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Abstract 11 

Photocatalytic degradation of sulphur containing organics in water was substantially 12 

accelerated by the in-situ removal of sulphur oxide species formed by the dye degradation as 13 

metal sulfate precipitates. The significant enhancement of the degradation of methylene blue 14 

(C16H18ClN3S) and acid yellow 42 (C32H24N8Na2O8S2), as examples of sulphur containing 15 

organics, was achieved when the reactions were conducted in the presence of alkaline earth 16 

cations (such as Ca2+, Sr2+, and Ba2+). 17 
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1. Introduction 19 

Heterogeneous photocatalysis has been applied for the purification of the contaminated 20 

water by the oxidative decomposition of organic substances [1,2] and the concentration of 21 

heavy metals (As, Cd, and Cr) [3-8]. Designing structure, composition and morphology of 22 

photocatalysts has mainly been examined in order to improve the reaction efficiency [9-16]. 23 
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Alternatively, improved efficiency of photocatalytic reaction has been achieved by adjusting 24 

reaction environments and conditions. The effects of pH of solution and the addition of 25 

oxidizing agent (H2O2) have been investigated for the decomposition of various organic dyes 26 

[17,18]. The decomposition of benzene to CO2 was accelerated by the irradiation under 27 

magnetic field [19], and that of an azo dye (acid orange 8) was modified by the irradiation 28 

under sonication [20]. The yield and selectivity of the photocatalytic degradation of benzene 29 

was affected by the presence of photo-inactive species such as clay minerals [21]. In order to 30 

understand the mechanism of those positive effects as well as to improve the reaction efficiency 31 

further, new examples on the effects of reaction environment to affect the photocatalytic 32 

reactions are worth developing. 33 

Here, we propose a new strategy to accelerate the decomposition of organics for 34 

wastewater treatment by chemical equilibrium shift, in which a product from the photocatalytic 35 

reaction system was removed. The idea in the present study is efficient removal of S oxide 36 

species (as sulfates) formed by the decomposition during the irradiation by capturing (in-situ 37 

removal) the S oxide species as precipitates of alkaline earth sulfates, which have very low 38 

solubility in water. Consequently, the dye photodegradation is expected to be promoted due to 39 

“equilibrium shift”. 40 

Sulphur containing organic compounds were selected as the target organic compounds 41 

to be decomposed. The decomposition of sulphur containing azo dyes (e.g. Procion Red, 42 

Reactive Brilliant Red, methyl orange) has been investigated in aqueous TiO2 suspension; the 43 

N oxide species as nitrates and S oxide species as sulfates were characterized as the products 44 

in the solution after the dye decomposition [22-25]. It was reported that the amount of the 45 

sulfate formed in the solution was lower than that expected from stoichiometry [26-32], which 46 

indicated that some S oxide species were adsorbed on the surface of the photocatalyst. The 47 

adsorption of S oxide species may affect the photocatalytic reaction by blocking the catalyst’s 48 
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surface for the substrate access, so that the capturing of the S oxide species from the reaction 49 

system is expected to suppress the deactivation. 50 

2. Experimental methods 51 

2.1. Materials  52 

TiO2 (Evonik P25) was purchased from Evonik Industries. Strontium nitrate anhydrous, 53 

calcium nitrate tetrahydrate, calcium acetate hydrate, methylene blue, acid yellow 42, and 54 

rhodamine 6G were purchased from Sigma-Aldrich Co., Ltd. Barium nitrate and magnesium 55 

nitrate hexahydrate were purchased from Alfa Aesar Chemical Co., Ltd. Lithium nitrate was 56 

purchased from Honeywell FlukaTM. Sodium chloride and calcium chloride dihydrate was 57 

purchased from Merck Ltd. Sodium nitrate solution was prepared by equivalent molar between 58 

sodium hydroxide and nitric acid. Sodium hydroxide was purchased from Carlo Erba Reagents 59 

S.r.l. Nitric acid was purchased from Chem-Lab NV. All chemicals were used without 60 

purification. 61 

2.2. Preparation of photocatalyst film  62 

The photocatalyst film was prepared by casting an aqueous TiO2 (P25) suspension onto 63 

borosilicate glass slides. The suspension was prepared by adding 0.1 g of P25 into 100 ml of 64 

