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Numerical investigations of rotational effects on boundary-layer
instabilities on the Z49 open rotor model

Alexander Theiss∗ and Stefan Hein†

German Aerospace Center, Institute of Aerodynamics and Flow Technology, Göttingen, 37073, Germany

Lucas Pascal‡
ONERA–University of Toulouse, F-31055 Toulouse, France

Julien Cliquet§
Airbus Operations SAS, Toulouse, France

Spatial linear stability analyses are performed in order to study laminar-turbulent tran-
sition in the boundary layer on the Z49 rotor, rotating in a 𝑀𝑎∞ = 0.75 freestream. In a
rotating reference frame, terms corresponding to Coriolis and centrifugal forces appear in the
linearized disturbance equations. However, the effect of these rotational terms on the stability
of boundary layers is only partially understood. The rotational terms’ impact on the transition
mechanisms is studied by neglecting or considering rotation in the linear local stability and
parabolized stability equations. The present results show that rotation hardly affects the insta-
bility characteristics of Tollmien-Schlichting waves. On the other hand, rotation destabilizes
the cross-flow instabilities, but not enough to trigger cross-flow-dominated transition at the
investigated operating condition.

I. Nomenclature
Roman symbols:
𝑓 = frequency, Hz
𝑖 = imaginary unit, 𝑖 =

√
−1

𝑖, 𝑗 , 𝑘 = structured grid indices
𝐾 = disturbance kinetic energy
k = wave vector
𝑀𝑎 = Mach number
𝑁 = logarithmic amplification factor, 𝑁-factor
𝑝 = pressure, Pa
q̄ = basic flow vector
q̃ = unsteady perturbation vector
q̂ = vector of amplitude functions
𝑅 = rotor radius, m
𝑟 = local radius, m
𝑅𝑒𝛿1 = Reynolds number based on displacement thickness
𝑠 = arc length along surface, m
𝑇 = temperature, K
𝑡 = time, s
U = velocity vector
𝑈,𝑉,𝑊 = velocity components along streamwise, azimuthal, and wall-normal directions, m/s
x = vector between the rotation vector and a considered point
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𝑥, 𝑦, 𝑧 = Cartesian coordinates
𝑥1, 𝑥2, 𝑥3 = streamwise, azimuthal, and wall-normal coordinates
Greek symbols:
𝛼 = disturbance wavenumber in the streamwise direction, 1/m
𝛼𝑖 = imaginary part of the complex-valued streamwise wavenumber, 1/m
𝛼𝑟 = real part of the complex-valued streamwise wavenumber, 1/m
𝛽 = wavenumber of the disturbance in the azimuthal direction, 1/m
Ψ = wave angle, deg
𝛀 = rotation vector
𝜔 = angular frequency, Hz
𝜌 = density, Kg/m3
𝜎 = spatial disturbance growth rate, 1/m
Subscripts:
()∞ = freestream value
()𝑐𝑟 = critical value where transition occurs
()𝑒 = value at the boundary-layer edge
()𝑚𝑎𝑥 = maximum value
Superscripts:
(̄) = time-averaged quantity
(̃) = disturbance quantity
(̂) = amplitude function

II. Introduction

The state of the boundary layer (i.e., laminar, transitional, or turbulent) significantly affects the skin friction dragand the thermal load of objects moving in the air. A longer laminar run length can thus positively affect the overall
performance, e.g., via less fuel consumption during aircraft flight, a higher energy yield of wind turbines, or lower
engine power requirements in propeller-driven aircraft.
Flows over rotating geometries are encountered in a great number of aeronautical applications (e.g. propellers, rotors,

wind turbines, helicopter blades, etc.). In most of these applications, the configuration exhibits rotating blades of some
sort. The laminar to turbulent transition on rotor blades has been studied experimentally for decades, for instance see the
publication of McCroskey [1] for helicopter blades or the more recent papers of Schülein et al. [2] and Lang et al. [3]. It
is well-known that the laminar-turbulent transition is postponed in comparison with a non-rotating configuration (see
Ref. [4] for a propeller configuration and Refs. [5, 6] for more recent results on wind turbines). A physical interpretation
is that the radial velocity component generated by the centrifugal force leads to an azimuthal Coriolis force which acts
as a favorable pressure gradient and thus stabilizes the boundary layer. Moreover, the centrifugal force tends to make the
boundary layer thinner in comparison with non-rotating cases. The main consequence is a delayed separation on the
suction side.
However, transition prediction on rotating geometries is still a challenging task due to, among other things, the

