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Department of Information and Computing Sciences, Utrecht University, The Netherlands

Abstract
We present a framework for controlling physics-based bipeds in a simulated environment, based on a variety of
reference motions. Unlike existing methods for control based on reference motions, our framework does not re-
quire preprocessing of the reference motion, nor does it rely on inverse dynamics or on-line optimization methods
for torque computation. It consists of three components: Proportional-Derivative Control to mimic motion char-
acteristics, a specific form of Jacobian Transpose Control for balance control, and Covariance Matrix Adaption
for off-line parameter optimization, based on a novel high-level reward function. The framework can easily be
implemented using common off-the-shelf physics engines, and generates simulations at approximately 4× real-
time on a single core of a modern PC. Our framework advances the state-of-the-art by demonstrating motions of
a diversity and dynamic nature previously unseen in comparable methods, including squatting, bowing, kicking,
and dancing motions. We also demonstrate its ability to withstand external perturbations and adapt to changes in
character morphology.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation I.6.8 [Simulation and Modeling]: Types of Simulation—Animation

Figure 1: Example results of the control framework.

On the other hand, there are methods that compute joint
torques based on the equations-of-motion that describe the
underlying character dynamics. Such methods have demon-
strated impressive results, including the ability to robustly
track recorded running and turning motions, as well as ro-
bust navigation over uneven terrain (e.g. [MLPP09, WP10,
MdLH10]). However, these methods are also much more
difficult to implement. They require thorough knowledge
of constrained dynamics and optimization theory and do
not mix trivially with common physics engines. In addition,
computational requirements are often high: publications typ-
ically report around 1× real-time performance for a single
character on a modern PC.

1. Introduction

After decades of floundering, recent publications show that 
the field of physics-based character animation has matured, 
demonstrating a visual quality and robustness that can com-
pete with kinematics-based approaches. However, despite 
widespread adoption of physics simulation for lifeless phe-
nomena, such as cloth, water or rag-doll characters, produc-
tion games still resort to kinematics-based approaches for 
the animation of actively controlled characters.

In an attempt to understand this reservation, we distin-
guish between two different approaches used in physics-
based character animation research. On one hand, there 
are methods that compute joint torques based on kinematic 
parameters, such as joint angles or center-of-mass. These 
methods are relatively easy to implement and integrate well 
with common physics engines, such as the Open Dynam-
ics Engine or PhysX. Recent publications that use this ap-
proach have displayed a variety of robust and versatile lo-
comotion controllers (e.g. [CBvdP10, WFH10]). However, 
these methods allow style control only through key-framing 
or optimization for high-level criteria. Methods that use cap-
tured reference motions have several limitations or require 
extensive preprocessing (e.g. [SKL07, YLvdP07]).
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Based on these observations, we expect the former cate-
gory to be more eligible for adaption in industry at this point
in time – especially for the rapidly developing mobile appli-
cation market. Our contribution consists of a control frame-
work that can robustly track unmodified reference motions
based on kinematic properties, without the need to explicitly
invert the equations-of-motion. It advances the state-of-the-
art by allowing robust control based on reference motions
with a diversity and dynamic nature previously unseen in
comparable methods.

Our control framework consists of three components:
Proportional-Derivative Control to mimic motion character-
istics, a specific form of Jacobian Transpose Control for bal-
ance control, and Covariance Matrix Adaption for off-line
parameter optimization based on a novel high-level reward
function. It produces simulations at approximately 4× real-
time on a single core of a modern PC. We demonstrate the
capabilities of our framework through a variety of motions,
including squatting, bowing, kicking and dancing, as well
as display its ability to withstand external perturbations and
adapt to changes in character morphology.

2. Related Work

Following our introduction, we distinguish between publica-
tions that compute joint torques based on kinematic parame-
ters and those that compute torques based on the equations-
of-motion describing the underlying character dynamics.

