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Learning scene and blur model for active chromatic Depth From Defocus

In this paper we propose a new monocular depth estimation algorithm based on local estimation of defocus blur, approach referred to as Depth from Defocus (DFD). Using a limited set of calibration images, we directly learn image covariance which indeed encode both scene and blur (i.e. depth) information. Depth is then estimated from a single image patch using a maximum likelihood criterion defined using the learned covariance. This method is applied here within a new active DFD method using a dense textured projection and a chromatic lens for image acquisition. The projector adds texture for low textured objects -which is usually a limitation of DFD -and the chromatic aberration increases the estimated depth range with respect to conventional DFD. We provide here quantitative evaluations of the depth estimation performance of our method on simulated and real data of fronto-parallel untextured scenes. The proposed method is then qualitatively experimentally evaluated on 3D-printed benchmark.

INTRODUCTION

Compact, accurate and cheap 3D sensors are now crucial for many applications such as industrial inspections, autonomous navigation or surgery. Optical sensors have now a limited cost, are compact and allow non-destructive, large scale and fast image acquisition, thus are very promising for 3D applications. A conventional approach to optical 3D estimation is stereoscopy, which is based on parallax between images from different cameras. However, this method requires precise cameras calibration and synchronization. Besides, the accuracy of depth estimation is related to the distance between the image views, increasing the system dimension. Plenoptic cameras generate multi-view images with a single lens by making use of microlenses array placed in front of the detector [START_REF] Ng | Light field photography with a hand-held plenoptic camera[END_REF]. While being more compact than stereo, these devices lack accuracy on close range due to limited baseline. Other monocular approaches for 3D have been developed such as methods exploiting defocus blur for depth estimation. As illustrated in Figure 1, if an object point source is situated before or after the in-focus plane of an imaging system, its image, referred to as the point spread function (PSF), shows a defocus blur of size .

There are two main approaches exploiting defocus, which are Depth From Defocus [START_REF] Pentland | A new sense for depth of field[END_REF] (DFD) and Depth From Focus [START_REF] Grossmann | Depth from focus[END_REF] (DFF). DFF uses a large number of images captured while changing the optical settings and depth is estimated by the search of the best focused image in the image stack. Processing is simple and fast, but the main limitation is in the recording of the image stack which requires the scene and the camera position to be fixed during certain amount of time. On the other hand, DFD requires only one or two images and depth is estimated by measuring local defocus blur. Acquisition is then easier and provides a larger field of applications than DFF, but the processing is more difficult, specially in the Single Image case (SIDFD) as both scene and blur are unknown. In the literature of local blur estimation [START_REF] Levin | Image and depth from a conventional camera with a coded aperture[END_REF][START_REF] Chakrabarti | Analyzing spatiallyvarying blur[END_REF][START_REF] Trouvé | Single image local blur identification[END_REF][START_REF] Trouvé | Passive depth estimation using chromatic aberration and a depth from defocus approach[END_REF][START_REF] Buat | Active chromatic depth from defocus for industrial inspection[END_REF], a common approach is to define a scene density of probability model while the relation between depth and blur is obtained through a calibration process of a finite set of potential PSFs. However, both approximations limit the accuracy of the depth estimation. Besides, SIDFD suffers from ambiguity (the same blur amount can be measured in front or behind the in-focus plane) and from a "dead zone" where no measurement is possible in the camera depth of field. To improve depth estimation performance, unconventional optics dedicated to DFD have been proposed, based on coded aperture [START_REF] Levin | Image and depth from a conventional camera with a coded aperture[END_REF][START_REF] Martinello | Single image blind deconvolution with higher-order texture statistics[END_REF][START_REF] Sellent | Optimized aperture shapes for depth estimation[END_REF], chromatic aperture [START_REF] Chakrabarti | Depth and deblurring from a spectrallyvarying depth-of-field[END_REF] or chromatic lens [START_REF] Trouvé | Passive depth estimation using chromatic aberration and a depth from defocus approach[END_REF]. In particular, the use of chromatic lens removes both the dead zone and the depth ambiguity while increasing depth range.