many possible transition mechanisms, such as laminar separation bubbles, attachment line transition, Görtler vortices,
Tollmien-Schlichting waves, cross-flow vortices, or bypass transition. On the one hand, fully empirical transition
prediction methods are used (e.g., see Ref. [7]) utilizing approximate integral and local boundary-layer quantities to check
for transition criteria based on stationary wind-tunnel tests. On the other hand, the more physics-based semi-empirical
𝑒𝑁 method is also employed (e.g., see Ref. [8]). The 𝑒𝑁 method was originally developed by Smith & Gamberoni [9]
and van Ingen [10] and is based on linear stability theory (LST). The growth of primary instabilities in the boundary
layer (e.g., Tollmien-Schlichting or cross-flow waves) is captured by the 𝑒𝑁 value, which represents the amplification
ratio with respect to the initial wave amplitude. Transition is assumed to occur when a critical amplification factor 𝑁𝑐𝑟

is reached. In the LST, the initial amplitude of the primary instability is usually unknown and the value of 𝑁𝑐𝑟 has to be
calibrated by, e.g., experimentally obtained transition locations.
Linear stability computations in the rotating frame based on local, parallel theory have been performed with laminar

basic flows stemming from boundary-layer methods or similarity solutions for simple geometries: disks [11, 12], cones
[13], and flat plates [14]. However, little is known about the impact of rotation on the transition mechanisms on industry
relevant rotating geometries (e.g., rotor blades) where the three-dimensional basic flow is usually computed with a CFD
code.
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Lang et al.[3] and Weiss et al. [8] used the 𝑒𝑁 method to predict the transition on a helicopter rotor blade, and
Gross et al. [15] performed stability analyses for the boundary layer on a wind turbine blade. But, in those studies, the
additional terms stemming from the centrifugal and Coriolis accelerations were not included in the stability equations.
To the authors’ knowledge, the studies of Martinez Hernandez et al. [16] and Pascal et al. [17] are so far the only ones
that considered rotational forces in the instability analysis of rotating blade boundary layers. Martinez Hernandez et
al. [16] report that on the investigated NM80 wind turbine rotor, the rotational forces may have a stabilizing effect on
boundary-layer transition. In contrast, Pascal et al. [17] report that the inclusion of the rotational terms in the linear
stability equations hardly modifies the Tollmien-Schlichting waves, while the cross-flow instability is destabilized on the
considered fan blade.
The effects of rotation on the stability of boundary layers are still only partially understood. One of the main open

questions is concerned with the nature of the laminar-turbulent transition. Does rotation add new kinds of instabilities,
or does it only alter transition mechanisms already existing in non-rotating cases? Yecko & Rossi [18] and Dechamps
& Hein [19] studied two-dimensional flow over a flat plate under the effect of rotation and observed that rotation
destabilizes the flow and generates a new kind of instability in addition to the standard Tollmien-Schlichting instability.
Pascal et al. [17], on the other hand, observed no new kind of instability; the rotational effect causes destabilization of
already existing cross-flow instabilities.
This paper represents a numerical study on rotational effects on the instability characteristics of primary instability

modes on a rotor blade at 𝑀𝑎∞ = 0.75. The main objective of the current work is to contribute to a better understanding
of rotational effects on the stability of boundary layers located on industrial relevant geometries. Therefore, linear local
instability theory is used to study the impact of the additional Coriolis and centrifugal acceleration terms present in a
rotating reference frame on the instability properties. In particular, the influence of rotational effects on the different
primary instability modes (i.e., Tollmien-Schlichting waves and cross-flow instabilities) is investigated in more detail.
Moreover, the impact of the distance to the axis of rotation is also considered. Finally, the influence of rotational effects
is examined considering non-local instability theory. The insights gained in this study should help assess the extent
to which the additional acceleration terms in a rotating reference frame need to be considered in an instability-based
transition prediction framework. Moreover, this work will further help to clarify whether rotation adds new kinds of
instabilities or merely alters existing transition mechanisms present in non-rotating cases.