Torques Computed from Kinematic Properties Early ex-
amples using this approach include the work of Raibert and
Hodgins [RH91], as well as the milestone human athletics
controller by Hodgins et al. [HWBO95]. Both techniques
control speed and balance through on-line modulation of
target trajectories, and compute torques using Proportional-
Derivative Control. Other key examples are the walking con-
troller of Laszlo et al. [LvdPF96], the various controllers of
and Faloutsos et al. [FvdPT01], and the interactive track-
ing controller of Zordan and Hodgins [ZH02]. More re-
cently, Yin et al. [YLvdP07] introduced SIMBICON, a
framework supporting various types of robust gaits, also us-
ing on-line trajectory modulation for balance and PD Con-
trol, which has been the basis for many subsequent publica-
tions [CBYvdP08,CBvdP09,YCBvdP08,WFH09,WFH10].
Coros et al. incorporate a form of Jacobian Transpose Con-
trol [SADM94], resulting in versatile and generic loco-
motion controllers for bipeds [CBvdP10] and quadrupeds
[CKJ∗11]. Their control method is based on the Virtual
Model Control framework by Pratt et al. [PCTD01] (see also
Section 3.2.1).

To minimize manual tuning, several control frameworks
use off-line parameter optimization based on high-level cri-
teria (a topic famously explored by Sims [Sim94]). Hodgins
and Pollard [HP97] show how optimization can be used to
adapt to changes in character morphology. The parameters of

the SIMBICON framework have been optimized to generate
new behaviors [YCBvdP08], to control style [WFH09], and
to increase robustness [WFH10]. Tan et al. [TGTL11] use
off-line parameter optimization for swimming controllers.
Recent publications typically use Covariance Matrix Adap-
tion (CMA) [Han06] for off-line parameter optimization.

There are not many publications that use kinematics-
based torque computation in combination with captured ref-
erence motions. An early exception is the work of Zor-
dan and Hodgins [ZH02], who track several balanced dual-
stance motions using a balance compensation strategy based
on the work of Wooten and Hodgins [WH00]. Sharon and
Van de Panne [SvdP05] and Sok et al. [SKL07] demonstrate
data-driven controllers that are limited to 2D, both based on
state-action maps. The SIMBICON framework can also be
used in combination with captured reference motions, but
this requires unautomated pre-processing of the motion data
[YLvdP07]. Subsequent work of Lee et al. [LKL10] does
demonstrate robust tracking of unaltered reference motions
using a SIMBICON-like balance strategy, but their method
uses inverse dynamics for torque computation, which re-
quires access to the equations-of-motion.

Torques Computed from Equations-of-Motion This cat-
egory of approaches is linked to the spacetime anima-
tion framework by Witkin and Kass [WK88] and com-
putes torques through constrained optimization based on
the equations-of-motions describing the character dynam-
ics. Stewart and Cremer [SC92] use this method to produce
physically correct animations for climbing and descending
stairs. Abe et al. [AdSP07] use quadratic programming (QP)
to find the set of torques that optimally drive the center-
of-mass over the base of support, demonstrating robust bal-
ance behaviors on moving bases. Macchietto et al. [MZS09]
use inverse dynamics to track trajectories that minimize an-
gular momentum, to which Wu and Zordan [WZ10] add
stepping motions for additional balance correction. Lee et
al. [LKL10] use inverse dynamics in combination with a
SIMBICON-like balance strategy to robustly track captured
reference motions. De Lasa et al. [dLMH10] use on-line
prioritized optimization to construct robust locomotion and
jumping controllers. Muico et al. [MLPP09,MPP11] use off-
line optimization of reference motions and contact forces,
in combination with a nonlinear quadratic regulator to cre-
ate agile walking and running controllers. Wu and Popović
[WP10] use optimized end-effector trajectories in combina-
tion with QP for navigation over uneven terrain.

Other publications use short-horizon optimization of an
internal model to acquire an on-line look-ahead policy. Ex-
amples are the work of Da Silva et al. [dSAP08], who
demonstrate walking controllers based on reference mo-
tions, and Kwon and Hodgins [KH10], who demonstrate
running controllers based on reference motions. Mordatch
et al. [MdLH10] demonstrate locomotion over constrained
and uneven terrain, using the low-level control framework
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3. Control Framework

The goal of our control framework is to have a simulated
biped follow an unmodified reference motion as faithfully as
possible, while maintaining balance and withstand external
perturbations. It consists of the following elements:

• Tracking control (Section 3.1). To mimic the characteris-
tics of a recorded motion, we track the reference trajec-
tories of the individual degrees of freedom (DOFs) using
Proportional-Derivative (PD) Control.

• Balance control (Section 3.2). To maintain balance, we
use a specific form of Jacobian Transpose (JT) Control,
consisting of a set of virtual forces and virtual torques.