DI water with magnetic stirring. Then, 0.8 ml of the P25 suspension was dropped on one side 65 

of the borosilicate glass slide and dried at room temperature. The suspension was naturally 66 

spread on the glass slide thanks to the wettability of the glass slide after the cleaning with 0.001 67 

M of aqueous HCl solution for 1 day. The weight of P25 on the glass slide (ca. around 0.0008 68 

g) was confirmed by measuring the weight increase after casting and drying. 69 

2.3. Photocatalytic decomposition experiments 70 

The photocatalytic decomposition of the S containing organic dyes (methylene blue and 71 

acid yellow 42) and the organic dye without S (rhodamine 6G) was carried out by putting the 72 
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film in an aqueous solution of the dyes and irradiated by a UV light (Eurosolar type 795 S 73 

Solaria Facial Tanning Sun Face Tanner UV Type 3 as a light source) using four UV lamps 74 

Philips CLEO 15 W. The film was immerged into the solution before UV irradiated for 1 h to 75 

examine the adsorption of dyes on the TiO2 surface. To evaluate the role of alkaline earth 76 

cations (Ca2+, Sr2+, and Ba2+) on the decomposition of the dyes, the anhydrous strontium nitrate, 77 

calcium nitrate tetrahydrate or barium nitrate was added into the dye solutions (initial 78 

concentration of the dye at 30 mg/L) as the source of Ca2+, Sr2+, and Ba2+ with fixing 79 

concentration of alkaline earth cations at 0.5 M, respectively. The photocatalytic decomposition 80 

of the dyes in the presence of sodium chloride, sodium nitrate, and lithium nitrate (as the source 81 

of Na+ and Li+) was further examined to confirm the proposed mechanism under the identical 82 

conditions (0.5 M of concentration of the inorganic salts). The effects of co-existing anions on 83 

the decomposition of the dyes was examined by adding the 0.5 M of calcium chloride into the 84 

solution. The pH of the solution before and after adding alkaline earth cations was measured 85 

by pH meter (HANNA, HI2004 edge). The irradiance was 0.01 W/cm2, measured at distance 86 

between the light source and the photocatalyst film by EIT Power UV Radiometer, 92380 87 

GARCHES S/N0491029. The concentration of the dyes after the reaction was directly 88 

determined by using JENWAY 7315 Spectrophotometer without any separation processes of 89 

powder thanks to advantages of film application and the changes of the concentration of the 90 

dyes (the absorbance at 664 nm for methylene blue, at 440 nm for acid yellow 42, and at 530 91 

nm for rhodamine 6G) during irradiation were followed. 92 

2.4. Kinetic analyses 93 

Apparent pseudo first-order decomposition rate constant (k) was determined for the 94 

evaluation the photocatalytic decomposition of the dyes in the presence and the absence of 95 

alkaline earth cations in the solution. The rate constant (k = slope) is derived by the graph 96 
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relationship between ln(C0/Ct) versus irradiation time, where C0 is initial concentration of the 97 

dyes and Ct is concentration of the dyes after the reaction at time t. 98 

3. Results and discussion 99 

3.1. Morphology and the advantages of the photocatalyst film 100 

In the preliminary experiments using the titania photocatalyst (P25, Evonik, average 101 

particle size of 22 nm from Aerosil Co., Ltd.) suspension, the state of the suspension was 102 

significantly affected by the presence of metal salts (cause agglomeration and sedimentation, 103 

as shown in Fig. S1). In order to avoid the effects of the difference (light scattering, diffusion 104 

of reactant etc.) on the photocatalytic reaction, a film of photocatalyst was used in the present 105 

study. P25 was employed as the photocatalyst due to its high efficiency for the photocatalytic 106 

decomposition of organics and the stability of aqueous suspension. The aqueous suspension 107 

was used to prepare homogeneous film on substrate by simple casting [33,34]. The photograph 108 

of the P25 film and the SEM images are shown in Fig. 1. The film thickness was around 1.0 109 