III. Theory
To study the effect of rotation on the primary instability modes, the DLR in-house parabolized stability equations

(PSE) based code NOLOT has previously been extended to rotating reference frames [19]. The effect of the rotation
vector 𝛀 is taken into account via terms corresponding to the Coriolis 2𝜌𝛀 × U and centrifugal 𝜌𝛀 × (𝛀 × r) forces (r
is the vector between the rotation vector and the considered point). The reader is referred to the work of Hein et al. [20]
for the detailed implementation of the stability equations for boundary layers in NOLOT.
The laminar basic flow q can be decomposed into a steady mean flow q̄ and an unsteady perturbation component q̃:

q = q̄ + q̃. The normal-mode solution is assumed for the disturbance quantities and the amplitude functions have a slow
variation along the streamwise direction. The perturbations on the velocity field (�̃�, �̃�, �̃�) the temperature 𝑇 and the
density �̃� take the following form for q̃ =

(
�̃�, �̃�, �̃�, �̃�, 𝑇

)𝑇 :
𝑞 (𝑥1, 𝑥2, 𝑥3, 𝑡) = 𝑞 (𝑥1, 𝑥3) exp

(
𝑖

(∫
𝛼(𝑥1)d𝑥1 + 𝛽𝑥2 − 𝜔𝑡

))
. (1)

Throughout this paper, the spatial stability theory is employed. Hence, 𝜔 is the real-valued angular frequency and
the streamwise wave number 𝛼 = 𝛼𝑟 + 𝑖𝛼𝑖 is a complex number. The streamwise and spanwise components of the
wavevector k are the real part of 𝛼 (= 𝛼𝑟 ) and 𝛽 = 𝛽𝑟 . The angle between the wavevector k and the 𝑥1-direction is equal
to Ψ = tan−1 (𝛽/𝛼𝑟 ).
In the local stability theory (LST), where also a parallel mean flow is assumed, the amplification rate along the

𝑥1-direction 𝜎 is defined as 𝜎 = −𝛼𝑖 . In contrast, in the nonlocal stability theory – utilized via the parabolized stability
equations (PSE) – the spatial growth rate is defined as 𝜎 = −𝛼𝑖 + 𝜕 ln(

√
𝐾)/𝜕𝑥1 with 𝐾 being the disturbance kinetic

energy.
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IV. Laminar basic flow
The model of interest belongs to a scaled version of the Z49 open rotor configuration with a front rotor radius of

𝑅 = 0.4295m rotating at 4503.27 rounds per minute. The freestream and open rotor operating conditions correspond to
a typical nominal cruise condition and are as follows: 𝑀𝑎∞ = 0.75, 𝑇∞ = 283.95K, and 𝑝∞ = 61537.45Pa.
The laminar basic flow, on which the linear instability analyses are performed, corresponds to the laminar region of

a RANS computation. In this paper, the analyses of both laminar mean flow properties and primary mode instability
characteristics are limited to the front rotor blade. In particular, the main part of the investigations is devoted to the
rotor suction side due to a larger region of laminar flow (see Fig. 1). Moreover, results are solely presented for the
laminar-flagged flow regions depicted in Fig. 1.

(a) (b)

Fig. 1 Distribution of laminar and turbulent flow regions on the front rotor blade; (a) suction side and (b)
pressure side.