• Off-line parameter optimization (Section 3.3) To find the
right set of control parameters for a specific motion or
character, we perform off-line parameter optimization
based on high-level objectives, using Covariance Matrix
Adaption (CMA).

At any time t, we assume availability of the values of all
degrees of freedom and their first order derivatives, both for a
simulated character, C, and a reference motion, A. For a sim-
ulated character, DOFs and their derivatives are accessible
from the physics simulation engine. For a reference motion,
the first order derivatives can be acquired through low-pass
filtering and differentiation.

3.1. Tracking Control

To mimic the characteristics of a captured motion, our con-
trol framework uses Proportional-Derivative (PD) Control
for tracking reference trajectories of the individual DOFs.
PD Control attempts to minimize the displacement between
a reference joint angle, θA, and the corresponding joint angle
of the simulated character, θC, as well as the difference be-
tween reference joint velocity, θ̇A, and simulated joint veloc-
ity, θ̇C. The torque produced by PD Control, τpd, is linearly
proportional to these differences:

τpd = kp(θA−θC)+kd(θ̇A− θ̇C) (1)

The responsiveness to deviations in position and veloc-
ity is controlled through gains kp and kd, which are deter-
mined individually for each actuated DOF through off-line
optimization (see Section 3.3).

3.2. Balance Control

Since PD control tracks only actuated degrees of freedom,
additional control is required to prevent errors in global po-
sition and orientation to accumulate, resulting in loss of bal-
ance (see also [SKL07]). Our balance control strategy is
based on the application of virtual forces and virtual torques,
both of which are forms of Jacobian Transpose Control.

of [dLMH10]. Jain et al. [JL11] perform motion tracking 
using a model based on the principal modes of the charac-
ter, while Ye and Liu [YL10] use an abstract internal model 
based on center-of-mass and ground reaction force.

Because of the tight link between control and simulation 
in these methods, physics simulation is mostly performed 
as part of the control framework. Exceptions of publications 
in which such methods have been integrated with common 
physics engines are the work of Da Silva et al. [dSAP08]
(Open Dynamics Engine) and the uneven terrain controller 
of Wu and Popović [WP10] (PhysX).

Our Work Our control framework uses a combination 
of Proportional-Differential Control for tracking, Jacobian 
Transpose Control for balance, and Covariance Matrix 
Adaption for off-line parameter optimization. Even though 
each of these techniques has been used in several related 
publications, they have not been used in this specific com-
bination, and not for the purpose of tracking unaltered refer-
ence motions.

In spirit, our work is most closely related to the motion 
capture driven controllers of Zordan and Hodgins [ZH02], 
the locomotion controllers of Coros et al. [CBvdP10], which 
make extensive use of virtual forces, and to the work of Lee 
et al. [LKL10], who perform impressive tracking of a wide 
range of unaltered captured walking motions, using a bal-
ance correction algorithm based on kinematic properties.

The main difference between our work and that of Zor-
dan and Hodgins [ZH02] is that their controllers are lim-
ited to dual stance motions with upper-body dynamics, while 
we demonstrate motions of both single and double stance, 
with significant lower-body dynamics. The main difference 
between our work and that of Coros et al. [CBvdP10] is 
that in their framework, motion trajectories are constructed 
through key poses, while our framework uses unaltered ref-
erence motion trajectories. An important difference between 
our work and that of Lee et al. [LKL10] is that their method 
requires inverse dynamics for torque computation. Inverse 
dynamics is not supported by most common physics engines 
and has additional computational requirements. In addition, 
inverse dynamics control inefficiently fights the natural dy-
namics of a physics-based character [PCTD01], which may 
lead to unnatural joint compliance.

Another key difference between our work and that of both 
Coros et al. [CBvdP10] and Lee et al. [LKL10] is that their 
balance strategies are largely based on swing foot placement 
for balance – inspired by the SIMBICON balance strategy of 
Yin et al. [YLvdP07]. This makes their control frameworks 
suitable for locomotion, while the static balance algorithms 
used in our framework make it more suitable for in-place 
motions.