However, passive 3D estimation techniques are much less effective when the objects lack texture and are poorly illuminated, which can be the case in many, specially indoors, environments. To overcome these limitations, active approaches can be thought of such as laser triangulation, interferometry, Time-of-Flight measurement or structured illumination [START_REF] Savio | Metrology of freeform shaped parts[END_REF]. Structured illumination seems very suited for cheap, fast and accurate depth estimation. However it relies on the parallax between images of the camera and projected pattern onto the scene, which induces the same limitations as passive stereoscopy. To tackle the case of low textured object, active Depth-From-Defocus methods have been proposed [START_REF] Buat | Active chromatic depth from defocus for industrial inspection[END_REF][START_REF] Girod | Depth from defocus of structured light[END_REF][START_REF] Nayar | Real-time focus range sensor[END_REF][START_REF] Ghita | Computational approach for depth from defocus[END_REF][START_REF] Zhang | Projection defocus analysis for scene capture and image display[END_REF][START_REF] Lertrusdachakul | Dynamic (de)focused projection for three-dimensional reconstruction[END_REF][START_REF] Masuyama | Depth from projector's defocus based on multiple focus pattern projection[END_REF]. A projector is used to add an artificial texture onto the scene and hence increase defocus blur cues. As depth estimation performance is not related to the distance between projector and camera in such a case, a compact system without occlusion can be obtained. However, most methods rely on the projection of a sparse pattern, and hence produce only a sparse depth map.

Depth

From Defocus C a p t u r e Fig. 2. Principle of the proposed active DFD system. A dense textured pattern is projected onto the scene, a camera equipped with a chromatic lens record an image, the DFD algorithm uses the variations of blur over the camera color channels to determine a dense depth map.

In this paper we first propose a new single image DFD algorithm. As [START_REF] Levin | Image and depth from a conventional camera with a coded aperture[END_REF][START_REF] Chakrabarti | Analyzing spatiallyvarying blur[END_REF][START_REF] Trouvé | Single image local blur identification[END_REF][START_REF] Trouvé | Passive depth estimation using chromatic aberration and a depth from defocus approach[END_REF][START_REF] Buat | Active chromatic depth from defocus for industrial inspection[END_REF], our blur estimation method is based on the selection of a depth among a set of potential depths using a criterion derived from a maximum likelihood approach in a Bayesian framework. But here, we propose to directly learn the image model used to define the likelihood from calibration acquisitions. Hence, our method is directly adapted to sensor and scene and avoids both blur calibration and the definition of a structured scene model. Second, we propose a new active DFD method using the proposed algorithm, a chromatic lens and a structured illumination. As illustrated in Figure 2, a projector is used to add an artificial texture onto textureless objects in order to improve blur estimation accuracy. The unconventional chromatic camera provides large depth estimation range without ambiguity nor dead zone. We have built a prototype of such compact 3D sensor, for the specific application of surface inspection. We evaluate here its accuracy on a real experiment on 3D printed object.

A. Related works

Several methods for active DFD have been proposed in the literature, yet except from references [START_REF] Buat | Active chromatic depth from defocus for industrial inspection[END_REF][START_REF] Nayar | Real-time focus range sensor[END_REF], most of them use a sparse projection patterns such as evenly spaced vertical lines [START_REF] Girod | Depth from defocus of structured light[END_REF][START_REF] Ghita | Computational approach for depth from defocus[END_REF][START_REF] Zhang | Projection defocus analysis for scene capture and image display[END_REF][START_REF] Lertrusdachakul | Dynamic (de)focused projection for three-dimensional reconstruction[END_REF][START_REF] Masuyama | Depth from projector's defocus based on multiple focus pattern projection[END_REF] or evenly spaced dots [START_REF] Moreno-Noguer | Active refocusing of images and videos[END_REF][START_REF] Ma | Computational depth from defocus via active quasi-random pattern projections[END_REF]. Blur is then estimated by measuring the spread or the brightness of each elements of the pattern in the image. While being accurate, these methods only produce sparse depth map with depth information only at the position of each dots/lines, which can not be too close to avoid overlapping. To estimate a dense depth map, in the context of color video processing, Moreno et al. [START_REF] Moreno-Noguer | Active refocusing of images and videos[END_REF] propose to merge sparse depth measurements with a color segmentation of the image which is prone to merging errors. Nayar et al. [START_REF] Nayar | Real-time focus range sensor[END_REF] propose to use a dense illumination pattern in the form of a black and white grid with optimized grid parameters to improve depth estimation performance, in a two-frames DFD framework. In Buat et al. [START_REF] Buat | Active chromatic depth from defocus for industrial inspection[END_REF] comparison of several projected patterns for active DFD is conducted for dense depth map estimation using a state of the art single image DFD algorithm proposed by Trouvé et al. [START_REF] Trouvé | Passive depth estimation using chromatic aberration and a depth from defocus approach[END_REF]. This algorithm, based on a generic structured scene covariance model, will be referred to as SC-DFD in this paper.