The laminar flow data are contained within a structured grid. The grid on the rotor’s suction side has 68 points in
𝑖-direction (corresponding to the radial direction), 34 Points in 𝑗-direction (approximately corresponding to the flow
direction), and 200 points in 𝑘-direction (the wall-normal direction). The laminar grid on the rotor’s pressure side
consists of 𝑖, 𝑗 , 𝑘 = 24 × 28 × 200 points, with a turbulent-flagged region ranging from 𝑖 = 11:16, 𝑗 = 21:28, and 𝑘 =
1:200 (cf. Fig. 1(b)).
To study the impact of the distance to the axis of rotation, five positions at different radial distances are examined in

more detail on the rotor suction side (points 𝑆1–𝑆5 depicted in Figs. 1,2,3, and 13) and two locations on the rotor’s
pressure side (points 𝑃1 and 𝑃2 depicted in Figs. 1,2,3, and 13). The considered locations correspond to surface grid
points, and their grid indices, along with characteristic boundary-layer information, are given in Table 1 for points 𝑆1–𝑆5
and Table 2 for points 𝑃1 and 𝑃2.
Figure 2 depicts the isentropic Mach number distribution on the rotor’s suction (Fig. 2(a)) and pressure side

(Fig. 2(b)). In the laminar region studied, the flow around the rotor is transonic, and the Mach number increases
with distance from the axis of rotation. Tollmien-Schlichting waves are preferentially amplified in an unfavorable
pressure gradient environment. The largest area with an adverse pressure gradient is located in the hub area, so it can be
anticipated that the Tollmien-Schlichting instabilities (TSI) are most strongly amplified there.

(a) (b)

Fig. 2 Isentropic Mach number distribution on (a) the rotor’s suction side and (b) the rotor’s pressure side.

Cross-flow instabilities (CFI) on the other hand can be amplified in three-dimensional boundary layers exhibiting an
inflection point in the cross-flow velocity component. An indicator for the presence of amplified CFI is the ratio of
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maximum cross-flow velocity to boundary layer-edge velocity 𝑉𝑚𝑎𝑥/𝑈𝑒, which is shown in Fig. 3. There is a radially
extending region of increased cross-flow velocity containing the points 𝑆2 and 𝑆3 where CFI could be amplified on the
suction side leading-edge area. However, the other points also feature high cross-flow velocities, so that the CFI could
be amplified there as well (see 𝑉𝑚𝑎𝑥/𝑈𝑒 in Tables 1 and 2).

𝑉𝑚𝑎𝑥/𝑈𝑒

(a)

𝑉𝑚𝑎𝑥/𝑈𝑒

(b)

Fig. 3 Spatial distribution of the maximum cross-flow velocity non-dimensionalized with the magnitude of the
boundary-layer edge velocity for (a) the rotor´s suction side and (b) its pressure side.

Table 1 Overview of the examined points on the rotor suction side.

Point Grid i-index Grid j-index 𝑟/𝑅 𝑅𝑒𝛿1 𝑉𝑚𝑎𝑥/𝑈𝑒 𝑀𝑎

𝑆1 55 20 0.970 864.66 0.0172 1.277
𝑆2 44 14 0.916 635.59 0.0142 1.195
𝑆3 36 16 0.840 817.74 0.0156 1.135
𝑆4 20 22 0.576 1333.81 0.0057 1.053
𝑆5 2 5 0.405 765.52 0.03041 1.131

Table 2 Overview of the examined points on the rotor pressure side.

Point Grid i-index Grid j-index 𝑟/𝑅 𝑅𝑒𝛿1 𝑉𝑚𝑎𝑥/𝑈𝑒 𝑀𝑎

𝑃1 24 8 0.647 789.07 0.0407 1.026
𝑃2 3 7 0.409 615.73 0.0102 0.935

V. Impact of rotational effects on the primary instability modes
This section investigates the impact of the additional rotational terms in the stability equations on the properties of

the primary linear instabilities on the Z49 rotor blade. The effect of the rotational terms is addressed by presenting the
results of two sets of computations, one in which the rotation terms are neglected and one in which they are considered.
First, a cross-validation of the instability results is presented for point 𝑆4 in Sec. V.A. Subsequently, the local instability
results for the considered points are given in Sec. V.B for the rotor’s suction and pressure side. Finally, a global
assessment of the rotational effects is given in Sec. V.C in terms of 𝑁-factor results employing both local (LST) and
nonlocal (PSE) instability theory.
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A. Comparison between Onera and DLR results
At DLR, there exists limited experience for instability analyses on industrially relevant geometries in a rotating

reference frame. Therefore, before investigating the influence of the rotational terms on the primary instability properties
in more detail, the laminar basic flow preparation approach is first verified by comparing the instability results for
the T-S wave at point 𝑆4 with the data obtained with Onera’s MAMOUT [21] code. The cross-validation in terms of
isocontours of the spatial growth rate in the frequency spanwise wavenumber parameter space (the 𝑓 − 𝛽 plane) is shown
in Fig. 4(a), whereas Fig. 4(b) shows the amplification rate as a function of disturbance frequency for selected spanwise
wavenumbers for better comparability. Note that the rotational terms were not included in the instability analysis.