µm with the estimated porosity of 67% based on the calculation from the volume of solid 110 

content (0.0008 g of P25 on the substrate and the density of P25, 3.9 g/cm3) and the estimated 111 

total volume of the film (6.25 cm2 of the coating area and 1.0 µm of the film thickness). The 112 

porosity of random close packing of dense spherical particles is ~36% with the assumption for 113 

monodispersed particles [35]. The higher porosity of the film (67%) was explained by the 114 

sparse aggregation of P25 particles during drying, leading to interconnected pore between the 115 

P25 particles as seen in the surface morphology of the film (Fig. 1c). Thanks to the thickness 116 

(1.0 µm) and the high porosity (67%) of the film, the diffusion of organic molecules inside the 117 

particle voids is expected to be easy and all P25 particles in the layer film are photocatalytically 118 

active [36]. As the TiO2 was immobilized on the substrate, alkaline earth sulfate formed after 119 

the reaction was expected to be observed by naked eyes as precipitates. Moreover, it was 120 
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possible to determine the change of the concentration of the organics without the separation of 121 

photocatalyst from the reaction mixture. 122 

 123 

Fig. 1. (a) Photograph of the P25 immobilized on glass as the film. (b) Experimental set-up by 124 

putting the P25 film into the solutions. (c) Surface and (d) cross-section images of the P25 film 125 

from SEM observations. 126 

3.2. Photocatalytic decomposition of sulphur-containing organics 127 

Methylene blue (C16H18ClN3S, abbreviated as MB) was selected as a sulphur containing 128 

organic. The photocatalytic decomposition of MB was carried out in the absence or presence 129 

of an alkaline cation, Na+ (adding NaCl), or of alkaline earth cations such as Ca2+, Sr2+, and 130 
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Ba2+ (adding Ca(NO3)2, Sr(NO3)2, and Ba(NO3)2) in the solution, respectively (Fig. 2a). The 131 

decomposition of MB was accelerated when the reaction was conducted in the presence of 132 

Ca2+, Sr2+, and Ba2+ (Fig. 2b). When the reaction was conducted in the presence of Na+ in the 133 

solution, the decomposition rate was not improved and slightly retarded after the UV irradiation 134 

for 2 h. The adsorption of MB on the P25 film has here to be discussed considering the surface 135 

charge of titania. The pH of solution changed from 6.48 to 6.41, 5.86, 5.91, and 5.64 after the 136 

addition of NaCl, Ca(NO3)2, Sr(NO3)2, Ba(NO3)2 in the solution, respectively. The isoelectric 137 

point of P25 is reported to be around 6 [37]. Adsorption of MB on the P25 film was not 138 

observed for the reaction in Ca(NO3)2, Sr(NO3)2, and Ba(NO3)2 solutions. The adsorption of 139 

humic acid on TiO2 was before claimed as the main reason to promote the decomposition of 140 

humic acid in aqueous suspension containing Ca2+ [38]. The present phenomena are therefore 141 

not explained by the effects of the MB adsorption. 142 

The decomposition of MB in the presence of Mg(NO3)2, LiNO3 and NaNO3 was also 143 

examined. The concentration of MB decreased from 30 ppm to 27 ppm by the addition of 144 

Mg(NO3)2, LiNO3, and NaNO3 into the MB solution in the dark, suggesting that the adsorption 145 

of MB on P25 by the electrostatic interactions happened to some extent by the change of pH 146 

(from 6.48 to 7.32, 9.21, and 12.10 for Mg(NO3)2, LiNO3 and NaNO3 systems, respectively). 147 
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 148 

Fig. 2. Photocatalytic decomposition of (a) MB and (b) apparent pseudo first order plot of the 149 

MB decomposition by using the P25 film in the absence (black open circle) and the presence 150 

of Na+ (red triangle) and alkaline earth cations (Ca2+; blue full circle, Sr2+; blue square, and 151 

Ba2+; blue diamond) by adding NaCl, Ca(NO3)2, Sr(NO3)2, and Ba(NO3)2 in the solution, 152 

respectively. 153 

An anionic dye, acid yellow 42 (C32H24N8Na2O8S2, abbreviated as AY42), was chosen 154 

as another example of sulphur containing organics to be examined for the photocatalytic 155 

decomposition in the presence of metal salts. The photocatalytic decomposition of AY42 was 156 

successfully accelerated in the presence of Ca2+, Sr2+ and Ba2+, whereas no significant effects 157 

on the decomposition of AY42 were observed by the addition of Mg2+, Na+ and Li+ (Fig. 3a). 158 