To avoid depth ambiguity with respect to the in-focus plane, several active DFD methods use the blur only on one side of the in-focus plane [START_REF] Moreno-Noguer | Active refocusing of images and videos[END_REF][START_REF] Ma | Computational depth from defocus via active quasi-random pattern projections[END_REF], thus reducing the depth range. Another approach involves the use of several projection patterns focused at different depths in a single snapshot. For example, Masuyama et al. [START_REF] Masuyama | Depth from projector's defocus based on multiple focus pattern projection[END_REF] develop a projection system consisting of multiple color pattern placed at different distances in front of a light source, each pattern being focused at a different position in the scene. This approach however limits the number of depths that can be estimated at the number of pattern used, in such case only five. Girod et al. [START_REF] Girod | Depth from defocus of structured light[END_REF] use anisotropic aperture or lens with astigmatism aberration for the projector to obtain anisotropic defocus blur, whose orientation varies in front or behind the in-focus plane. But the dead zone remains within the depth of field where no blur variation can be measured. In Buat et al. [START_REF] Buat | Active chromatic depth from defocus for industrial inspection[END_REF], is proposed an active DFD system using a chromatic lens, which removes both ambiguity and dead zone thanks to a different in-focus plane for each color channel.

In this paper, as in [START_REF] Buat | Active chromatic depth from defocus for industrial inspection[END_REF], we propose to use a dense projected texture and estimate the depth on image patches. In this context, our problem is highly related to single image blur estimation methods, which can be tricky as both blur and scene are unknown. In the literature, Bayesian framework has been used to tackle this problem [START_REF] Chakrabarti | Analyzing spatiallyvarying blur[END_REF][START_REF] Trouvé | Single image local blur identification[END_REF][START_REF] Buat | Active chromatic depth from defocus for industrial inspection[END_REF][START_REF] Fergus | Removing camera shake from a single photograph[END_REF][START_REF] Levin | Efficient marginal likelihood optimization in blind deconvolution[END_REF]. Blur is locally estimated using either a maximum likelihood criterion [START_REF] Chakrabarti | Analyzing spatiallyvarying blur[END_REF][START_REF] Trouvé | Single image local blur identification[END_REF][START_REF] Trouvé | Passive depth estimation using chromatic aberration and a depth from defocus approach[END_REF][START_REF] Buat | Active chromatic depth from defocus for industrial inspection[END_REF][START_REF] Levin | Efficient marginal likelihood optimization in blind deconvolution[END_REF] or an approximation of the a posteriori probability of the blur [START_REF] Fergus | Removing camera shake from a single photograph[END_REF]. To derive an analytical expression of these criteria, the common approach is to marginalize the joint probability of the scene and image using a simple scene model in order to integrate the scene "out of the problem". In [START_REF] Trouvé | Single image local blur identification[END_REF][START_REF] Trouvé | Passive depth estimation using chromatic aberration and a depth from defocus approach[END_REF][START_REF] Buat | Active chromatic depth from defocus for industrial inspection[END_REF][START_REF] Levin | Efficient marginal likelihood optimization in blind deconvolution[END_REF], a parametric Gaussian prior on the scene gradient is used. In [START_REF] Chakrabarti | Analyzing spatiallyvarying blur[END_REF][START_REF] Fergus | Removing camera shake from a single photograph[END_REF] the scene gradients distribution is modeled using either a mixture or a scaled mixture of zero mean Gaussian distribution. All these simple and generic priors help to derive tractable criteria for blur estimation, but are not very realistic scene models, which can reduce the accuracy of blur estimation. Besides, in DFD to obtain absolute depth maps, blur to depth conversion is usually conducted using an heavy calibration step, which has to be conducted on and off axis in case of important field aberrations. This can also add uncertainties to depth estimation. Other approaches to DFD, avoiding scene model and blur calibration, involve the use of a supervised learning step in order to estimate depth [START_REF] Martinello | Single image blind deconvolution with higher-order texture statistics[END_REF][START_REF] Favaro | A geometric approach to shape from defocus[END_REF]. In these papers, blur is considered as a projection and the kernel subspaces related to each blur projection are learned on simulated or experimental images. The norm of the projection of an image patch on these kernels is minimized to select the blur that is the more likely. These methods are applied either on multiple images DFD or on a single image with a coded aperture. Recently, some papers described the use of defocus blur as a cue in a deep learning approach to estimate depth from a single image (Deep-DFD) [START_REF] Carvalho | Deep depth from defocus: how can defocus blur improve 3d estimation using dense neural networks?[END_REF][START_REF] Anwar | Deblur and deep depth from single defocus image[END_REF]). Despite being effective, these methods are designed for natural scenes and use a considerable amount of defocus images from databases to train their neural networks.