(a) (b)

Fig. 4 Comparison of the spatial growth rate computed by Onera and DLR for point 𝑆4; (a) Contours of the
spatial growth rate in the 𝑓 − 𝛽 plane and (b) spatial growth rate as a function of disturbance frequency for
selected spanwise wavenumbers.

Overall there is a good agreement between the DLR and Onera results in terms of the amplified frequency band,
relevant spanwise wavenumbers, and the respective amplification rate −𝛼𝑖 . The slight discrepancy between the Onera
and DLR results is likely caused by the heavy amount of pre-processing necessary to prepare the CFD solution for the
subsequent instability analysis. The pre-processing comprises the following steps: (i) transformation of the velocity
field into the rotating frame of references, (ii) interpolation of the CFD solution onto a wall-normal grid to extract the
boundary-layer profiles, and (iii) computation of all basic flow derivatives (preferably with a high-order method).
The final paper will contain a more thorough cross-comparison study, also including the rotational effects.

B. Spatial growth rate on rotor suction and pressure side
In this subsection, the effect of the rotational terms on the local instability properties is studied in detail for the

selected locations given in Tables 1 and 2. For all presented results, the azimuthal direction points towards the rotational
axis (negative z-direction). Furthermore, all instability results presented in this subsection are displayed as contour
levels of the spatial growth rate in the 𝑓 − 𝛽 plane (subfigures (a) in Figs. 5–7,9–12). The contour surfaces stand for the
primary instability mode computed without the rotational terms, whereas the isolines stand for the results including
the rotational effects. The subfigures (b) in Figs. 5-7,9–12 show supplementary spatial growth rates as a function of
disturbance frequency for selected spanwise wavenumbers.

1. Rotor suction side
Figures 5–10 show the instability results for the selected points on the rotor suction side. The depicted amplification

rates for the points 𝑆1, 𝑆4, and 𝑆5 (Figs. 5, 9, and 10) belong to a Tollmien-Schlichting instability. At the location 𝑆2
(Fig. 6), the cross-flow instability is amplified, whereas at 𝑆3 (Figs. 7 and 8), both T-S waves and cross-flow instabilities
are unstable.
The highest growth rates for the T-S unstable considered points (𝑆1, 𝑆4, and 𝑆5) are reached in the hub area at point
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𝑆5. Considering the rotational effects in the LST has no impact on the T-S instability characteristics since just about all
results are on line width with the data without rotational effects. There is a slightly destabilizing effect of the rotational
terms on the T-S instability at higher spanwise wavenumbers at point 𝑆1. This slight destabilizing effect could be linked
to the impact of the distance to the rotational axis since point 𝑆1 is located closest to the blade tip region.
On the other hand, there is an observable effect of the rotational terms on the amplification of cross-flow instabilities

at point 𝑆2 (see Fig. 6). The inclusion of the Coriolis and centrifugal forces in the instability analysis lead to a stronger
amplification of the cross-flow instability accompanied by a shift of the unstable region in the 𝑓 − 𝛽 plane to lower
frequencies and higher absolute values of the spanwise wavenumber.
Of particular interest are also the instability results for the point 𝑆3, where both the T-S wave and the cross-flow

instability are amplified. In accordance with the findings for the other considered points, where solely one instability
type is amplified (T-S waves at points 𝑆1, 𝑆4, and 𝑆5 and CFI at point 𝑆2), the instability characteristics of the T-S wave
remain unchanged, whereas the parameter space of the amplified CFI is again slightly altered. A possible reason for the
different effects of rotation on T-S waves and cross-flow instabilities could be due to the wave propagation direction. In
the study of Dechamps & Hein [19], it is shown that instabilities propagating normal to the flow direction are most
affected by rotation, and that influence increases with rotation speed. Figure 8 depicts the spatial growth rate already
shown in Fig. 7(a) as a function of wave angle instead of wavenumber. The CFI propagate almost transverse to the main
flow direction, whereas TSI are amplified at considerably lower wave angles.
In summary, it can be concluded that the inclusion of the rotational terms in the instability analysis hardly affects the