3.2.1. Jacobian Transpose Control

The essence of this control method is that it enables con-
trol in Cartesian space for linked structures with redundant
DOFs. Using the Jacobian Transpose, it is possible to com-
pute the set of torques that emulate the effect of an external
force or torque, applied to a specific body or a virtual point
(such as the center-of-mass). Virtual forces and torques are
applied to a chain of linked bodies, starting from a static base
link (such as the stance foot) and moving to a target link (see
Figure 2 for an illustration). The set of joint torques τF that
emulate a virtual force F applied at point p corresponds to:

τF = J(p)T F (2)

where J(p) is the Jacobian that represents the rate of change
of a point p for each DOF i connecting the targeted chain of
bodies. For a chain of bodies connected through k rotational
DOFs, each row in J(p)T represents the rate of change of p
with rotation αi about DOF i:

J(p)T =


∂px
∂α1

∂py
∂α1

∂pz
∂α1

...
...

...
∂px
∂αk

∂py
∂αk

∂pz
∂αk

 (3)

For a rotational DOF i represented by normalized axis ai
and anchor position bi (all defined in the world coordinate
frame), the derivative ∂p

∂αi
corresponds to the cross product

between ai and the relative position of p [Jaz10]. Hence,
each row i of J(p)T corresponds to:

J(p)T
i =

[
∂px
∂αi

∂py
∂αi

∂pz
∂αi

]
= (ai× (p−bi))

T (4)

A virtual force F applied at point p can now be emulated
by applying a torque τF,i to each DOF i that is part of the
chain of bodies:

τF,i = (ai× (p−bi))
T F (5)

Similarly, it is possible to apply a virtual torque to a spe-
cific body at the end of a chain. If the orientation of the tar-
geted body is represented using an exponential map [Gra98],
e ∈ R3, then the rate of change of e with rotation αi is iden-
tical to the normalized DOF axis ai:

J(e)T
i =

[
∂ex
∂αi

∂ey
∂αi

∂ez
∂αi

]
= aT

i (6)

Hence, a virtual torque T applied to the body at the end of
the chain can be emulated by applying a torque τT,i to each
DOF i that is part of the chain of bodies:

τT,i = aT
i T (7)

Note that, since bipeds contain no links that are truly
static, the effect of a virtual force or torque is always an ap-
proximation and can be determined only after simulation.
That said, we have found this approximation to be suffi-
ciently accurate to work well in practice.

Base 
Link

Virtual 
Force

Base 
Link

Base 
Link

Virtual 
Force

Figure 2: Virtual forces applied to the center of mass,
through a chain of linked bodies, for single stance (left) and
dual stance (right).

3.2.2. Stance State

The selection of the chain of bodies to which we apply our
virtual forces and torques depends on the stance state of the
character. A stance state S can be one of the following:

S ∈ {left_stance, right_stance,dual_stance,flight} (8)

The stance state must be computed separately for sim-
ulated character and reference motion. For the simulated
character, the state can be derived from contact state in the
physics engine, for the reference motion we base the state on
the height of the ankle joint position.

3.2.3. Base of Support

In our framework, the base of support is represented by a
point pbase, which is based on the stance state and the pro-
jected of the ankle joint position(s):

pbase =


⊥pankL if SA = left_stance
⊥pankR if SA = right_stance

⊥pankL+⊥pankR
2 otherwise

(9)

where⊥pankL and⊥pankR are the projected positions of left
and right ankle joint, respectively, on the ground plane. To
allow comparison between the base position of the reference
motion, pbase,A, and the base position of the simulated char-
acter, pbase,C, both must be computed from using the same
state. We therefore always determine the base of support us-
ing the stance state of the reference motion, SA, even if the
character state, SC, is different.

3.2.4. Balance Strategy Components

Our balance control strategy consists of a combination of
virtual forces and torques, each targeting a different aspect
of balance:

• A virtual force applied to the center-of-mass (COM) of
the character, to minimize differences in COM position
and velocity between the simulated character and the ref-
erence motion.



• A virtual torque applied to the pelvis, to maintain the
upper-body posture of the simulated character.
• A virtual torque applied to the pelvis, to regulate the total

angular momentum of the character.

Each of these components will be described in detail in
the upcoming sections.

Center-of-Mass Position and Velocity The first compo-
nent of our balance control strategy compensates for differ-
ences in COM position and velocity. It does so by applying
a virtual force at the COM position of the simulated char-
acter, to the chain of bodies from stance foot to pelvis (see
Figure 2). For a character consisting of k bodies, COM posi-
tion pcom and COM velocity vcom are a weighted average of
individual body positions, pbody,i, and velocities vbody,i:

pcom =
k

∑
i=1

mi

mtot
pbody,i , vcom =

k

∑
i=1

mi

mtot
vbody,i (10)

in which mi is the mass of body i and mtot is the total mass.
Mass properties are derived from body geometry, both for
the simulated character and the reference motion.