B. Contributions and paper organization

In this paper, we propose a new DFD algorithm based on a learned scene and blur model. Using a limited set of calibration images, we directly learn the image covariance, avoiding both the specification of a structured and non realistic scene model and specific blur calibration with respect to depth. We refer to this algorithm as LC-DFD for Learned Covariance Depth from Defocus. Note that the proposed algorithm can be used with any conventional or unconventional camera, however it can be particularly interesting when the scene fluctuation can be controlled, as in active DFD. We also propose a new active DFD method illustrated in Figure 2. As preliminary described in the work of Buat et al. [START_REF] Buat | Active chromatic depth from defocus for industrial inspection[END_REF], our system is made-up of a projector and of a camera equipped with an unconventional lens having chromatic aberration. Hence we refer to this approach as AC-DFD for Active Chromatic Depth from Defocus. In this paper, we have realized an improved prototype dedicated to surface inspection application. We use here especially a machine vision dedicated projector and not a commercial one, showing more flexibility in the system settings. Besides, in contrast with [START_REF] Buat | Active chromatic depth from defocus for industrial inspection[END_REF], depth is estimated using the proposed LC-DFD algorithm applied directly on raw image patches. We provide quantitatively and qualitatively validation of the performance of the proposed system.

The paper is organized as follows: Section 2 describes the proposed DFD algorithm used for depth estimation. Then we evaluate its performance on simulated images in Section 3. Section 4 is dedicated to experimental quantitative and qualitative performance evaluations of the proposed active DFD method. Note that orders of magnitude for the experimental setting are borrowed from the general context of this work, industrial inspection. Conclusion remarks and discussions about the perspectives of this work are given in Section 5.

A SCENE AND SENSOR ADAPTIVE DFD ALGORITHM WITH LEARNED IMAGE MODEL

In state of the art papers on DFD [START_REF] Levin | Image and depth from a conventional camera with a coded aperture[END_REF][START_REF] Trouvé | Single image local blur identification[END_REF][START_REF] Trouvé | Passive depth estimation using chromatic aberration and a depth from defocus approach[END_REF][START_REF] Buat | Active chromatic depth from defocus for industrial inspection[END_REF], depth is estimated using a structured and generic scene model and calibrated or modeled PSF, which can lead to uncertainties in the depth estimation when using real scenes and DFD camera. In this paper, the proposed algorithm directly learns the image covariance, hence the processing is directly adapted to the DFD system.

This learning is conducted on a set of calibrated fronto-parallel images for which the scene depth is known. Figure 3 provides a generic overview of the proposed algorithm : an offline step is conducted for learning an image covariance per depth and an online step checks the consistency of a given patch with the learned covariance to estimate the depth using a maximum likelihood criterion.

In the following, Section A and B describe the mathematical formal framework. Then, Section C and D present the mathematical resolution of the offline and online processing step respectively. 

A. Image and Scene models

Defocus blur is a spatially varying blur, so an image patch is usually modeled with the local convolution of a scene patch with the PSF and addition of random acquisition noise. Using the vector representation on image and scene patches we have:

Y = H(d)X + N, (1) 
where Y (respectively X) collects k pixels of the image (resp. scene) patch in the lexicographical order. It is assumed that X is a zero mean random Gaussian vector with covariance R X . N stands for the noise process which is modeled as a zero mean white Gaussian noise (WGN) with variance σ 2 N . H(d) is a convolution matrix which depends on the defocus PSF at each depth d. Note that this generic formalism allows to model any DFD problem, using either a monochrome or a color sensor (either 3CCD or CFA). The differences between theses cases lay in the definition of H(d) and the vectors X and Y.

B. Image prior

The relation between X and Y being linear, Y is also a zero mean random Gaussian vector with covariance R Y and we have:

R Y (d) = H(d)R X H(d) t + σ 2 N I. (2) 
Assuming R Y invertible, the marginal probability density of the data is expressed :

p(y; d) = 1 |2πR Y 1/2 exp - y t R -1 Y (d)y 2 , ( 3 
)
where |R| is the determinant of matrix R.