instability characteristics of the Tollmien-Schlichting waves. On the other hand, cross-flow instabilities are destabilized
by the effect of the rotational terms. However, the maximum growth rate of the CFI on the considered Z49 geometry and
at the investigated rotation speed is more than an order of magnitude lower than the growth rates of the TSI. The fact
that the growth rate of the Tollmien-Schlichting waves is hardly altered when including the rotational effects is in line
with the findings of Dechamps & Hein [19] for a rotating Blasius boundary-layer profile and with the recent results of
Pascal et al. [17] for the boundary layer on a rotating fan blade with incoming flow. Furthermore, the destabilizing effect
of rotation on the cross-flow instability is also in agreement with the findings of Pascal et al. [17] and with the work of
Garrett et al. [13] and Hussain et al. [12]. The author of Refs. [13] and [12] performed linear stability analyses for the
flow on a broad rotating cone (Ref. [13]) and over a rotating disk (Ref. [12]) in an enforced axial flow. In those studies,
the cross-flow instability amplification rate increased with the ratio of rotation speed over incoming flow velocity.
Unlike in the case of the rotating Blasius profile studied by Dechamps & Hein [19], where a new type of instability

occurred at high spanwise wavenumbers and considerably smaller values of 𝛼𝑟 , no new additional rotational instabilities
were discovered in this work. However, this wavenumber combination is characteristic of cross-flow instabilities, which
are already amplified on the Z49 rotor even when the rotational terms are not considered.

(a) (b)

Fig. 5 Impact of rotational effects on the spatial growth rate, −𝛼𝑖 , of a Tollmien-Schlichting wave at point 𝑆1;
(a) contours of the spatial growth rate in the 𝑓 − 𝛽 plane and (b) spatial growth rate as a function of disturbance
frequency for selected spanwise wavenumbers.
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(a) (b)

Fig. 6 Impact of rotational effects on the spatial growth rate, −𝛼𝑖 , of a cross-flow instability at point 𝑆2; (a,b)
as labeled in Fig. 5.

CFI

TSI

(a) (b)

Fig. 7 Impact of rotational effects on the spatial growth rate, −𝛼𝑖 , of a Tollmien-Schlichting and cross-flow
instability at point 𝑆3;(a,b) as labeled in Fig. 5.
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CFI

TSI

Fig. 8 Impact of rotational effects on the spatial growth rate, −𝛼𝑖 , of a Tollmien-Schlichting and cross-flow
instability at point S3; contours of the spatial growth rate in the 𝑓 − Ψ plane.

(a) (b)

Fig. 9 Impact of rotational effects on the spatial growth rate, −𝛼𝑖 , of a Tollmien-Schlichting wave at point 𝑆4;
(a,b) as labeled in Fig. 5.
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(a) (b)

Fig. 10 Impact of rotational effects on the spatial growth rate, −𝛼𝑖 , of a Tollmien-Schlichting wave at point 𝑆5;
(a,b) as labeled in Fig. 5.

2. Rotor pressure side
Figures 11 and 12 depict the instability results for the two selected points on the rotor pressure side. The instability

type at both locations is of a Tollmien-Schlichting wave. In accordance with the findings for the TSI on the suction side,
rotation does not alter the instability characteristics here either.

(a) (b)

Fig. 11 Impact of rotational effects on the spatial growth rate, −𝛼𝑖 , of a Tollmien-Schlichting wave at point 𝑃1;
(a,b) as labeled in Fig. 5.
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(a) (b)

Fig. 12 Impact of rotational effects on the spatial growth rate, −𝛼𝑖 , of a Tollmien-Schlichting wave at point 𝑃2;
(a,b) as labeled in Fig. 5.

