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Dynamic Primitives Limit Human Force Regulation
during Motion

A. Michael West, Jr.!, James Hermus!, Meghan E. Huber?,
Pauline Maurice®, Dagmar Sternad*, and Neville Hogan®

Abstract—Humans excel at physical interaction despite long
feedback delays and low-bandwidth actuators. Yet little is known
about how humans manage physical interaction. A quantitative
understanding of how they do is critical for designing machines
that can safely and effectively interact with humans, e.g. amputa-
tion prostheses, assistive exoskeletons, therapeutic rehabilitation
robots, and physical human-robot collaboration. To facilitate
applications, this understanding should be in the form of a simple
mathematical model that not only describes humans’ capabilities
but also their limitations. In robotics, hybrid control allows
simultaneous, independent control of both motion and force and it
is often assumed that humans can modulate force independent of
motion as well. This paper experimentally tested that assumption.
Participants were asked to apply a constant SN force on a robot
manipulandum that moved along an elliptical path. After initial
improvement, force errors quickly plateaued, despite practice
and visual feedback. Within-trial analyses revealed that force
errors varied with position on the ellipse, rejecting the hypothesis
that humans have independent control of force and motion. The
findings are consistent with a feed-forward motion command
composed of two primitive oscillations acting through mechanical
impedance to evoke force.

Index Terms—Physical Human-Robot Interaction; Compliance
and Impedance Control; Force Control

I. INTRODUCTION

HE majority of human neuro-motor control research to
date has focused on the control of motion during free
unconstrained reaching without physical contact (for review
see [1], [2]). In this case, relating a planned motion to an actual
motion is sufficient to describe the control system. In robotics,
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the mathematics underlying motion control is well understood
[3]. However, most tasks that humans and robots perform
require physical interaction with the external environment; for
such interactive tasks, motion control alone is insufficient.

During physical interaction, bidirectional forces between the
actor and the environment critically affect the behavior of
the coupled system. If humans regulate motion during free
reaching, a simple extension of this idea to contact tasks may
be to regulate both force and motion. In robotics, hybrid con-
trol allows for simultaneous and independent control of both
motion and force in complementary subsets of the workspace
[4], [5]. In human motor control, it is yet unresolved whether
humans can control force independent of motion.

Several studies in human motor neuroscience have reported
findings in support of such hybrid control. For example,
Chib et al. [6] found that hybrid motion / force control can
describe how humans performed an interaction task in a virtual
force field. Casadio et al. [7] presented and experimentally
validated a computational model of how the neural system
may combine two independent modules that separately control
motion and force. Further, neural activity in the motor and
parietal cortex of non-human primates indicate that there are
separate modules for the control of force and motion [8]-[10].

On the other hand, it has been shown that the central
nervous system (CNS) contains a controller that modulates the
coupling of force and motion [11], [12]. Other studies demon-
strated that humans modulate the relation between motion and
force during upper limb reaching in unstable force fields [13]-
[16]. Additionally, our own previous research showed that
exerted force depended on the velocity profile when grasping
and following a robot manipulandum. Specifically, participants
were asked to trace the motion of a robot manipulandum
without exerting force as it moved on an elliptical path with
varying velocity profiles [17]. If force can be controlled
independent of motion, the velocity profile should not matter;
however, it did.

This study aimed to examine human control of physical
interaction that could resolve these seemingly contradictory
results. We conducted an experiment in which participants
physically interacted with a motion-controlled robot to test
whether humans could regulate force independent of motion.
We refer to this independent control as “direct force control”
(Fig. 1a). Explicitly, direct force control applies an actual force
as a function of only a planned force. This function is an
operator that may be dynamic and nonlinear. If participants
can regulate force independent of motion, direct force control
can be accepted as a plausible schema for human physical
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Fig. 1. (a) Direct force control. Applied force is a function of a planned
force that is independent of motion. (b) Indirect force control. Applied force
is a function of a planned force but also depends on motion. Further details
are in the Discussion section.

interaction. Conversely, if humans are unable to decouple
force from motion, an alternative hypothesis is “indirect force
control”. With indirect force control, a planned force f,(¢)
may still exist in the forward path, but an impedance term
Z{-} is needed to relate the difference between input motion
xo(t) and actual motion z(t) to the output force f(t) (Fig.
1b). The core feature of indirect force control is that force
depends on motion.