In [START_REF] Trouvé | Passive depth estimation using chromatic aberration and a depth from defocus approach[END_REF][START_REF] Buat | Active chromatic depth from defocus for industrial inspection[END_REF], a structured scene covariance was used based on the hypothesis of isotropic distribution of the scene gradient. Here, the image covariance is learned on data (see Section C) in order to have a processing directly adapted to the DFD system.

C. Image covariance matrix learning

We propose to learn the covariance matrices R Y on a basis of representative windows of no-noise data Y = HX. Note that for the sake of simplicity, we drop in this section the notation d of the matrices. First we evaluate

R Y = HR X H T , ( 4 
) then R Y is obtained by R Y = R Y + σ 2 N .
Whereas R Y is estimated once for all as a preprocessing, the noise parameter σ 2 N will be estimated for each data patch depth estimation. This makes the proposed method adaptive to local changes of the signal to noise ratio.

To perform the covariance matrix learning, a database of typical images containing scene and blur information is needed. We will discuss later the creation of such database in the case of active DFD for simulated data (see Section 3) or experimental data (see Section 4).

From this database, we extract n patches, each patch i is rearranged in a vector y i of mean y i We construct a data matrix Y concatenating the vectorized data :

Y = 1 √ n [(y 1 -y 1 ), • • • ... (y n -y n )], (5) 
The calculation of (3) involves the inverse of R Y which is costly to calculate. To simplify this calculation, we diagonalize R Y . Indeed this is equivalent to diagonalize the no-noise covariance matrix R Y . By calculating the Singular Value Decomposition of data matrix Y:

Y = USV T , (6) 
a diagonal form of the covariance matrix R Y is obtained :

R Y = YY T = U∆U T , (7) 
where ∆ = S 2 is a diagonal matrix with non-negative diagonal. Thus, R Y is diagonalized as follows:

R Y = U(∆ + σ 2 N I)U T . ( 8 
)
The inverse of the covariance matrix R Y then writes:

R -1 Y = U(∆ + σ 2 N I) -1 U T . (9) 
Note that calculation of the determinant involved in (3) is also simplified, because it is equal to the determinant of the diagonal matrix ∆ + σ 2 N I. So far, the dependency of matrices ∆ and U with respect to d has been omitted for the sake of legibility. But this dependence must be underlined for depth estimation, and we will refer to matrices ∆ d and U d from now on.

D. Depth estimation

At each depth d, the learned scene covariance is entirely characterized by ∆ d and U d . Let {δ i,d } denote the diagonal terms of ∆ d . During the online processing step, for each patch of data y comprised of k pixels, the density (3) reads :

p(y; d, σ 2 N ) = 1 (2π) k/2 k ∏ i=1 (δ i,d + σ 2 N ) -1/2 exp - z 2 i,d 2(δ i,d + σ 2 N ) , (10 
) where z i,d is the i th coordinate of vector z d = U T d y. We will rather manipulate a quantity L(y; d, σ 2 N ) proportional to the neg-log-likelihood:

L(y; d, σ 2 N ) = -2 log(p(y; d, σ 2 N )) + cst (11) = k ∑ i=1 log(δ i,d + σ 2 N ) + (δ i,d + σ 2 N ) -1 z 2 i,d . (12) 
The depth d and noise parameter σ 2 N of the patch are estimated by :

{ d, σ 2 N } = arg min d,σ 2 N L(y; d, σ 2 N ). ( 13 
)
For computational efficiency, maximization of L(y; d, σ 2 N ) is performed over a grid of (d, σ 2 N ) variables, the relevant computations can be efficiently vectorized.

APPLICATION TO ACTIVE DFD ON SIMULATED DATA

In this section, we apply the proposed LC-DFD algorithm on simulated data, in the specific case of active DFD. This use case is particularly adapted for the proposed algorithm covariance learning stage since the projected pattern create a complete and controlled artificial scene. Note however, that while our algorithm is specially relevant for active DFD, it is not restrictive to this usage. In the following, we assume that the projected pattern is a random binary pattern (50% of black pixels and 50% of white pixels) which has shown to be well suited for active DFD in [START_REF] Buat | Active chromatic depth from defocus for industrial inspection[END_REF] and we process grayscale images.