We attempt to control balance by regarding the COM po-
sition of a character with respect to its base of support:

p̂com = pcom− pbase (11)

The virtual force that minimizes the difference between
relative COM position of the reference motion, p̂com,A, and
simulated character, p̂com,C, as well as the difference in
COM velocity between reference motion, vcom,A, and sim-
ulated character, vcom,C, now becomes:

Fcom = wcp(p̂com,A− p̂com,C)+wcv(vcom,A− vcom,C) (12)

in which wcp and wcv are constants controlling force magni-
tude. These constants are determined through off-line opti-
mization (see Section 3.3). Different parameter sets are used
depending on the stance state of the character (single stance
or dual stance). The corresponding set of individual joint
torques, τcom, which are applied to each DOF in stance an-
kle, stance knee and stance hip can be acquired using Equa-
tion (5).

Trunk Orientation To maintain the posture of the upper
body, we attempt to minimize the difference in trunk orien-
tation. We do so by applying a virtual torque to the chain of
bodies from stance foot to the pelvis (see Figure 2). If qA
is a quaternion describing the trunk orientation of the refer-
ence motion, and qC that of the simulated character, then the
virtual torque Ttrunk corresponds to:

Ttrunk,i = wto expmap(q−1
trunk,C qtrunk,A) (13)

corresponding set of individual joint torques, τtrunk, which
are applied to each DOF in stance ankle, stance knee and
stance hip can be acquired through Equation (7).

Angular Momentum Regulation of the angular momentum
(AM) is an important aspect of biped balance control (see
also [MZS09]). For a character consisting of k bodies, the
angular momentum, L, corresponds to:

L =
k

∑
i=1

mi(pbody,i− pcom)× vbody,i +Rworld,iIiωi (14)

in which mi is the mass of body i, pbody,i its position, vbody,i
its linear velocity, and ωi its angular velocity. Ii is the 3× 3
inertia tensor matrix, describing the mass distribution of
body i, while Rworld,i is a rotational matrix from local frame
of body i to the world coordinate frame. Mass properties are
derived from body geometry, both for the simulated charac-
ter and the reference motion.

To minimize difference in angular momentum between a
reference motion, LA, and simulation, LC, we apply a virtual
torque Tam to the chain of bodies from stance foot to pelvis:

Tam = wam(LA−LC) (15)

in which wam is a constant controlling magnitude, deter-
mined through off-line optimization (see Section 3.3). The
corresponding set of individual joint torques, τam, which are
applied to each DOF in stance ankle, stance knee and stance
hip can be acquired through Equation (7).

3.2.5. Combining the Individual Components

After all joint torques are computed using the tracking con-
trol and balance control algorithms, they can be added to-
gether to a single torque vector:

τcontrol = τpd + τcom + τtrunk + τam (16)

Following the work of Wang et al. [WFH10], we add mo-
tor noise to our control output, in the form of random torque
perturbations, τnoise. The application of motor noise can pro-
vide robustness against unmodeled phenomena, including
numerical errors during simulation. We use a simplified mo-
tor noise model, which consists of individual values ranging
from -5 to 5 Nm, randomly sampled each frame from a uni-
form distribution. Unlike the model of Wang et al., our noise
does not increase with higher torques. However, our noise
range is in the same order of magnitude as theirs for average
torque levels (τ≈ 20Nm).

For each DOF i, we also enforce a maximum torque value
τmax,i, resulting in the following final torque τi:

τi =


τmax,i + τnoise,i if τcontrol,i > τmax,i
−τmax,i + τnoise,i if τcontrol,i <−τmax,i
τcontrol,i + τnoise,i otherwise

(17)

where expmap : R4 ⇒ R3 is a function that extracts an ex-
ponential map from a quaternion (see [Gra98]), and wto is 
a constant controlling the magnitude of the torque, deter-
mined through off-line optimization (see Section 3.3). The



3.3. Off-line Parameter Optimization

In this final step of our method, we optimize the various pa-
rameters of our control framework, based on high-level opti-
mization criteria. The set of parameters we wish to optimize
consists of the PD Controller gains and the weights from our
balance control strategy:

K =
{

kp,1, . . . ,kp,n , kd,1, . . . ,kd,n
}

(18)

Wsingle = Wdual = {wcv,wcp,wto,wam} (19)

For the parameters in K, we use n different values for kp
and kd, one for each DOF, disregarding symmetric DOFs
(we use the same kp and kd for left and right sided versions).
For the weights in our balance compensation strategies, we
use different sets for single stance, Wsingle, and dual stance,
Wdual, depending on the state of the simulated character, SC.