C. 𝑁-factor results for rotor suction side
So far, the investigations on the influence of the rotational terms on the instability properties of the primary modes

were limited to selected local points on the rotor blade. To evaluate a more global effect and establish the link to
transition prediction based on the 𝑒𝑁 method, the local amplification rates are integrated into logarithmic amplification
factors, the so-called 𝑁-factor.
The 𝑁-factor is defined as 𝑁 =

∫ 𝑠

𝑠0
𝜎d𝑠, where 𝑠 is the curvilinear abscissa along the considered line, and 𝑠0

represents the location where the primary instability at a specific frequency and spanwise wavenumber is amplified for
the first time. Note that the endpoint of the integration is restricted to the end of the laminar region at 𝑥/𝑥𝑙𝑎𝑚𝑖𝑛𝑎𝑟 = 1.
An overview of the maximum local amplification rate of the Tollmien-Schlichting instability on the rotor suction side

and, for the sake of completeness, also on the pressure side is given in Fig. 13. The depicted growth rate corresponds to
the maximum value determined over all frequencies and spanwise wavenumbers. The area with the highest amplification
rates on the suction side is located in the hub region, where the largest adverse pressure gradient occurs (cf. Fig. 2).
Thus, the highest 𝑁-factors are also to be expected there.

(a) (b)

Fig. 13 Isocontours of the maximum spatial growth rate (−𝛼𝑖) on (a) the rotor´s suction side and (b) its pressure
side. The dashed black lines correspond to the 𝑁-factor integration path as used for the 𝑁-factor computation.
The white lines denote the boundary-layer edge streamlines in the vicinity of the 𝑁-factor integration path.

The maximum 𝑁-factor value in three-dimensional flows, as present on the Z49 rotor, depends on the integration
path, as well as the chosen N-factor integration strategy. The focus of this paper is on the impact of the rotational effects
on the primary instability characteristics. Therefore, the most reasonable integration strategy is only of secondary
interest, and line-in-flight cuts corresponding to isolines of the 𝑧-coordinate are used as integration paths, which are
shown as dashed lines in Fig. 13(a). The white lines in Fig. 13(a) correspond to the boundary-layer edge streamlines in
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the vicinity of the considered integration paths. It can be observed that the selected isolines in the lower rotor blade
region correspond relatively well to the boundary-layer edge streamline, but the disparities increase with radius.
The prescribed-frequency/prescribed-spanwise-wavenumber integration strategy is used to compute the 𝑁-factors

for both TSI and CFI. The envelope curve of all 𝑁-factors is thus defined as 𝑁𝐸𝑛𝑣𝑒𝑙𝑜𝑝𝑒 (𝑠) = max 𝑓
(
max𝛽 (𝑁 (𝑠))

)
. An

example of the streamwise evolution of a typical 𝑁-factor envelope curve, 𝑁𝐸𝑛𝑣𝑒𝑙𝑜𝑝𝑒, is shown in Fig. 14(a).

(a) (b)

Fig. 14 Streamwise evolution of (a) LST 𝑁-factors computed at various spanwise wavenumbers and frequencies
and (b) LST T-S 𝑁-factor envelope curves integrated along paths with constant values of 𝑧 (depicted in Fig. 13(a)).

In the following, the impact of the rotational terms on the streamwise evolution of the 𝑁-factor envelope curves
is discussed separately for the two primary instabilities considered (TSI and CFI). Figure 14(b) shows the 𝑁-factor
envelope curves for four different line-in-flight cuts for the T-S wave computed with LST. As indicated by the local
results for points 𝑆1, 𝑆4, and 𝑆5 and the spatial growth rate distribution on the rotor’s suction side in Fig. 13, the 𝑁-factor
for the integration path located the closest to the hub region (𝑟/𝑅 ≈ 0.455) reaches the highest value. As the distance
from the axis of rotation increases, the maximum 𝑁-factor decreases. Thus, provided that the T-S wave amplitudes are
sufficiently high enough, the laminar-turbulent transition is likely to first occur in the hub region. However, including
the rotational effects in the LST has no impact on the transition scenario, since all curves shown in Fig. 14(b) coincide
with the lines without rotational effects.
In addition to the LST analyses, selected PSE calculations were also performed for the cut at 𝑟/𝑅 ≈ 0.574 with