For the preprocessing step, we ascertain the number of patches required for a good estimation of the image covariance in Section A. For the whole depth estimation process handled in Section B, we characterize the blur and projected pattern scale ranges producing the best results with the proposed algorithm. These results are used in the experimental settings of Section 4.

A. Preprocessing : image covariance learning

For the proper functioning of our algorithm, an offline preprocessing step is necessary and assimilated to a calibration : the image covariance learning. At each depth, the blurred projected pattern (a binary random pattern) is simulated. Covariance matrices are computed at each depth for a representative number of patches of the full images. The greater the number of patches used, the better the estimate of the covariance matrix, up to a point where the variation of the estimated matrix is negligible. On the other hand, the computation time is lengthened when the number of patches is increased, it is therefore necessary to find a reasonable number of patches to estimate the covariance matrices.

In Figure 4 is displayed the shape of the covariance matrix for a random binary pattern with a blur standard deviation of 0.5 pixels for different number of patches. To evaluate the number of patches necessary to learn the covariance matrix, we take as a reference a matrix calculated for 1 million patches which considered an excellently estimated matrix. We compute the correlation between a covariance matrix at a given number of patches and this reference matrix. A correlation of 99,9% is attained for 10k or more patches. Note that this number of patches varies little with the scale of the pattern or the size of the blur. Hence in the following we use 10k patches to learn the covariance matrices. 

B. Depth estimation evaluation for single image

In this section, we evaluate the influence of two experimental settings on the precision of the depth estimation : the blur size and the projected pattern size. For each simulation, a random binary pattern is generated and blurred. The scale of the projected pattern varies between 1 and 10. Views of the pattern at different scales are displayed in Figure 5. Blur is characterized by a Gaussian PSF model of standard deviation varying between 0.5 pixel and 3 pixels with a step of 0.1 pixel. Images used for the covariance learning preprocessing step are noise-free while noise is added to images used for the depth estimation in order to simulate camera acquisition. The added noise is a white Gaussian noise of standard deviation σ N = 10 -2 . The patch size is set at 20 pixels. For each combination of pattern scale/blur size, RMSE is calculated between estimated blur and true blur to quantify the precision of the algorithm. Results can be seen in Figure 6.

Blur is considered correctly estimated for a RMSE < 0.1px, threshold delimited by the isocontour in Figure 6. Given that pattern scale is controlled experimentally, we look for settings maximizing the blur dynamic in the area delineated by the isocontour. Such settings are a scales between 2 and 4 for blur standard deviation included between 0.5 and 1.5 pixels. We will consider this results for the settings of the experimental active DFD method in the following section. 

EXPERIMENTAL VALIDATION OF ACTIVE CHRO-MATIC DFD SYSTEM

In this section, we present an experimental demonstration of the proposed AC-DFD method combined with the LC-DFD algorithm presented in Section 2. The algorithm process 20 × 20 pixel patches in raw (RGGB Bayer) images. This patch size is a good compromise between blur information inside the patch and spatial resolution. The prototype has been developed for close range depth estimation according to an application of surface inspection. We first describe the experimental settings used in Section A, then we provide quantitative (Section B) and qualitative (Section C) experimental performance evaluations.

A. Experimental settings

As in Buat et al. [START_REF] Buat | Active chromatic depth from defocus for industrial inspection[END_REF], the unconventional lens with chromatic aberration used during the experimentation was originally designed in [START_REF] Trouvé | Passive depth estimation using chromatic aberration and a depth from defocus approach[END_REF]. For this lens, the focal length of each color channel is respectively f G = 25mm, f R = 25.09mm and f B = 24.9mm, and the lens is open at f /4. The sensor used is a UI-1240SE from IDS company with a resolution 1280 × 1024 pixels and a pixel size of 3.45 µm. In the following, we present results using this lens in the range of 310 -340mm, which is typical in the context of industrial inspection. To set the camera focus, we measure experimentally the blur size with a knife-edge method relying on a Gaussian fit of the PSF. The blur size is then characterized by a Gaussian standard deviation. The focus of the lens has been chosen according to the best performance domain obtained in Section B : for each color channel, blur standard deviation varies between 0.4 and 1.3 pixels (see Figure 7).

