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This papers points out some weaknesses of the solution-adapted process presented in.?
They have been solved by improving the Newton’s method of the flow solver enabling
convergence to machine zero at each run of the solution adaptive process. This work also
presents the benefits of using metric-based anisotropic mesh adaptation for the numerical
simulation of high lift configurations. For instance, we reconsider the CRM-HL geometry
of the 3¢ ATAA CFD High Lift Prediction Workshop and we obtain a prediction of the
lift value similar to that of the x-fine mesh generated with the best practices (206 million
vertices) with an adapted mesh composed only of 2.7 million vertices. This represents a
reduction in the mesh size by a factor of 75.

I. Introduction

The generation of meshes for accurate and reliable numerical simulations of Reynolds-Averaged Navier-
Stokes (RANS) applications is a time consuming and tedious task. Traditional processes rely on the experi-
ence and intuition of a skilled engineer to predict the flow and to manually adapt the mesh prescription to
the flow. Following meshing guidelines slows down the mesh generation process and leads to a prohibitive
cost in CPU time in the numerical simulation pipeline. This lack of automation is an impediment for many
applications such as shape optimization. Moreover, with complex geometries and flow patterns, it is almost
impossible for a user to accurately analyze the various physical features involved and prescribe an appro-
priate mesh. A-priori refinements of large zones are used instead, leading to the unnecessary consumption
of large amounts of resources. This is why mesh adaptation strategies that automatically analyze the flow
solutions and adapt the mesh to it can bring a significant improvement in terms of CPU times, memory
consumption and accuracy through error control. This will be automatic, independent of the initial mesh
and, importantly, it will remove human intervention from the numerical simulation pipeline.® 19

Metric-based anisotropic mesh adaptation has been very successful in predicting engineering output
functional in aeronautics® and turbomachinery.* However, we still pursue the quest of getting accurate
numerical prediction with the less computational resources as possible. To this end, each stage of the
mesh adaptation loop is a source of improvements. For instance, the goal-oriented error estimate has been
improved in a series of papers. In,% a first version of the goal-oriented error estimate has been proposed
which was efficient for laminar flows but not RANS. A first improved version has been proposed in'® and
the current version, which is efficient for RANS, has been thoroughly detailed in.? In this work, we discuss
improvements made on the flow solver side in the context of high-lift prediction applications.

Indeed, we applied our solution-adaptive process to the high-lift version of the NASA CRM (CRM-
HL) geometry chosen for the 4'® ATAA CFD High Lift Prediction Workshop (HLPW4). The considered
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geometry was the one with inboard/outboard trailing-edge (TE) flap deflection 40°/37° with a nominal
30°/30° inboard/outboard leading-edge (LE) slat setting, nacelle, pylon, nacelle chine, LE brackets, TE
support fairings, but no landing gear, horizontal or vertical tail. This geometry is a lot more complex than
the one of the 3" ATAA CFD High Lift Prediction Workshop (HLPW3), as shown in Figure 1. The resulting
physics is richer and consequently make this case a lot more challenging. Despite the fact that we obtained
very accurate results on the HLPW3 geometry,® we observed Lyapunov stability issues with the flow solver.
We were also able to reproduce this issue on the 2-D section of the CRM-HL configuration with slat, main,
and flap elements on very fine adapted meshes.

This paper discusses progress made on the flow solver to solve that issue. To this end, the Newton’s
method employed has been improved. The benefits of this enhancement are evaluated on the 2D CRM-HL
airfoil and on the CRM-HL geometry of the 3" ATAA CFD High Lift Prediction Workshop.

II. Anisotropic mesh adaptation algorithm with mesh-convergence analysis

A. Classical algorithm: C-continuation method

Mesh adaptation is a non-linear problem where the couple formed by the mesh and the solution needs to be
converged at the same time. The goal is to generate an optimal adapted mesh for the computed solution for
a prescribed mesh size (i.e., a prescribed number of vertices or mesh complexity). Therefore, an iterative
process is required which is achieved by means of a mesh adaptation loop starting from an initial mesh H,
an initial solution Wy, an initial adjoint state W if goal-oriented mesh adaptation is considered, and a given
mesh complexity C (the continuous counterpart of the mesh size).