the spanwise wavenumber of 𝛽 = −900 /m (the value that leads to the highest LST 𝑁-factor in this cut). In contrast
to the LST, the PSE also take nonlocal, nonparallel, and surface curvature effects into account. Figure 15(a) shows
the comparison of the 𝑁-factors computed with LST and PSE for three selected frequencies. The 𝑁-factors curves
calculated with PSE exhibit a similar evolution to those obtained with LST, but the nonlocal, nonparallel effects cause a
slight increase of the maximum 𝑁-factor, at least for the higher frequencies investigated. The inclusion of the rotation
effects in the PSE has no influence on the TSI-caused transition process since, as visible in Fig. 15(b), the curves are
again on top of those without rotational effects.
Figure 16 depicts the 𝑁-factor envelope curve for the cross-flow instability in the cut at 𝑟/𝑅 ≈ 0.873 computed

with LST. When neglecting the rotational effects, the region of amplified CFI extends to 𝑥/𝑥𝑙𝑎𝑚𝑖𝑛𝑎𝑟 = 0.22. On the
other hand, including the rotational effects in the instability analysis, the CFI is amplified throughout the considered
section. Thus, the maximum 𝑁-factor significantly exceeds the value without rotational effects. However, the gain in
CFI amplitude is still too low to trigger transition (e.g., a transition 𝑁-factor of 7.6 is given in Ref. [22]). A PSE analysis
for this line did not reveal any amplified CFI, even when the rotational effects were included, which is likely due to the
metric terms’ stabilizing effect. Considering the metric terms in the LST also yields no amplified disturbances.
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(a) (b)

Fig. 15 Streamwise evolution of the 𝑁-factor at 𝑟/𝑅 ≈ 0.574 for 𝛽 = −900 /m; (a) Comparison between LST
and PSE 𝑁-factors; (b) Impact of rotation on the PSE 𝑁-factors.

Fig. 16 Impact of the rotational effects on the streamwise evolution of the LST 𝑁-factor envelope curve for the
cross-flow instability in the cut at 𝑟/𝑅 ≈ 0.873.
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VI. Conclusion
The impact of rotational terms appearing in a rotating reference frame (i.e., centrifugal and Coriolis accelerations)

on the transition mechanisms for the Z49 rotor blade are investigated by means of linear stability computations. The
effect of rotation is studied by comparing a set of instability computations accounting for rotational terms with a set of
computations where those terms are neglected.
No new type of instability linked to the rotational terms is discovered. It is found that rotation solely alters the

instability mechanisms already amplified on the rotor blade. Tollmien-Schlichting waves are found to be the dominant
instability mechanism on the considered rotor geometry. Considering the rotational terms in the instability analysis
hardly affects the T-S growth rates and N-factors obtained with local parallel theory (LST) or nonlocal nonparallel theory
(PSE), independent from the distance to the rotation axis. Cross-flow instabilities (CFI) are found to be destabilized by
the rotational effects, which is in accordance with previously published findings (see Ref. [19]). A possible reason
for the differing effect of rotation on T-S waves and cross-flow instabilities is seen in the different wave propagation
directions. Instabilities propagating transverse to the main flow direction (generally the CFI) are most strongly affected
by rotation. This finding is consistent with results from the literature (see Refs. [17–19]). The 𝑁-factor for CFI increases
when including the rotational terms in the instability analysis; however, the value is too low at the investigated operating
condition (𝑁 < 0.5) to trigger transition on the Z49 rotor blade.
The results suggest that for an 𝑒𝑁 -based transition prediction method in a rotating reference frame, the rotational

terms do not necessarily have to be considered when T-S waves cause the transition. On the other hand, if cross-flow
instabilities are the dominant transition mechanism, the terms should be included; otherwise, transition will be detected
too far downstream.
The work of Dechamps & Hein [19] shows that the amplification rate of the rotation-affected instability increases

with the number of revolutions per minute. Therefore, further investigations on the influence of the number of revolutions
per minute are necessary to confirm this trend for industrially relevant geometries.
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