In [START_REF] Buat | Active chromatic depth from defocus for industrial inspection[END_REF], the projector used was a general public projector. Here, we use the EFFI-Lase V2 LED pattern projector from the company Effilux [26]. This projector can be used with any lens, making the optical setting for the projector more flexible. Indeed, as no additional blur should come from the projector, the projected pattern must be in-focus on the whole working range of the camera, in other words the depth of field of the projector should be higher than the working range of 310 -340 mm. This is an issue with a mainstream projector for which all the optical parameters are fixed. With the machine vision projector, we choose a lens of focal length 25 mm and a f-number of 8. The projector depth of field is hence of 5cm which makes the projected pattern clear in the working range. The projected pattern used is a random binary (50/50 black and white) pattern at a The working fronto-parallel plane used to conduct the image covariance learning and the quantitative evaluation is moved using an ESP300 motion controller from Newport (see Figure 8). This controller can be computer programmed and has a micrometric displacement resolution and micrometric precision. The working range is between 310 and 340 mm. Regarding the choice of calibration step, there is a trade-off between computation time and accuracy. A too large step size leads to fast computation but a depth estimation accuracy limited by the calibration step. On the opposite, a too small calibration step provides a better accuracy, limited by the defocus blur variation with depth, but at the cost of high computation time. In this paper, we choose empirically a trade-off with a step of calibration of 1 mm.

As described in Section 2, a database is necessary for the image covariance learning preprocessing step. This database should theoretically be composed of noise-free images, which is not realistic for captured images from a digital camera. To create this experimental database, an average of 20 images captured at each depth is used in order to make the acquisition noise negligible.

B. Quantitative evaluation

We present here a quantitative experimental evaluation of depth estimation accuracy on real fronto-parallel plane illuminated by the projected pattern. As discussed in [START_REF] Trouvé | Passive depth estimation using chromatic aberration and a depth from defocus approach[END_REF][START_REF] Buat | Active chromatic depth from defocus for industrial inspection[END_REF], the chromatic lens used contains off-axis (near the rim) aberrations. Thus, we will firstly compare performances on-axis (in the center of the image) between the proposed algorithm and the one presented in [START_REF] Trouvé | Passive depth estimation using chromatic aberration and a depth from defocus approach[END_REF][START_REF] Buat | Active chromatic depth from defocus for industrial inspection[END_REF].

Performances on experimental data of the proposed LC-DFD algorithm based on learned covariance and of the SC-DFD algorithm based on structured covariance can be seen respectively in Figure 9 and 10. Note that the SC-DFD algorithm uses the calibrated PSFs displayed in Figure 7. These performances are As described in Section 2, the preprocessing step of the LC-DFD algorithm involves covariance learning of data. This learning step suppose that all patches in the image contain the same blur information. As we stated previously, condition is satisfied practice with our lens due to aberrations. In this case, the defocus blur resulting varies while getting away from the center of the To overcome this issue, we propose to subdivide the image captured by the camera into several zones where an independent covariance is learned. A good compromise between precision and processing time consists in using a 6 × 6 grid subdivision of the image, for a total of 36 zones of equal dimensions (213 × 170 pixels). In order to refine even more the covariance learning, we add a second 7 × 7 grid subdivision overlapping the first one such as one subdivided zone from the second grid is centered on the intersection of four subdivided zone from the first grid. Covariance matrices are learned in each of these zones. Then during the depth estimation, each processed patch belongs to two different zones. The final patch depth estimation is the average of the depth estimated in the two zones. In Figure 11, performances of the proposed algorithm with the proposed subdivisions on experimental data can be seen. The global RMSE between estimated depth and true depth achieved is then of 0.45 mm. Not only this subdivision enables the exploitation of the whole image, it also improves significantly the depth estimation accuracy thanks to a finer learning step.

C. Qualitative evaluation

The proposed method has also been used on real objects. For example, a 3D-printed two dimensional staircase shown in Figure 12 is used as a benchmark to evaluate qualitatively our AC-DFD method with the LC-DFD algorithm. Figure 13 shows the depth map estimated with our AC-DFD method. A bilateral filter is applied to regularize the depth map. This estimation can Fig. 11. Depth estimation performances of the AC-DFD method presented in this paper based on the LC-DFD algorithm on the full image with the proposed subdivision. Global RMSE = 0.45 mm. be compared to the ground truth of the piece shown in Figure 14. This ground truth has been defined as the relative distance measured with a laser telemeter between the camera and the object. Estimated depth is generally consistent with ground truth on planar surfaces even if some artifacts exist where depth estimation is slightly inaccurate. However, the 3D method struggles to estimate depth on the edge of the stairs because the depth variation is discontinuous and one patch can cover two different depths. To diversify the estimation problem, our method has been tested on an other object with a more free-form shape and a continuous depth variation : a 3D-printed cone shown in Figure 15. Figure 16 displays the depth map estimated with our AC-DFD method and the ground truth of the conical piece, based on the 3D model, is shown in Figure 17. Estimated depth is faithful to the 3D model overall expect for the corners of the image which are somewhat overvalued. In conclusion, our AC-DFD method with the LC-DFD algorithm produces promising results on 3D-printed pieces. 