The direct force control hypothesis leads to a testable pre-
diction: Errors in contact force will be independent of motion.
Thus in this experiment, participants were instructed to apply
a specific constant force on a robot manipulandum in its
direction of motion as it moved along an elliptical path. To give
participants the best opportunity to complete the task, the robot
moved with a velocity profile that matched human movement
preferences, i.e., angular velocity scaled with curvature with
a power of 2/3 [17] [18]. Despite visual feedback and some
practice, errors in exerted force persisted and were dependent
on motion, suggesting (1) a coupling of force and motion, and
(2) the existence of an underlying structure in the feedforward
motion planning signal. Additional analysis of previous data
from [17] further validated the current results. In sum, this
work showed that interactive dynamics are significant and of
particular concern in (1) quantification of human performance
and in (2) physical human-robot interaction.

II. METHODS
A. PFarticipants

Eleven healthy right-handed individuals (3 females, 8 males;
ages from 19 to 35 years old) participated in the experiment
for some compensation. All participants signed a consent form
which explained the experiments’ procedures. The experimen-
tal protocol was approved by the Institutional Review Boards
of Northeastern University and the Massachusetts Institute of
Technology.

B. Experimental Procedures

1) Task and Instructions: Participants were instructed to
hold the handle of a moving robotic manipulandum (Haptic-
Master) [19] and apply a constant SN force in the direction
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Fig. 2. Experimental setup. (a) Top-down view of the experimental
setup. Participants were instructed to hold the handle of a moving robotic
manipulandum and apply a constant force in the direction of the robot’s
motion. The elliptical path of the robot endpoint is displayed on the figure
for clarity. However, participants did not see any visual display of the robot
path. (b) Robot handle used to decouple human wrist and robot end-effector
orientations. (¢) To provide visual feedback, the projection screen displayed a
stationary white bar indicating the target tangential force of SN and a moving
red bar indicating the current applied tangential force. Visual feedback was
given during Block 1V and Block 2V. Otherwise, the screen was black. (d)
Elliptical trajectory of the robot endpoint (i.e., handle) in the horizontal plane.
The robot manipulandum moved counterclockwise and followed a velocity
profile that was in accordance with the two-thirds power law [18]. Tangential
velocity is shown by color.

of robot motion (i.e., tangential direction) as it traversed an
elliptical trajectory in a horizontal plane (Fig. 2a).

Participants performed the experiment seated and held the
robot through a vertical handle which could pivot around
its vertical axis; the pivot decoupled the robot end-effector
orientation and the participant’s wrist orientation (Fig. 2b).
Participants were positioned such that when holding the robot
handle at the 270° position of the ellipse (Fig. 2d), the right
upper arm hung downward slightly away from the torso. This
position aligned the forearm with the minor axis of the ellipse.
The robot height was adjusted such that the forearm was
approximately parallel to the ground. This resulted in an angle
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Fig. 3. Mean RMS of force error across participants in each trial for (a) all experimental blocks in the main experiment, and (b) Experiment
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between the upper arm and forearm of approximately 90° (Fig.
2a-b).

2) Visual Display: Participants sat approximately 2.2m in
front of a projection screen (height: 1.8m, width: 2.4m). In
conditions with visual feedback, two horizontal bars appeared
on the screen (Fig. 2c). A red horizontal bar moved vertically
to indicate the tangential force (averaged over 80ms) applied
by the participant onto the robot; the stationary white bar
indicated the desired tangential force of SN. Otherwise, the
screen was black.