At each step of the mesh adaptation loop, a metric tensor M, is computed from the triple (H;, W;, W)
and the given mesh complexity C, using the selected error estimate. The metric tensor field M; contains

Figure 1. NASA High-Lift Common Research Model (CRM-HL) geometries. Left, geometry of the 3’4 ATAA
CFD High Lift Prediction Workshop (HLPW3). Right, geometry of the 4 ATAA CFD High Lift Prediction
Workshop (HLPW4).
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information on sizes and directions of the elements of the adapted mesh we seek. This information is then
used by the remesher to generate a new adapted mesh #;,1.!® Then W; is interpolated on H;,; to obtain
(W?);,1 which is then used as a restart solution for the next flow solution of the mesh adaptation loop.! In
the case of goal-oriented mesh adaptation, the adjoint state W can be also interpolated on the new mesh
Hiy+1 to obtain (W*’O)i+1 which is used as a restart for the next adjoint solution. Restarts are important
to not waste time in the adaptive process and reuse at maximum the previous work done. Finally, a new
solution W; and a new adjoint W} fields are computed. Solution and adjoint fields are converged to machine
zero at each iteration. This iterative process is depicted by the step 1 while loop in Algorithm 1.

The convergence criteria of step 1(f) is up to the expectations of the user, it specifies when the couple
mesh-solution is considered as converged for the current complexity in the process. In this work, for aero-
nautics applications, we consider that the couple mesh-solution is converged at the given complexity if the
lift coefficient, the pressure component of the drag and viscous component of the drag are not changing by
a given percentage e for three consecutive iterations. Usually, we choose € between 0.001 (i.e., 0.1%) and
0.01 (i.e., 1%). It is important to check the convergence of all the components of the drag otherwise we may
get early break because of compensation between the pressure and the viscous components on the total drag
value.

Algorithm 1 General mesh adaptation algorithm with mesh-convergence analysis

Initial mesh HY, solution WY, adjoint W;"", and complexity C°
//--- Outer loop to perform the convergence study
while €7 < C/™% do

//--- Inner loop to converge the mesh adaptation at fixed complexity

1. while i < ngq4qp do

(a
(b

Compute optimal metric for the considered error estimate and complexity = szl
Generate new adapted mesh = ’Hf

C

(
d

Interpolate primal and adjoint states on the new mesh = (W°)7 and (W*O)f

(3

Compute primal state = WZJ

e) Compute adjoint state = W,/

)

)

)

)

()

(f) if (convergence check) then
1= Nadap +1

else
i=1+1
fi
done
2 MG =M L W =W WO = (), s O =a- ¢ with a > 1
j=7+1

done

In the context of a mesh convergence analysis this adaptation loop (step 1) has to be repeated for several
increasing mesh complexities {Cj }i=1..jmaz With jmaz the number of considered complexities, i.e., the total
number of meshes for the mesh convergence analysis. An efficient strategy consists in converging the couple
mesh-solution for a given complexity and reuse the final mesh, solution and adjoint state to initialize the
next computations at an increased mesh complexity. Such a process enables a multiscale resolution of the
flow by solving large scale features on coarse adapted meshes (at the smallest complexities) and the fine scale
features of the flow on fine adapted meshes (at the largest complexities). This acts like a ”multigrid effect®”
and enables faster convergence on fine adapted meshes. This process is represented by the outer while loop in

2This is not a true multigrid because the coarse adapted meshes are not used in the flow solver to compute the solution.
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Algorithm 1. We propose the following strategy to increase the complexity for the mesh convergence study.
At each outer loop iteration, the complexity is increased by a factor . In this work, we have set o = 2 to
multiply the mesh size by a factor 2 when increasing the complexity. Moreover, we have found that it is
very advantageous to start at small complexities because a lot of work is done in converging the solution and
these iterations are inexpensive in comparison to the largest complexities. The major large scale features
of the flow such as shocks, shear layers and wakes are detected, advected and meshed on the coarse grids.
They are then refined alongside the boundary layer as the discretization increases. And, as the turbulent
boundary layer takes time to develop, it is very efficient to capture it on coarse adapted meshes.

We will call this method C-continuation because the parameters of the simulation stay the same, only
the mesh complexity is varying.

III. Mesh adaptation components

A. WoLF flow solver

WOLF is a vertex-centered (flow variables are stored at vertices of the mesh) mixed finite-volume - finite-
element Navier-Stokes solver on unstructured meshes composed of triangles in 2D and tetrahedra in 3D.

The convective terms are solved by the finite-volume method on the dual mesh composed of median
cells. It uses the HLLC approximate Riemann solver to compute the flux at the cell interface. Second order
space accuracy is achieved through a piecewise linear interpolation based on the Monotonic Upwind Scheme
for Conservation Law (MUSCL) procedure which uses a particular edge-based formulation with upwind
elements. A specific low dissipation scheme is adopted using combination of centered (edge gradient) and
upwind gradients (element gradient). A dedicated slope limiter is employed to damp or eliminate spurious
oscillations that may occur in the vicinity of discontinuities. This new limiter is fully detailed in.? The
viscous terms are solved by the P! Galerkin finite element method (FEM) which provides second order
accuracy.