CONCLUSION

In this paper, we propose a new DFD algorithm using a learned scene and blur model. Scene and blur are learned jointly using a limited set of calibration images. Note that the proposed algorithm can be used with any conventional or unconventional camera. We use this algorithm within a new active DFD system made-up of a projector projecting a dense sharp texture onto the scene and of a camera equipped with an unconventional lens having chromatic aberration. A prototype of the proposed active DFD system has been realized in the context of surface inspection and we have shown by evaluation experimental data that a sub-millimeter precision was attainable in this depth range. Besides, promising results have been obtained for the depth estimation of 3D-printed plastic objects. There are several perspectives for this work. One is the improvement of the experimental settings. Indeed, several parameters such as calibration step size, working range, optics focal length and chromatic aberrations could be optimized to improve the overall performance of the 3D sensor using a performance model for depth estimation inspired from the co-design approach presented by Trouvé et al. [START_REF] Trouve | Design of a chromatic 3d camera with an end-to-end performance model approach[END_REF].
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Fig. 1 .

 1 Fig. 1. Illustration of the relation between object localization and defocus blur size in geometrical optics. In green, the object is in the focus plane, in red it is defocused.

Fig. 3 .

 3 Fig. 3. Principle of the proposed algorithm. Offline preprocessing : learning the image model (comprised of the projected pattern and the quantity of blur) by computing the empirical covariance R Y of n patches at each depth d. Online processing step : estimating the depth and noise variance of each patch of an image with a maximum likelihood estimator.

Fig. 4 .

 4 Fig. 4. Learned covariance matrices. For 100, 1k, 3k and 10k patches

Fig. 5 .

 5 Fig. 5. View of a patch of the binary random 50/50 pattern at different scale (s) : (a) s = 1, (b) s = 2, (c) s = 4, (d) s = 8.

Fig. 6 .

 6 Fig. 6. Performance of the proposed algorithm on simulated blurred patterns with respect to the scale of the pattern and the size of the blur. RMSE is displayed with the variation of the defocus blur and variation of the scale of the projected pattern.

Fig. 7 .

 7 Fig. 7. Experimental measurement of the blur size for the 3 RGB channels of the chromatic camera. PSFs are estimated with a knife-edge method based on a Gaussian fit of the PSF.

Fig. 8 .

 8 Fig. 8. Experimental setup used for covariance learning and quantitative evaluation. The binary pattern is projected from the top right projector onto the screen on the left and then imaged by a chromatic lens on the right (behind the red ring). The screen-lens distance varies thanks to a motion controller.

Fig. 9 .

 9 Fig. 9. Depth estimation performances of the AC-DFD method presented in this paper based on the SC-DFD algorithm in a 200 × 200 pixel window in the center of the image. Global RMSE = 2.8 mm.

Fig. 10 .

 10 Fig. 10. Depth estimation performances of the AC-DFD method presented in this paper based on the LC-DFD algorithm in a 200 × 200 pixel window in the center of the image. Global RMSE = 1.2 mm.

Fig. 12 .

 12 Fig. 12. 3D-printed staircase used as a benchmark to evaluate our AC-DFD method based on the LC-DFD algorithm. The red rectangle zone is the part of the piece captured by the camera and estimated.

Fig. 13 .

 13 Fig. 13. Depth map estimation of the 3D-printed staircase display in Figure 12 in the red rectangle zone.

Fig. 14 .

 14 Fig. 14. Real relative distance measured with a laser telemeter between the camera and the 3D-printed staircase display in Figure 12 in the red rectangle zone.

Fig. 15 .

 15 Fig. 15. Side and front views of the 3D-printed cone used as a benchmark to evaluate our AC-DFD method based on the LC-DFD algorithm.

Fig. 16 .

 16 Fig. 16. Depth map estimation of the 3D-printed cone display in Figure 15.

Fig. 17 .

 17 Fig. 17. Real relative distance between the camera and the 3D-printed cone display in Figure 15 based on the 3D model measurements
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