For a character with n unmirrored DOFs, the total set of
parameters we wish to optimize, P, becomes:

P =
{

K,Wsingle,Wdual
}

, ‖P‖= 2n+8 (20)

Optimization Objective The goal of our optimization is to
find the set of parameters for which the simulated character
C tracks the reference motion A most faithfully. To determine
this, we use the following error measures:

• Pose displacement (epose). The pose of the simulated char-
acter should not deviate too much from the reference mo-
tion. An evident case in which this occurs is when the
simulated biped has lost its balance. We define pose dis-
placement, epose(t)→ R, as the weighted average of the
displacement of the individual bodies, with respect to the
COM of the character.
• Stance state error (estance). Sometimes the stance state

of the simulated character is different from that of the
reference motion, e.g. SA = single_stance while SC =
dual_stance. Such a difference is undesireable, and can
occur even during small pose displacements. We define
the contact state error, estance(t)→ [0,1], as the ratio of
time during which SA 6= SC, in the window between t and
t−2 (or t and 0 when t < 2).
• Foot sliding (eslide). The feet of a simulated character

sometimes slide as a result of a specific combination of
internal joint torques, while the feet of the reference mo-
tion stand firmly. Since we measure body displacement
relative to the COM position, this sliding often does not
lead to significant errors in pose displacement. We define
foot sliding error, eslide(t)→ R, as the average speed in
the horizontal plane of the stance foot, during the time
window between t and t−2 (or t and 0 when t < 2). Dur-
ing dual stance, we use the sum of both feet.
• Torque (etorque). Finally, we wish to control the amount of

torque used by the character’s actuators. We define joint
torque, etorque(t)→ R, as the average summed torque of
all actuated DOFs, during the time window between t and
t−2 (or t and 0 when t < 2).

Instead of constructing an optimization objective using a
weighted combination of the error measures, we take on a
different approach. For each of the error terms, we set a max-
imum acceptable threshold (epose,max, estance,max, eslide,max,
etorque,max), and terminate the simulation if any of these max-
imums is exceeded (or after a predefined maximum time,
tmax). The optimization objective is then determined using
the time until termination, tterm. The advantage of this ap-
proach over the use of weighted terms is that it automatically
minimizes wasteful computation through early termination.
An additional benefit is that setting maximum acceptable
thresholds is more intuitive than setting individual weights
per term.

The reward function, R(P)→ R, which we wish to max-
imize, is comprised of two terms. First, there is the normal-
ized termination time, tterm

tmax
, which represents the time a con-

troller has been able to track the reference motion without
reaching the maximum error threshold. The second term rep-
resents a ‘bonus’ score, based on the normalized averages of
the error measures, eavg

emax
, measured over the total time win-

dow from 0 to tterm. Such a bonus is useful to differenti-
ate between trials that have similar termination times (e.g. in
cases where a target motion has a sudden more difficult part),
and to allow further optimization after tterm = tmax. The re-
ward function is formulated as follows:

R(P) =
tterm

tmax
+wbonus

tterm

tmax

1
‖E‖ ∑

e∈E

[
1− eavg

emax

]
(21)

in which E = {epose,estance,eslide,etorque} is the set of used
error measures, and wbonus ∈ R+ is a weighting term that
determines the amount of bonus based on the average error
(in our experiments we use wbonus = 1). The bonus score
is proportional to the normalized termination time, which is
the dominant factor.

Optimization Strategy Our fitness landscape is irregular,
with interdependence between parameters and many local
maximums. Following recent publications in physics-based
control [WFH09, WFH10, WP10, TGTL11], we use Covari-
ance Matrix Adaption (CMA) [Han06] for off-line param-
eter optimization. CMA is an evolutionary strategy that at-
tempts to learn the covariance matrix of the current region of
the fitness landscape through random sampling. Many free-
ware implementations of CMA exist, including the Shark li-
brary [IGHM08].

4. Experimentation

We have conducted a number of experiments to demonstrate
some of the capabilities and applications of our framework.
In addition to the results described in this section, we refer
to the video material supplementary to this paper.