The implicit temporal discretization considers the backward Euler time-integration scheme. At each time
step, the linear system of equations is approximately solved using a Symmetric Gauss-Seidel (SGS) implicit
solver and local time stepping to accelerate the convergence toward the steady state. A Newton method
based on the SGS relaxation is very attractive because it uses an edge-based data structure which can be
efficiently parallelized.

As for the turbulence model, the negative Spalart-Allmaras (SA-neg) is loosely-coupled to the mean-flow
equations, where the mean-flow and turbulence model equations are relaxed in an alternating sequence. The
flow solver WOLF is thoroughly detailed in® with all the associated bibliography.

Since,? the main improvements of the flow solver for high-lift prediction applications have been made on
the implicit time integration algorithm.

In order to design a true Newton’s method, we have followed some of the lines of.>"29 In such process,
the CFL evolves depending on the behavior of the Newton’s method, and an under-relaxation can applied
to the increment obtained after the implicit solve. We observe that zeroing some of the increments was an
impediment to the converge to machine zero. Moreover, a key improvement is to check whether the current
non-linear residual has been decreased by the implicit solve:

C]

n+1 I~ n+l _ n
HR(W )+ N (W wm)

] < IR .

instead of checking the reduction of the residual: ||[R(W"*1)|| < [[R(W™)|. This change enables the CFL
to growth faster resulting in faster convergence to machine zero or, convergence to machine zero when the
previous version stalls. This is illustrated on the 2D zero pressure gradient flat plate test case proposed on
the NASA Turbulence Resource website. Figure 2 (left) shows that the new Newton’s method reduces by a
factor 2 the number of iterations required to converge to machine zero. The benefits in the CFL evolution
is pointed out in Figure 2 (right).

As stated in the introduction, we observed Lyapunov stability issues with the previous implicit scheme on
the HLPW4 geometry. In other words, force and moment values were oscillating periodically around a fixed
value without converging toward that value, assuming that the RANS modeling provides a steady solution
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Figure 2. 2D Zero Pressure Gradient Flat Plate. Left, p-residual obtained with the previous and the new
Newton’s method. The number of iterations to converge to machine zero has been reduce by a factor 2. Right,
evolution of the CFL during the simulation. Checking for non-linear residual decrease enables the CFL to
grow rapidly while checking for residual decrease prevents the CFL from growing to high values.

in that case and we are not considering an unsteady case. We were able to reproduce this issue on the 2-D
CRM-HL airfoil with slat, main, and flap elements on extremely fine adapted meshes where the numerical
dissipation is very low. This stability issue in shown in Figure 3 (left).

This issue comes from the Symmetric Gauss-Seidel (SGS) implicit solver which is not strong enough to
achieve machine-zero convergence. We tried a GMRES implicit solver preconditioned with SGS relaxation
but it was not helping. We have been able to solve that issue by developing a non-linear SGS solver consisting
in coupling the SGS with fixed point iterations. Figure 3 (right) shows that there is no oscillation in the lift
history, even on extremely fine adapted meshes. Moreover, the non-linear SGS can also bring improvement
in efficiency as pointed out in Figure 4. It reduces the number of iterations required to converge to machine
zero, mainly because more SGS sweeps are performed at each flow solver iteration. This can also lead to a
reduction of the CPU time.

These improvements are another step forward in designing of a finite volume strong solver.

B. WoLF adjoint solver

As regards the adjoint state computation, needed for goal-oriented error estimates, the matrix of the linear
system is simply the implicit matrix (without the mass matrix) transposed and the right hand-side of the
system is the chosen functional (for instance, drag, lift, ...) exactly differentiated. In particular, for viscous
flows, 1 and the stress tensor 7 are exactly differentiated. In order to solve the adjoint system, we use a
restarted GMRES preconditioned with SGS relaxations. Note that, it is important to converge the adjoint
problem to machine zero to obtain an accurate adjoint state for mesh adaptation.

C. FEFLO.A local adaptive remesher

FEFLO.A is a generic purpose adaptive mesh generator dealing with 2D, 3D and surface mesh generation.
It belongs to the class of metric-based mesh generator which aims at generating a unit mesh with respect
to a prescribed metric field M. A mesh is said to be unit when composed of almost unit-length edges and
unit-volume element.