3) Control of Robot Motion: The robot handle was com-
manded to move counterclockwise along an elliptical path
(major axis = 30cm, minor axis = 10cm) on a horizontal
plane with a period of 3s (Fig. 2d). The velocity profile of
the robot handle followed the so-called 2/3 power-law relation
[17] [18] between path curvature and angular velocity (Fig.
2d), decreasing in highly curved portions and increasing in
less curved portions. The position of the robot handle was
controlled with a Cartesian PD controller; a high proportional
gain was used such that deviation from the desired trajectory
was negligible. The desired position of the robot was updated
at 700Hz, and an internal force control loop ran at 2kHz.

C. Experimental Design

To assess the effect of practice and visual feedback on
force control, participants performed four experimental blocks;
each block consisted of 15 trials. In each trial, the robot
continuously traversed the elliptical path four times with a
period of 3s per cycle; each trial lasted 12s. Blocks 1V and
2V presented visual feedback as shown in Fig. 2c. Blocks
INV and 2NV did not present visual feedback. Participants
always performed the four blocks in the following order: 1V,
INV, 2V, 2NV. In all four blocks, participants were instructed
to maintain a constant force of 5N in the tangential direction.
At the start of each trial, participants heard three short beeps
through a headset, after which the robot began to move.
Between blocks, participants were allowed to take a break if
needed.

A familiarization block, referred to as Block F, preceded
the four experimental blocks. It also consisted of 15 trials of
12s each. There, participants were instructed to maintain a
constant level of force in the tangential direction of the robot
motion. The exact level of force applied was not specified and
there was no visual feedback. After Block F, participants were
given 60s to familiarize themselves with the visual feedback.
During that time, the robot was in a stationary position and
participants could apply forces against the robot. In total, the
experiment lasted just over an hour.

D. Dependent Measures and Data Processing

The force that participants applied to the robot handle was
measured at ~560 Hz with a 3 DoF force sensor mounted at
the robot end effector. In each trial, the tangential component
of the force applied by the human to the robot was calculated
and resampled as a function of robot position along the
elliptical path at a resolution of 1°.

Angular position along the elliptical path was defined using
the eccentric anomaly', E, such that E = atan(ay/bx), where
a and b were half the length of the major and minor axes of
the ellipse, respectively. © and y were the magnitudes of the
position vector in the direction of the major and minor axes
in Cartesian space, respectively.

For each trial, task performance was summarized by calcu-
lating the root-mean-square (RMS) of force error. Force error
was defined as the difference between the actual tangential
force and the target tangential force of 5SN. The tangential
force was resampled as a function of robot position along
the elliptical path at a resolution of 1°. To avoid the potential
influence of transient behavior, the first cycle of each trial was
omitted in the calculation of the RMS error.

IThe eccentric anomaly is one of three angles (or “anomalies™) identified
by Johannes Kepler in his study of celestial mechanics to describe the position
of a body that is moving along an elliptical orbit [20]. The other two angles
are the true anomaly and the mean anomaly.
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E. Data Analysis and Statistics

All data were processed and statistical analyses were per-
formed using custom scripts in MATLAB. The significance
level for statistical tests was o = 0.05. Unless stated oth-
erwise, only data from the four experimental blocks (i.e.,
Blocks 1V, 1INV, 2V, and 2NV) were included in the statistical
analyses.

1) Performance Improvements: Prior to testing the effects
of practice and feedback in the four blocks, performance
improvements were assessed within blocks across trials by
calculating linear regressions between RMS force error and
trial number. Performance improvement was indicated if the
slope was different from zero, i.e., the 95% confidence interval
of the slopes did not include zero.

To determine where participants performance reached
steady state, the regression slopes between trial number and the
average RMS force error across participants were calculated
iteratively for the last 15, 14, 13, trials and so forth until an
insignificant slope was found. This occurred when the linear
regression was computed over the last 9 trials (i.e. from trial 7
to 15). The lack of a significant slope with the RMS of force
error and trial number justified averaging measures over the
last 9 trials within a block.

To assess whether visual feedback or practice across the
2 blocks influenced performance, the block means of all
participants were calculated over the steady state portion of
each block. These block means of RMS force error were
submitted to a 2 (block) x 2 (feedback) repeated-measures
ANOVA.

