1 is a (1-1/e)-approximation algorithm for Multistage
Max Sat.

Proof. While Theorem 1 holds for minimization problems, using the exact same
arguments we can easily get that for α = 1 it holds that E(|x̂t

i − x̂t−1
i |) ≤

|xt
i − xt−1

i |. Hence, the expected stability revenue is at least as large as the one
of the optimal solution.

For the service revenue, using standard arguments we get that the expected

service revenue is at least
∑

t

∑
p c

t
p ·

(

1−
(
1− 1

|Cp|

)|Cp|
)

ytp. Indeed, the prob-

ability that Cp is satisfied at step t is P = 1−
∏

xi∈Cp
(1− xt

i)
∏

xi∈Cp
xt
i. Using

the geometric-arithmetic means inequality
∏b

i=1 α
1/b
i ≤

∑b
i=1 αi/b, we get:

P ≥ 1−
(∑

xi∈Cp
(1− xt

i) +
∑

xi∈Cp
xt
i

|Cp|

)|Cp|

= 1−
(

1−
∑

xi∈Cp
xt
i +

∑
xi∈Cp

(1− xt
i)

|Cp|

)|Cp|

≥ 1−
(

1−
ytp
|Cp|

)|Cp|
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As 1 − (1 − t/k)k ≥ 1 − (1 − 1/k)kt for 0 ≤ t ≤ 1, we get that P ≥ (1 − (1 −
1/|Cp|)|Cp|ytp, leading to the claimed lower bound on the service revenue.

Now, as (1− 1/k)k ≤ 1/e for any integer k ≥ 1 the result follows. ��

Now, we generalize to the multistage setting the (trivial) classical algorithm
which consists of choosing xi to true with probability 1/2, independently on each
variable. In the multistage setting, we do the same but do not flip xt

i and xt+1
i

independently. Rather, we choose x1
i at random, and then fix xt

i = x1
i for any t.

Doing this we get full stability revenue. Let us call AlgoMaxSat the algorithm
which outputs the best solution between this randomized algorithm, and the one
in Lemma 2.

Theorem 6. AlgoMaxSat is a 3/4-approximation algorithm for Multistage Max
Sat.

Proof. Let us first focus on the stability revenue: the trivial rounding gets full
revenue (no variable changes over time), while, as shown in the proof of Lemma 2,
the stability revenue in GS is at least the one of the optimal fractional solution.
So in both cases we have no loss with respect to the stability revenue.

For the service revenue, the analysis is the same as in the static case. In the
trivial rounding, since the boolean variables are assigned values at random, the
probability that the clause Cp is satisfied at time t is exactly (1 − 1

2|Cp| ) and

thus, the expected service revenue of the algorithm E1 =
∑

t

∑
p c

t
p · (1− 1

2|Cp| ).

Recall that the one of GS is at least E2 =
∑

t

∑
p c

t
p ·
(

1−
(
1− 1

|Cp|

)|Cp|
)

ytp.

Using the fact that, for any integer � ≥ 1,
(
1−

(
1− 1

�

)�
)
+

(
1− 1

2�

)
≥ 3/2, we

get that the expected service revenue of AlgoMaxSat is at least

E1 + E2

2
≥

∑

t

∑

p

ctp
3ytp
4

��

6 Conclusion

We have presented some approximation algorithms for various multistage prob-
lems using a general rounding scheme.

In the formulation we considered, the set of feasible solutions is static, only
the weights in the objective function evolve with time. However, the results
presented in this work could also apply to the more general setting where the
set of linear constraints changes over time, that is we have (xt, yt) ∈ Δt. For
instance, in the f -set cover problem elements may be added or removed from
sets. As long as the frequency remain at most f , the result holds. Similarly,
literals can be added or removed from a clause in the MaxSat problem.

One might also consider the case where the set of variables is not fixed. For
instance, a new set may appear at some time step in f -set cover. Our formulation
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can also capture this more dynamic setting. For example, if a new variable xk is
added at time-step t, then we can assume that this variable always existed and
simply had cτk = dτk = 0 for all τ < t and wτ

k = 0 for all τ ≤ t. Since we focus on
the offline case where the whole sequence is known in advance, this can happen
without loss of generality.

As possible extensions and future works, a first direction would be to con-
sider other mathematical programming techniques in the multistage setting. For
instance, SDP techniques can be applied to the multistage setting, and approx-
imation results for problems as Max Cut or Max 2Sat generalize to multistage
versions of the problem.

A second direction would be to consider other ways to take into account
moving costs in the multistage framework. For instance, if the moving cost is
not put into the objective function but considered as a constraint (we have a
budget on this cost), can LP-based techniques lead to interesting approximation
algorithms in this case as well?
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