The adaptive remesher is based a combination of generalized standard operators (insertion, collapse, swap
of edges and faces). The generalized operators are based on recasting the standard operators in a cavity
framework.'* 16 Additional modifications on the cavity allow to either favor a modification, that would
have been rejected with the standard operator, or to improve the final quality by combining automatically
many standard operators at once. In addition, the CPU time is also improved and becomes independent of
the current modification. The unit speed is around 20,000 points inserted or removed per second on Intel
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Figure 3. CRM-HL airfoil. History of the lift during the solution adaptive process. Left, oscillations in the
lift prediction obtained with the SGS implicit solver. Right, no oscillation is observed in the lift prediction
with the non-linear SGS implicit solver.
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Figure 4. CRM-HL airfoil. p-residual history on an adapted mesh composed 20K vertices with respect to the
number of iterations (left) and the CPU time in second (right). In blue, behavior of the classical SGS implicit
solver. In green, behavior of the classical SGS implicit solver coupled with a line search. In red, behavior of
the non-linear SGS implicit solver. We note that the non-linear SGS solver reduces the number of iterations
to converge to machine zero almost by a factor 10 and the CPU time by a factor 3.5.

i7 architecture at 2.7 GHz. For robustness purpose, both the surface and the volume mesh are adapted
simultaneously, and each local modification is checked to verify that a valid mesh is obtained. For the
volume, the validity consists in checking that each newly created element has a strictly positive volume.
For the surface, the validity is checked by ensuring that the deviation of the geometric approximation with
respect to a reference surface mesh remains within a given tolerance.

The generation of a unit mesh is decomposed into two steps:

1. Generate a unit-mesh : the mesh modification operators are used in the goal to optimize the length of
the edges in M.

2. Optimization: the mesh modification operators are used to improve the quality Q4.

During surface remeshing, either a P3 background surface is used or a direct CAD queries is used. The CAD
kernel is based on EGADS and OpenCascade.!!
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D. RANS goal-oriented error estimate

A goal-oriented error estimate based on an a priori error analysis has initially been proposed for the inviscid
Euler equations in.!> The main idea was to translate the error on the considered output functional into a
weighted interpolation error estimate. Weights are given by derivatives of the adjoint state and interpolation
errors are on the Euler fluxes. As we are left with weighted interpolation errors, we can use the continuous
mesh framework!? 13 to obtain an analytical expression of the optimal metric field. An extension of this goal-
oriented error estimate has been proposed for the laminar Navier-Stokes equations in.® The main advantage
of these error estimates in comparison to other goal-oriented error estimates is that the anisotropy of the
mesh appears naturally.

From the analysis of the behavior several error estimates for the Reynolds Averaged Navier-Stokes equa-
tions,'® we came up with the following new goal-oriented error estimate for RANS using integration by part
and linearization:?

[J(W) = J(Wp)| < /Q W —IL,W|dQ (1)

8.7 arEN\" . oFy \" .
_W+Z_:(aw) Va W +;<av1jw) W ias

where J is the considered output functional, W is the conservative variables vector, W* the associated adjoint
state, F¥ the convective fluxes, 7" the viscous fluxes, V., W* and W;m7 the gradient and the hessian of the
adjoint state. The error estimate is a weighted sum of L! interpolation error on the conservative variables
where the weights depend on the gradient and the hessian of the adjoint state and on the convective and
viscous fluxes. Therefore, we can directly apply the continuous mesh framework to obtain an analytical
expression of the optimal metric field.3

IV. High Lift Common Research Airfoil

We consider a two-dimensional (2-D) multi-element airfoil configuration which is a 2-D section of the
wing of the CRM-HL geometry with slat, main, and flap elements. We will call it CRM-HL airfoil. It
corresponds to case 3 of the the 4" ATAA CFD High Lift Prediction Workshop. The flow conditions are:

Mach number | Angle-of-attack | Reynolds number based on L,.; | Temperature (K)
0.2 16 5.e6 272.1

The case is considered in SI units with a reference length of 1 m.

Several solution-adaptive strategies were compared in,' most of them considering a finite element flow
solver. The only finite volume flow solver was WOLF. All methodologies were converging toward samilar
force and moment values. However, a slight under-prediction of the lift (~ 3.795 vs ~ 3.802, i.e. 0.7 lift
counts) and over-prediction of the drag (= 0.0609 vs ~ 0.0606, i.e. 3 drag counts) was observed for the finite
volume flow solver. We demonstrate in this section that a strong finite volume solver would not produce
that small discrepancy.

For the mesh adaptation, the RANS goal-oriented error estimate is considered with the lift as output
functional. For each complexity, we perform a maximum of 1444y = 15 mesh adaptation iterations and
we choose € = 0.003 as threshold to exit the mesh adaptation loop at each complexity. We consider nine
complexities for the convergence study:

{4000, 8000, 16000, 32000, 64000, 128000, 256 000, 512000, 1024000} .