2) Existence of Motion-Dependent Force Errors: To assess
the presence of motion-dependent patterns in the force error,
the auto-correlation function of force error (as a function of
robot angular position) was calculated for each trial. The lag
with the maximum peak in the auto-correlation function (here-
after referred to as maximum lag) and its corresponding auto-
correlation coefficient (maximum auto-correlation coefficient)
were identified.

Two clusters were identified in the distribution of lags at
maximum auto-correlation and their means were determined.
Trials where the maximum auto-correlation coefficient was
less than 0.1 were omitted from the analysis of position
dependency of force error (4 out of 825 trials). From visual
inspection, these low maximum auto-correlation coefficient
values resulted from isolated uncharacteristic changes in RMS
force error during the trial. They also occurred at lag values
that were significant outliers.

ITI. RESULTS
A. Performance Improvements

1) Change in RMS Force Error Within Blocks: Inspection
of the grouped time series of force error revealed that subjects
showed a consistent decline of the force error in the first part of
Block 1V (Fig. 3a). The iteratively computed linear regressions
between the average RMS force error across participants and
trial for the last 15, 14, 13, and so forth trials identified that
the force error values in Block 1V plateaued when calculated
over the last 9 trials (i.e., from trial 7 to 15). From trial 7
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Fig. 4. Mean RMS of force error from the last 9 trials for (a) all
experimental blocks in the main experiment, and (b) Experiment ON.
Yellow dots depict individual participants. Error bars depict +2 standard
errors of the mean. The mean RMS of force error was significantly higher in
all experimental blocks of the main experiment compared to Experiment ON
(Table I).

onwards the regression slopes did not differ from zero. As this
initial drop of error seemed to be a result of familiarization,
subsequent analyses only examined the last 9 trials of all four
blocks to evaluate the errors reached in each condition.

2) Effect of Practice and Visual Feedback on RMS Force
Error Across Blocks: To statistically evaluate whether visual
feedback and practice had a significant effect on the force
error, a 2 (block) x 2 (feedback) repeated-measures ANOVA
was conducted. The force error revealed a significant inter-
action (F,19 = 15.74,p = 2.66e — 03) as the mean RMS
error decreased from Block 1V (M = 3.63N,SD = 1.12N)
to Block INV (M = 3.30N,SD = 1.12N) and increased
from Block 2V (M = 3.08N,SD = 1.32N) to Block 2NV
(M = 3.86N,SD = 1.96N) (Fig. 4a). However, neither the
main effect of block (p = 0.99), nor the main effect of feedback
(p = 0.60) were statistically significant. Recall, all subjects
completed the experiment in order: Block 1V, 1INV, 2V, 2NV.
Thus, the increase in mean RMS of force in Block 2 was likely
the result of cognitive or physical fatigue as the experiment
was quite long.

B. Existence of Motion-Dependent Force Errors

Given this indifference to feedback and practice, the time
series of force error were inspected. As illustrated by the raw
force data shown for a representative participant in Fig. 5,
force error was periodic with pronounced peaks at multiples
of 180° in all blocks. The means of each cluster identified in
the maximum lag data of trials in Blocks 1V, 1INV, 2V, and
2NV were 179.3° and 359.3° (Fig. 6a). The average maximum
auto-correlation coefficient was 0.43 (SD = 0.13). Trials with
maximum lags of 360° indicate that the peaks in force error at
half and full cycle were different, while the maximum lag at
180° indicates that the two peaks in force error were similar.
Analyses of individual participants revealed that five subjects
showed higher force applied at 180° and six subjects showed
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higher force applied at 360°. Taken together, these results
indicate that force error strongly depended on the phase of
the oscillatory robot motion.

Given this pronounced periodicity in the experimental
blocks that specified SN force, we also examined whether this
periodicity was present spontaneously. The same autocorre-
lation analyses were run on the trials of the familiarization
block (Block F). Fig. 6b shows two clusters with mean values
of 179.9° and 359.5°. The average maximum auto-correlation
coefficient was 0.53 (SD = 0.12). As illustrated in Fig. 6b,
these results give strong evidence for a spontaneous coupling
of motion and force.

