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Performing a subject specific and accurate predictive numerical gait simulation can be of great help in many clinical tasks. Though predictive methods often take into account the modifications applied to a reference motion, they are not always able to include the characteristics and the stability of the predicted motion. We propose an optimization-based approach that includes the resulting characteristics of the predicted motion. The optimization is enhanced by the use of parametric curves to represent the motion trajectories. Experimental studies on subjects with different gait patterns confirmed that our method preserves the characteristics of the gait.

CCS Concepts

•

Introduction

Computer-aided predictive simulation makes it possible to test a wide diversity of gait scenarios on a numerical human representation. With improvements on accuracy and patient specificity such simulation can nowadays be used in clinical procedure. This study aims at predicting gaits with emphasis on the conservation of a patient specificity. We make the distinction between patient specificities related to its musculoskeletal model and specificities due to additional factors (e.g. footwear, pain, chronic disease).

Broadly speaking, we can identify two categories of approaches: the implicit approach and the explicit approach. In the implicit approach, a control optimal problem is solved. The dynamics of the system is turned into a set of constraints and an objective function is defined. The states and control signals are the unknowns. While the forward explicit approach uses an adaptive system to produce the control signals, and then the system dynamics is integrated. Methods based on implicit approaches can achieve predictions with a good accuracy and in a limited amount of time, but they are not suited for interactive simulation [FSD * 19]. Most forward explicit methods obtain predictive motions from the tracking of a modified reference motion [START_REF] Park | Scalable muscle-227 actuated human simulation and control[END_REF]. We propose a different approach for the search of the modifications. Our method uses an optimization of a cost function that includes the evaluation of the simulated motion.

Running such optimization-based simulation is a time-consuming routine. To overcome this shortcoming, we reduce the search space by leveraging a parametric representation of the reference motion and knowledge on the simulated gait pattern. that training the neural network on more than one reference kine-55 matics will make it more robust to variations on the reference input, 56 and therefore will allow for prediction.

Method

57

We first processed the raw kinematics data by rotating the mo-58 tion to have every mean heading of each motion clip in one di-59 rection and setting φ = 0 on the first right foot contact. This way 60 the neural network will not be specialized for a particular walking 61 direction and timing. In the first set, the initial condition (C0), a 62 subject walked normally at a self selected speed. In the second set, The mean angular error was 0.37 × 10 -3 degrees and the mean po-138 sition error was 5.3 millimeters (see Table 1).The approximation We notice that the constraint on the right knee is satisfied for 171 all the 23 tested and successful predictions but a hyperextension is 172 observed at right toes-off (Fig. 1f).

Conclusion 174

We propose a method for predictive simulation of human gaits 
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 1 Explicit forward simulation 29 Our explicit forward predictive simulator uses a skeletal model 30 placed within a physics-based virtual environment and actuated 31 by an adaptive system. This adaptive system generates appropri-32 ate control signals to maintain balance, to produce a motion sim-33 ilar to a reference motion and to ensure additional tasks such as 34 minimizing the cost of transportation. At each time step, hypothet-35 ical servo-motors placed at each degree of freedom of the model 36 receive signals from the adaptive system. Once the signals are con-37 verted into angular moments, the system dynamics is integrated by 38 the physics engine. 39 Our adaptive system is based on a neural network and stable pro-40 portional derivative controllers (SPDC) for each degree of freedom 41 of the virtual character. The input of each SPDC is the sum of an 42 open-loop angular target and an adaptive correction. The open-loop 43 angular target is evaluated from the kinematics of one reference gait 44 cycle. The adaptive correction is computed by the neural network lar moments, to reflect the cost of transportation. We hypothesis 54
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  the altered condition (C1), a subject walked also at a self selected 64 speed but was wearing a restrictive brace on the right knee, thus 65 imposing a stiff-knee gait. The restriction was set to 20 degrees of 66 flexion. 67 2.2. Gait predictions 68 Once the neural network is trained, the reference kinematics data 69 can be modified to obtain new motions. Predictive motions are thus 70 found by searching sets for modifications that produce valid simu-71 lations. The quality of the predictive simulations is measured with 72 an objective function composed of a weighted combination of two 73 terms. The first term estimates the relevancy of the produced mo-74 tion by penalizing simulations for which the virtual character falls 75 or collisions occur between the legs during the first 15 gait cycles. 76 The second term depends on the targeted gait characteristics. In our 77 example, the stiff-knee gait, it penalizes the knee flexion, measured 78 over the last 10 gait cycles. 79 Each simulation takes about 1s to execute (20 times faster than 80 real-time). It was important to use a method that converge with 81 a minimum number of evaluation and without the need to eval-82 uate gradients because the problem is discontinuous. We chose 83 the Covariance Matrix Adaptation Evolution Strategies (CMA-ES) 84 method as our optimization process [Han07]. 85 With the discrete representation of the motion, there are more 86 than 1000 parameters to optimize. CMA-ES shows best perfor-87 mance with less than 100 parameters so two strategies were used 88 to reduce the search space. First, we compute a parametric approx-89 imation of each joint trajectory of the kinematics data, allowing us 90 to model a full trajectory from few control points only. Then, a vi-91 sual comparison between trajectories from both conditions C0 and 92 C1 and knowledge from gait analysis of the targeted pattern is used 93 to identify a subset of the trajectories to include in the optimization.