Setup For our experimentation, we have selected a set of
10 different reference motions (see Table 1). The motions
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Swing Hip (3 DOF)

Swing Knee (1 DOF)

Swing Ankle (3 DOF)

Trunk (3 DOF)

Stance Hip (3 DOF)

Stance Knee (1 DOF)

Stance Ankle (3 DOF)

Shoulders (2x3 DOF)

Elbows (2x1 DOF)

Neck (3 DOF)

Figure 3: Character Degrees-of-Freedom.

Clip Length Description
stand 10.5s Stand while shifting weight
arm 11.0s Stand with rapid arm movements
wave 11.0s Stand with waving motion
squat 9.2s Repeated knee bends (±60 deg.)
bow 6.4s Deep bow with arm gesture
hips 20.2s Hula-hoop hip motion
single 9.8s Stand on one leg, repeatedly
kick 19.7s Single stance, fast swing forward
side 19.7s Single stance, fast swing sideways
dance 17.0s Dance move with alternating stance

Par Dim Sets iMin iMax Min Max
kp 17 1 200 500 0 10000
kd 17 1 20 50 0 10000
wcp 1 2 300 600 -10000 10000
wcv 1 2 300 600 -10000 10000
wto 1 2 100 200 -10000 10000
wam 1 2 100 200 -10000 10000

Table 2: Overview of the 42 parameters used in off-line op-
timization (the sum of Dim × Sets). iMin and iMax indicate
lower and upper ranges used for random initialization.

Clip Gen Time Pushes Objects
stand 7 3 min 100N 1.75kg
arm 2 1 min 180N 3.00kg
wave 2 1 min 180N 4.00kg
squat 27 16 min 100N 3.25kg
bow 37 17 min 100N 3.00kg
hips 33 28 min 120N 2.25kg
single 62 36 min 80N 3.00kg
kick 61 34 min 80N 1.25kg
side 307 274 min 80N 0.75kg
dance 600 329 min 100N 2.00kg

Table 3: Overview of optimization performance and resis-
tance to external perturbations. ‘Gen’ is the number of gen-
erations required for optimization; ‘Time’ is the estimated
optimization time, based on 4 × real-time performance.

before success, as well as the estimated optimization time
are displayed in Table 3.

External Perturbations To demonstrate the capability of
our framework to respond to external perturbations, we con-
ducted two sets of experiments. In a first experiment, we
simulate spherical objects of increasing size that are thrown
towards the character. In a second experiment, we apply
forces to the torso of increasing strength.

In the object collision experiment, we create a sphere with
density of ρ = 100kg/m3, thrown at the character from ran-
dom directions with a horizontal speed of 5.0m/s. The ob-
jects are created at a horizontal offset of 3.0m and a ver-
tical offset of 1.5m of the simulated character’s neck joint
position. During each trial, spheres of constant weight are
thrown at intervals of 1.0s. The trial is considered success-
ful if R(P) ≥ 1.6, after which the weight of the objects is
increased by 0.25kg. The experiment is terminated after 50
generations of unsuccessful trials. The pushing force experi-
ment is similar, but instead of objects we apply forces to the
center of the trunk, for a duration of 0.2s, at an interval of
1.0s. After a successful trial, force magnitude is increased
by 20N. The results are shown in Table 3.

Changes in Character Morphology Another advantage
of physics-based character animation is the ability of con-

Table 1: List of the motion clips used in experimentation.

were captured using an 8 camera Vicon system, fitting a 28 
DOF character into a marker setup consisting of 41 mark-
ers (see Figure 3). We filtered the resulting DOF trajectories 
using a real-time 2nd order Butterworth filter with a cut-off 
frequency of 3Hz (for the ‘dance’ motion we use a cut-off 
frequency of 2Hz).

We performed physics simulation using the Open Dy-
namics Engine (ODE) [Smi06], using gravity constant G = 
9.81, friction coefficient µ = 1 .0, and integration t ime step 
0.0003s. We simulate springy ground contact using ODE’s 
Error Reduction Parameter (ERP) and Constraint Force Mix-
ing (CFM) (see [Smi06] for details). For internal joint con-
straints, we use ERP = 0.25, CFM = 0.0027, while for ex-
ternal contact constraints we use ERP = 0.0089, CFM = 
0.00099. The maximum torque for each individual character 
joint is set to 200Nm.