The decomposition of AY42 was also accelerated when CaCl2 was added. Thus, the 159 

decomposition rate of MB and AY42 was accelerated by the presence of Ca2+, Sr2+ and Ba2+, 160 

and was not affected by the co-existing anions (NO3
- or Cl-). The rate constants of the 161 

decomposition of AY42 were 0.83, 1.17, and 1.14 h-1 for the reactions in the presence of Ba2+, 162 

Ca2+, and Sr2+, respectively (Fig. 3b). The decomposition of AY42 was faster than that of MB 163 
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under the present conditions, which is thought to be due to the difference in the decomposition 164 

pathways of AY42 and MB [31].  165 

 166 

Fig. 3. (a) Photocatalytic decomposition of AY42 and (b) apparent pseudo first order plot of 167 

the AY42 decomposition by using the P25 film in the absence and the presence of inorganic 168 

salts such as LiNO3, NaNO3, Mg(NO3)2, Ca(NO3)2, CaCl2, Sr(NO3)2, and Ba(NO3)2.   169 

3.3. Photocatalytic decomposition of organic without sulphur in the chemical structure 170 

The decomposition of Rhodamine 6G (C28H31ClN2O3, abbreviated as R6G), which is a 171 

dye without sulphur in its structure, was examined in the presence of Ca2+ (by adding CaCl2 or 172 

Ca(COOCH3)2 into the solution). It was reported that nitrate ions can interact with R6G to 173 

show the decrease of the concentration [39], so that calcium nitrate was not used to examine 174 

the decomposition of R6G in the present study. The changes in the concentration by the UV 175 

irradiation are shown in Fig. 4. The decomposition of R6G was not accelerated by the presence 176 
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of Ca2+, supporting the important role of the in-situ removal of the sulphur containing species 177 

on the photodegradation of sulphur containing organics. 178 

 179 

Fig. 4. Photocatalytic decomposition of R6G in the absence and the presence of Ca2+ by adding 180 

CaCl2 or Ca(COOCH3)2 in the solution. 181 

3.4. Proposed mechanism for the accelerated photodegradation of sulphur containing organics 182 

Precipitate was clearly observed as the sediment after the decomposition of MB in the 183 

presence of Ca2+ (Fig. 5a), while the amount of the precipitate was too small to be collected for 184 

its identification. The amount of CaSO4 which may be formed considering the sulfate anions 185 

resulting from MB oxidation, is estimated to 0.13 mg based on the stoichiometric calculation 186 

assuming the complete decomposition of the MB in the starting solution. The presence of 187 

sulfate ions formed in the solution after the decomposition of MB in the presence of Ca2+ and 188 

Na+ for 16 h (colorless solutions) was examined by ion chromatography, as shown in Fig. 5b. 189 

The concentration of sulfate ions in the solution containing Ca2+ and Na+ were 0.4 and to 6.4 190 

mg.L-1, respectively. Assuming the complete decomposition of MB, the estimated 191 
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concentration of sulfate ions in the solution is 9 mg.L-1. It was thought that the sulfate ions 192 

were removed from the solution by the precipitation with Ca2+ as CaSO4. 193 

The concentration of sulfate ions required for the formation of alkaline earth sulfates is 194 

calculated to be 4.6, 0.05, and 2.1×10-5 mg.L-1  for CaSO4, SrSO4 and BaSO4, respectively, 195 

from solubility equilibrium’s equation using the initial concentration of alkaline earth cations 196 

(0.5 mol.L-1) and the solubility product constant (Ksp) of 2.4×10-5, 2.51×10-6, and 1.07×10-10  197 

for CaSO4, SrSO4 and BaSO4 [40,41], respectively. Those values were lower than the expected 198 

concentration of sulfate ions in the present experiment after the complete decomposition of MB 199 