IV. ADDITIONAL RESULTS

To further validate the existence of motion-dependent force
errors, similar analyses were performed on data collected in
a previously published study of human-robot interaction by
Maurice et al. (see [17] for full experimental details). The
objective of that study was to examine how humans adapt to
different velocity patterns in elliptic planar robot movements,
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Fig. 6. Evidence of motion-dependent periodic force errors for all trials
in (a) Blocks 1V, 1INV, 2V, and 2NV of the main experiment, (b) Block F of
the main experiment (c) Experiment ON. Histogram of lags of maximum
autocorrelation (referred to as maximum lag) values measured in units of
robot angular position. In all conditions, two clusters were identified. The
solid lines indicate the mean of each cluster, and the dashed lines depict +1
standard deviation of each cluster.

identical to the ones used in this study. However, instead of
being instructed to apply a constant SN force in the tangential
direction, participants were instructed to minimize the total
force magnitude applied to the robot end effector (i.e., apply
ON total force). Participants (N = 6) performed 10 trials,
where each trial consisted of 4 cycles as in the present study.
No visual feedback was provided to participants at any point
in the experiment. This dataset is referred to as Experiment
ON.

To allow comparison with the results of the main exper-
iment, force error was defined as the difference between
the actual tangential force and the target tangential force of
ON. Otherwise, all data processing methods and dependent
measures were identical.

A. Performance Improvements

The linear regression between the average RMS force
error calculated across participants and trial numbers was not
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t statistic
«df = 15) p value
Block 1V - Experiment ON 4.40 5.21e — 04
Block INV - Experiment 0N 3.79 1.77e — 03
Block 2V - Experiment ON 2.95 9.87e — 03
Block 2NV - Experiment 0N 2.02 8.62e — 03

TABLE T
STATISTICAL RESULTS COMPARING MEAN RMS OF FORCE ERROR
BETWEEN MAIN EXPERIMENT AND EXPERIMENT ON

statistically significant, indicating no evidence of change in
task performance with practice (Fig. 3b).

B. Existence of Motion-Dependent Force Errors

Two clusters were identified in the maximum lag data. The
means of each cluster were 173.5° and 359.8° (Fig. 6¢), and
the average maximum auto-correlation coefficient was 0.41
(SD = 0.11). Despite the difference in task instruction, these
results were strikingly similar to those in the main experiment.
Most importantly, they indicate that the force errors were also
motion-dependent.

C. Differences in Force Error Magnitude

While the force patterns were dependent on motion in
both experiments, the magnitude of the force errors differed.
Independent ¢-tests compared the mean RMS force errors from
each block of the main experiment with those of Experiment
ON. Note that in all cases, the mean RMS force error was
calculated over the last 9 trials for consistency. As summarized
in Table I and depicted in Fig. 4a-b, the mean RMS force error
was significantly higher in all blocks of the main experiment
(Bonferroni adjusted @ = 0.05/4 = 0.0125). Despite more
practice and added visual feedback, participants who aimed to
apply SN force on the moving robot performed considerably
worse than those instructed to minimize total force applied.

V. DISCUSSION

This work investigated humans’ ability to directly modulate
force during motion. Subjects were asked to apply a constant
force on a robot manipulandum moving along an elliptical
path. The hypothesis of direct force control predicted that
errors in contact force would be independent of motion. Here,
the force errors observed throughout the entire main experi-
ment depended on motion. Force error showed a periodic pat-
tern consistent with the periodicity of the path; it varied with
motion. After initial performance improvements, participants
did not reduce force errors with practice, even when visual
feedback was provided. Motion-dependent patterns in force
error were also observed in Experiment ON (i.e. Experiment
1B in [17]), further validating the main results. These findings
suggest that force and motion are coupled as schematically
shown in Fig. 1b.