  94 2.3. Parametric trajectories representation 95 We were looking for a parametric description of the trajectories 96 with the following features : accurate approximation with a small 97 number of parameters, C 2 continuity and fast evaluation. Non-98 Uniform Rational Basis Spline (NURBS) presents theses advan-99 tages. We choose to use cubic periodic NURBS for all trajectories 100 except for the transverse plan pelvis coordinates. For those coor-101 dinates we chose cubic B-splines. The optimum placement of the 102 control points was computed as a weighted combination of terms 103 relative to similarity, relative control points placement and weight 104 distribution. Relative control points placement is used to ensure C 2 105 continuity as cubic NURBS will lose this property if two or more 106 control points have the same x-axis coordinate. 107 The similarity term is computed as the sum of normalized square 108 residuals between the original data and the NURBS evaluation, for 109 each frame of the original trajectories. The other terms are respec-110 tively computed as the minimum distance between two consecutive 111 control points, the mean value of the weights, and the minimum of 112 the weights. We use the CMA-ES method for the optimization as 113 the problem presents discontinuities. 114 First, we chose to exclude modifications of the transverse plan 115 pelvis coordinates because maintaining C 2 continuity would be un-116 necessarily complex. Then, for each NURBS control point there are 117 3 parameters: the x-axis coordinate, the y-axis coordinate and the 118 weight. The search space reachable by modification of the trajec-119 tories is reduced by preventing to modify all parameters, but mod-120 ifying only the y-axis coordinate allows us to maintain the C 2 con-121 tinuity and does not reduce much the search space compared to 122 the only modification on x-axis or on the weight. Moreover, having 123 only one parameter per control point increases the complexity of 124 the prediction search as low as possible. 125 3. Results 126 Effect of multiple gait training When the neural network is 127 trained on one kinematics reference data of the C0 set, it is not 128 able to produce stable motions for other reference data of the same 129 set. On the other hand, if the training is performed using all refer-130 ence data from the set, the trained neural network is able to produce 131 stable motions for all of them. 132 Parametric trajectories representation We designed our para-133 metric trajectories with 8 control points per NURBS and 20 con-134 trol points per B-Splines. The error due to this representation was 135 computed as the normalized square residuals between the original 136 discrete values and the evaluations of the parametric trajectories.
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  139 of the pelvic antero-posterior position has a large error compared 140 to the other approximations but this degree of freedom has larger 141 variation during the cycle. 142 Reduction of the search space Using our parametric trajectories 143 we still have 152 parameters to optimize. With knowledge from lit-144 erature on the stiff-knee gait pathology [LOW12,KFRR00,IKS * 12, 145 SPRHW08] and analysis of the C0 and C1 sets we chose to select 146 the following trajectories to reduce the search space to 44 parame-147 ters : pelvic obliquity, pelvis height, lumbar bending, hip abduction 148 (left and right legs) and knee flexion (right swing leg). Details on 149 the trajectories are given in Table 2. 150 Prediction of stiff-knee gaits We use the neural network trained 151 with the complete set of C0 gaits. The target maximum right knee 152 flexion was set to the value observed in the C1 condition. 153 The optimization successfully found a set of modifications that 154 match the constraints. To assess the advantage of the simulation-155 based optimization we analyze 100 simulations generated with var-156 submitted to JFIG 2021.

Figure 1 :

 1 Figure 1: Joint kinematics during the 13 th gait cycle. Green curves are C0, blue curves are C1 and red curves are predictions. * Reference trajectories have been modified by optimization.
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  based on the optimization of an objective function including the 176 evaluation of the simulated motion. Simulation are obtained from 177 modifications of reference kinematics data. A reduction of the 178 search space is used to compensate for the computational cost of 179 the simulations. This reduction is achieved with a parametric rep-180 resentation of the kinematics data and with the selection of a subset 181 of trajectories. Knowledge about the simulated gait pattern is used 182 to select trajectories. Using the proposed method, we were able 183 to produce stable predictions for a stiff-knee gait with significant 184 severity. 185 Future works will have two objectives : to increase the flexibility 186 of the optimization process and to reduce the dispersion between 187 the predicted kinematics data. The flexibility could be increased 188 by finding the optimal number of control points for each degree of 189 freedom. This will also reduce the size of the search space and al-190 low us to include additional parameters in the optimization process.
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Table 1 :

 1 Mean errors and standard deviations per joint over 16 reference motions. * trajectories have been represented with B-Spline. When two values are given, the first one refers to the left side and second one to the right side.

	Degree of freedom	Mean errors Standard dev. (10 -3 ) (10 -3 )
	Pelvic obliquity (deg)	0.075	0.046
	Pelvis rotation (deg)	0.031	0.017
	Pelvis sagital angle (deg)	0.29	0.19
	Pelvis antero-posterior * (mm)	16	2.7
	Pelvis height (mm)	0.056	0.039
	Pelvis transversal * (mm)	0.058	0.026
	Lumbar bending (deg)	0.098	0.047
	Lumbar rotation (deg)	0.36	0.19
	Lumbar flexion (deg)	0.32	0.2
	Hip abduction (deg)	0.15 0.15	0.09 0.087
	Hip rotation (deg)	0.81 1.2	0.44 1.3
	Hip flexion (deg)	0.42 0.51	0.22 0.34
	Knee flexion (deg)	0.16 0.16	0.03 0.069
	Ankle dorsiflexion (deg)	0.97 0.72	0.78 0.69
	Foot eversion (deg)	0.095 0.12	0.062 0.16

Table 2 :

 2 Results from the comparison between

submitted to JFIG 2021.
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