(ca. 9 mg.L-1), meaning that the precipitation of CaSO4, SrSO4 and BaSO4 was possible from 200 

the concentration of the sulfate ions formed by the decomposition of MB. 201 

The observed effect of the additives on the improved efficiency of the degradation of 202 

sulphur containing organics (AY42 and MB) is proposed to be a “chemical equilibrium shift”, 203 

where the product (sulfate) was removed during the reactions by the alkaline earth cations 204 

(Ca2+, Ba2+, and Sr2+) as sulfate precipitation. The presence of the precipitates and the loss of 205 

sulfate ions in the solution during the irradiation are the evidences of the removal of S oxide 206 

species as metal (Ca2+, Ba2+, and Sr2+) sulfates. 207 

In addition to the equilibrium shift concept, the deactivation of TiO2 by the adsorption 208 

of S oxide species was suppressed as another positive aspect of the present strategy. The film 209 

was re-used to obtain the similar results for the MB decomposition in the absence and the 210 

presence of Ca2+ (Fig. S2). The efficient MB decomposition was found in the second and third 211 

runs in the presence of Ca2+, while the decomposition of MB was retarded when the P25 film 212 

was re-used for the reaction in the absence of Ca2+. These were consistent with the relatively 213 

white color of the P25 film after the reactions in the presence of Ca2+, Sr2+, and Ba2+, when 214 

compared with the P25 film after the reactions without adding such ions as Ca2+, Ba2+, and 215 

Sr2+, or in the presence of Na+ (Fig. 5c). Therefore, the simultaneous prevention of S oxide 216 
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species adsorption on the catalysts and the efficient removal of product (as sulfates) are 217 

clarified as two possible mechanisms on the acceleration of MB decomposition. 218 

 219 

Fig. 5. (a) Photograph of precipitated powder after the decomposition of MB in the presence 220 

of Ca2+. (b) Characterization of sulfate ions remaining in the solution by Ion Chromatography. 221 

(c) Photographs of the P25 film before and after the reaction. 222 

The effects of the added inorganic cations (such as K+, Na+, Ca2+ and Mg2+) [42-49] 223 

and anions (such as Cl-, SO4
2- and NO3

-) [50-57] on the decomposition of various organics have 224 

been reported in the literature, where the reactions were conducted in aqueous TiO2 225 

suspensions. For the reactions in the presence of Ca2+, no significant acceleration was found on 226 

the decomposition of phenol [42,43], crystal violet [44], and glyphosate [45], while negative 227 

effects were observed for the decomposition of rhodamine B [46], nicosulfuron [47], and 228 

formic acid [48]. The adsorption of the added inorganic cation (Ca2+) and anions (SO4
2-) onto 229 
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the photocatalyst (TiO2) was claimed as a reason of the inhibition of the decomposition of 230 

nicosulfuron by blocking the accessible surface of TiO2. The sedimentation of P25 was 231 

observed in the aqueous suspension by the addition of Ca2+ salts (Fig. S1). The sedimentation 232 

of P25 in the aqueous suspension is thought to affect the decomposition rate of MB by losing 233 

the active surface for the reaction by the aggregation of P25 and also by increasing the diffusion 234 

path from the solution to the active surface in the core of the formed aggregates as well as the 235 

loss of incident light propagation. Thus, the decomposition efficiency in the aqueous 236 

suspension of TiO2 is difficult to be directly compared with the result achieved in the present 237 

study by using P25 film as the photocatalysts. The application of P25 film in this work is a key 238 

from the viewpoint of the product characterization.  239 

4. Conclusions 240 

The decomposition of the sulphur containing organics (MB and AY42) was 241 

successfully accelerated for the first time by adding inorganic cations (alkaline earth cations) 242 

to capture the S oxide species (as sulfates) formed during the decomposition. Since the 243 

commonly used suspension of photocatalysts cause the aggregation during the reaction, the 244 

film of P25 supported on borosilicate glass was used as the photocatalyst, which was a key of 245 

the present success. The acceleration was explained by the two mechanisms, equilibrium shift 246 

and the suppressed poisoning (deactivation) of the catalyst’s surface with sulfate. The present 247 

concept (in-situ removal of a product) can be applied various photocatalytic reactions to be 248 

accelerated. 249 
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