A. Force Error

In the main (SN) experiment subjects were given visual
feedback of their tangential force in two of the blocks (Fig.
2¢). In contrast to static tasks, where visual feedback enables

subjects to apply a constant force quite accurately [21], the
elliptic motion of the robot manipulandum in this study
significantly compromised the subjects’ ability to regulate
force. Subjects did not eliminate residual errors, which varied
periodically with motion.

Interestingly, the overall magnitude of force errors was
significantly lower when the target force was lower (Fig. 4).
There are several plausible explanations why this occurred.
One possibility is that greater force applied induced higher
noise (i.e., signal dependent noise) [22]. Another possibility is
that greater force applied induced higher hand impedance [23],
which would amplify any errors between the input and actual
trajectories. This would provide further support for indirect
force control (Fig. 1b).

Nonetheless, production of actual force f(¢) that equals
input force fy(t) is possible using the indirect force con-
trol strategy of f(t) = fo(t) + Z{xo(t) — z(¢t)} when
Z{xo(t) — xz(t)} = 0 (Fig. 1b). This can be achieved in
one of two ways: (1) zero interaction dynamics and/or (2)
a simultaneous prediction of the input? trajectory xo(t) that
matches the actual trajectory z(t). Thus, it is critical to note
that if motion-dependent force errors were not observed, it
would be impossible to distinguish between the direct and
indirect force control strategies. However, the force error
we observed was dominated by motion dependency (Fig. 5).
Specifically, the force error was periodic with maximum auto-
correlation at lag corresponding to the 180° and 360° ellipse
positions (Fig. 6).

These motion-dependent force errors were also observed in
both the familiarization Block F of the main experiment, where
subjects were instructed to apply a constant tangential force,
(Fig. 6b) and Experiment ON (Fig. 6¢), where subjects were
instructed to apply zero force. In both, subjects did not receive
any visual feedback. Despite some practice with and without
visual feedback, the motion dependency of the applied force
persisted throughout the main experiment (Fig. 5). This robust
observation suggests an underlying structure in humans’ ability
to regulate force during motion that limits the performance of
this task.

B. Dynamic Primitives

Accurately controlling force would require the central ner-
vous system to acquire an “internal model” of the task with
which to “compute” predictive forward-path control inputs.
The theory of dynamic primitives proposes that motor be-
havior, with and without physical interaction, is constructed
using a limited set of primitive dynamic behaviors that are the
“building blocks” of more complex actions [24]-[27]. These
“building blocks” allow for a detailed plan of time-varying
neuro-muscular activity to be abstracted to the parameters
of a limited set of stereotyped motor patterns. Rhythmic
movements can be generated by oscillations, one class of
dynamic primitives. The interactive primitive is mechanical
impedance. The parameters of these “building blocks” may

2This input trajectory has been referred to as the zero-force trajectory, as
it is the motion that would occur in the absence of external forces.
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be encoded; this may facilitate human learning, performance,
and retention of complex skills.

Dynamic primitives do not preclude arbitrary patterns of
force production. A sufficiently accurate internal model might
be used to compute both fy(t) and the corresponding x¢(t)
(Fig. 1). However, if the parameters of oscillatory primitives
used to plan the motion were limited, the time-course of force
production would also be limited. Periodic force errors in
our experimental results suggest that the controller appears
to be content with “good-enough” performance, which can be
obtained using a limited set of “primitive” oscillations and a
sufficiently low mechanical impedance. Thus motor behavior
constructed by dynamic primitives may result in performance
limitations — such as the observed imperfect, periodic force
regulation reported here (Fig. 5).

Other results support this account. A combination of two
oscillations (e.g. in two degrees of freedom) generate the two-
thirds power law relation between path curvature and angular
velocity. Previous studies of crank turning suggest that during
physical interaction humans generate an elliptical zero-force
trajectory which exhibits a coincidence of speed and curvature
extrema [28]. These observations are also consistent with the
work of [17], [25], [29], [30]. The smallest force errors in
[17] were observed when the velocity profile of the robot fol-
lowed the two-thirds power-law relation. Moreover, position-
dependent errors are evident in the results of other studies on
constrained motion [31]-[33]. However, to our knowledge this
is the first time that position-dependent force errors have been
systematically quantified during a force regulation task with
substantial motion.