Optimization For optimization, we use epose,max = 0.1, 
estance,max = 0.5, eslide,max = 0.25, etorque,max = 1000 and 
tterm = 20 (for the ‘dance’ motion we use estance,max = 1.0 
and eslide,max = 0.35). For the CMA algorithm, we use λ = 
16 and µ = 8 (see [Han06] for details). See Table 2 for an 
overview of the parameters used in optimization, as well as 
their initialization settings and range. We declare the opti-
mization of the control parameters a success after a threshold 
of R(P) = 1.8 has been reached. The number of generations
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stand x x x x x 
arm x x x 

  wave x x x 
 

x x 
squat x x x x x x 
bow x x x x 

 hips x x x x x 
 single x x x x 

kick x x x x 
 side x x x x 

Table 4: Ability of controllers to be used with different mo-
tions. Crosses indicate the ability of a controller optimized
for the motion on the left to be reused for the motion on top,
without additional optimization.

trollers to adapt to changes in character morphology, while
maintaining physical correctness. To demonstrate this, we
optimize controllers for characters with different body di-
mensions, using the same set of reference motion trajecto-
ries. One tested morphology contained a short and heavy
upper-body, with thin legs; another contained a long upper-
body with long arms (see also Figure 1). In our balance con-
trol algorithm, we moved the reference target COP above the
base of support and set the reference angular momentum to
zero (LA = 0), since the original values no longer represent
physically valid motion. We have found that, with the excep-
tion of ‘kick’ and ‘side’, our control framework was able to
adapt to these changes in character morphology, producing
motions that fitted the new morphologies characteristically
(see also the the supplementary video material).

Reusing Controllers We also tested the capability of con-
trol parameters optimized for one motion to be used for other
motions. Table 4 displays the results of these experiments.
To increase robustness, the parameters were optimized us-
ing maximum push force perturbation.

5. Discussion and Future Work

We have presented a framework for controlling physics-
based characters using unmodified captured motion trajecto-
ries. Our control method does not require optimization of the
target trajectories, nor does it require access to the equations-
of-motion describing the dynamics of the character. We have
demonstrated control based on motions of a diverse and dy-
namic nature previously unseen by this type of methods, as
well as the capability to withstand external perturbations and
adapt to changes in character morphology.

Based on the results, we feel there are several possible ap-
plications for our framework in production games, allowing
easy integration of balanced, stylized characters that respond
to external perturbations. The framework is simple enough to

be implemented by a game developer based on the descrip-
tions provided in this paper, using a common off-the-shelf
physics engine.

Our framework relies on off-line optimization of its con-
trol parameters, and it can be argued that this is similar to re-
quiring preprocessing of reference motion trajectories. How-
ever, as we have shown, controller settings of our framework
can be reused for different motions without the need for ad-
ditional optimization. We expect that it will be possible to
construct a database of parameter settings that can be used
to automatically select the right set of parameters for a given
character and type of motion, without the need for additional
optimization.

Locomotion The results with tracking reference locomo-
tion data are not yet as good as those of dedicated locomo-
tion controllers. Our controller produced stiff balance cor-
rections on heel strike, and would not retain balance longer
than around 15s. A possible explanation is that our frame-
work does not use an internal model (such as an inverted
pendulum) for swing foot placement and relies on stance leg
torques for balance. We wish to investigate the possibility to
use our framework in combination with locomotion data, by
adding swing foot balance strategies similar to those used
by [YLvdP07], [CBvdP10] or [LKL10].

Effects of Individual Components We have performed
some experiments to see the effects of the individual com-
ponents of our balance strategy. Initial tests show that leav-
ing out any of the components decreases performance for at
least some of the reference motions. As part of future work,
we wish to conduct more comprehensive experiments to gain
more meaningful insights in the exact role of each compo-
nent.

Torque Minimization Another angle we wish to investi-
gate further is the effect of torque minimization on perturba-
tion response. A lower value of etorque,max (or a differently
formulated error term) may promote less stiff behavior and
lead to more natural compliance.

Live Data An important future direction is to investigate the
possibility to use our framework with live motion data, in
line with robotics research by Yamane and Hodgins [YH09].
We feel that such an approach could open up a wide range
of new applications, using advanced input devices such as
Microsoft Kinect for real-time control of an active physics-
based avatar.
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Contact-aware nonlinear control of dynamic characters. ACM
Transactions on Graphics 28, 3 (July 2009). 1, 2
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