C. Limitations

In the main experiment, participants experienced the task for
approximately one hour (300 cycles). It is possible that partic-
ipants could learn to better regulate their force with additional
practice (e.g., over multiple days). However, investigation of
extensive practice was not the goal of our work. Humans regu-
larly perform a variety of novel forceful interaction tasks with
ease and apparently without requiring long-term practice. In
fact, task performance slightly worsened at the end of practice
in the main experiment, possibly indicating that fatigue set
in. Hence, this study aimed to identify the performance that
might be expected from intuitive and spontaneous human-
robot interaction.

Force errors might also be ascribed to poor perception of
the robot’s motion. However, the motion slowly (~0.33Hz)
followed a large elliptical path of 66.8cm in circumference.
Additionally, if errors in the perception of the robot’s motion
led to force errors, we would expect to see differences in
error between the blocks that did and did not have visual
feedback. Fig. 4 demonstrates that this was not observed.
Motion dependent deviations from the instructed force were
persistent throughout the entire main experiment (Fig. 5, &
6a-b).

It is also possible that there may have been too much
cognitive demand from mapping the vertical feedback display
to the horizontal force. While this argument cannot be directly

refuted from the results reported here, it is unlikely to account
for our main result. Fig. 6b shows that subjects force error
was motion dependent even before visual feedback had been
provided. In short, the position dependence of force error
was consistent throughout the main experiment, despite the
presence of visual feedback.

D. Implications

Understanding the preferred control strategy employed by
humans may guide the design of robot controllers to manage
physical interaction. A roboticist may draw upon the proposed
“building blocks” to program a simple controller to achieve a
complex task [34]-[36]. For example, a controller based on
dynamic primitives has been used successfully (in simulation)
to control a 2 DOF arm to manipulate a dynamically complex
whip with 50 DOF in a targeting task [37]. Furthermore,
the human body has a large number of redundant degrees of
freedom. Kinematic redundancy has commonly been viewed
as a difficult challenge to overcome, especially if control
is performed via conventional optimization-based techniques.
However, redundant degrees of freedom may be controlled by
superposition of mechanical impedance primitives. Remark-
ably, unlike optimization-based methods, as the number of
redundant degrees of freedom increased, control based on
the superposition of impedance primitives improved; in effect,
with greater redundancy control became easier [38].

The account of humans’ motor control strategy proposed
here may be especially useful to design controllers for robots
intended to interact physically with humans. This paper
demonstrated that errors in human force regulation may result
from limitations in the way humans compose motor actions
(e.g., possibly through dynamic primitives). These limitations
should be taken into consideration in all applications involving
physical human-robot interaction, including amputation pros-
theses, assistive exoskeletons, robot-aided rehabilitation, and
physical human-robot collaboration.

VI. CONCLUSIONS

In this work, we scrutinized a pervasive assumption: force
and motion can be controlled independently (an idea referred
to here as direct force control). To examine this assumption,
subjects were asked to apply a constant force on a robot
manipulandum that moved along an elliptical path with a
speed profile consistent with the preferred pattern of human
motion (the two-thirds power law). Results showed that sub-
jects were unable to control force accurately during motion,
despite some practice and the presence of visual feedback;
errors in force were periodic in response to the periodic
motion of the robot. These results point towards an indirect
force control formulation (Fig. 1b), in which commanded
motion acts through mechanical impedance to evoke force.
Furthermore, the periodic pattern of path-dependent force
errors was consistent with commanded motion composed of
oscillatory primitives. Taken together, these findings suggest
that a relatively simple mathematical model combining dy-
namic motion primitives with mechanical impedance, as an
additional primitive, is competent to describe how humans
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control contact and physical interaction. A quantitative model
is especially important for designing devices that physically
collaborate with humans.
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