We start the convergence study with an initial coarse mesh composed of 2651 vertices and 4 616 triangles,
see Figure 5. This is a simple inviscid mesh without any boundary layer or any specific refinement for viscous
flows, thus very easy and quick to generate.

We analyse the obtained result on a medium size adapted mesh composed of 74 442 vertices and 144 321
triangles (obtained for a complexity of 64000) and a fine size adapted mesh composed of 587826 vertices
and 1163564 triangles (obtained for a complexity of 512000). The medium and fine adapted meshes are
shown in Figures 7 and 8. The velocity field on the fine adapted mesh is depicted in Figure 6. We observe
the adaptation of the mesh is resolving important flow features, such as the attached and off-body shear
layers, suction peaks on the upper surfaces, gaps between the slat/wing and wing/flap, and the stagnation
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Figure 5. CRM-HL airfoil. Initial mesh composed of 2651 vertices and 4616 triangles..

Medium adapted mesh
Anisotropic ratio || CRM-HL Airfoil
1 < ratio < 2 47001 | 3257 %
2 < ratio < 3 6768 4.69 %
3 < ratio < 4 5239 | 3.63 %
4 < ratio < 5 4176 | 2.89 %
5 < ratio < 10 14155 9.81 %
10 < ratio < 50 40438 | 28.02 %
50 < ratio < 100 12676 8.78 %
10% < ratio < 103 || 13859 9.60 %
103 < ratio < 10* 9| 0.01%
Mean ratio H 34.5 ‘

Fine adapted mesh

Anisotropic ratio || CRM-HL Airfoil

1 < ratio < 2 373484 | 32.10 %
2 < ratio < 3 44709 | 3.84 %
3 < ratio < 4 32541 | 2.80 %
4 < ratio< 5 27973 | 240 %
5 < ratio < 10 104440 | 8.98 %
10 < ratio < 50 317726 | 27.31 %
50 < ratio < 100 || 117192 | 10.07 %
102 < ratio < 103 || 145290 | 12.49 %
10% < ratio < 10* 209 | 0.02 %
Mean ratio H 42.7 ‘

Table 1. CRM-HL airfoil. Anisotropic ratio histograms for the medium adapted mesh composed of 74442
vertices and 144 321 triangles (left) and the fine adapted mesh composed of 587826 vertices and 1163 564 triangles
(right). For each interval, the number of triangles is given with the corresponding percentage.

Method CL CD CDv CM

GGNS-EPIC-L4 3.80170 | 0.060654 | 0.009391 | -0.38290
GGNS-EPIC-Lift 3.80195 | 0.060673 | 0.009375 | -0.38296
SANS-EPIC-MOES 3.80284 | 0.060718 | 0.009376 | -0.38314
SFE-REFINE-MS 3.80038 | 0.060841 | 0.009370 | -0.38280
Wolf-Fefloa-L4 SGS 2020 3.79323 | 0.060975 | 0.009366 | -0.38142
Wolf-Fefloa-Lift SGS 2020 3.79601 | 0.060825 | 0.009343 | -0.38195
Wolf-Fefloa-L4 NL-SGS 2021 | 3.80160 | 0.060601 | 0.009395 | -0.38285
Wolf-Fefloa-Lift NL-SGS 2021 | 3.80232 | 0.060565 | 0.009385 | -0.38298

Table 2. CRM-HL airfoil. Computed force and moment values on the finest adapted mesh for several solution
adaptive process. GGNS, SANS, SFE and Wolf 2020 values come from.®

regions on the slat wing and flap. It also resolves the wakes where they interact with downstream geometry,
but forgo refinement far downstream of the airfoil contrary to feature-based mesh adaptation. We note that
the isolines have a L-shape at the upper edge of the wake showing a discontinuity of the gradient in that
region. The active role played by the adjoint and the goal-oriented error estimate induces also an adaptation
of the stagnation streamlines for each of the airfoil elements. However, in our case, this adaptation is less
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important than the refinements obtained with dual error estimates.”

Table 1 provides anisotropic ratio mesh characteristics for both adapted meshes. Similarly to invis-
cid flows, we note that anisotropy increases with the mesh complexity. This is pointed out by the mean
anisotropic ratio that increases from 34.5 to 42.7 and also the percentage of element with an anisotropic
ratio between 10 and 1000 which increases from 46.4% to 49.9%.

Now, we compare the results obtained with WOLF in'? and the new results with the improved Newton’s
method. First, Figure 9 emphasizes that convergence to machine zero is obtained at each run thanks to the
improved Newton’s method. Second, it also solves the Lyapunov stability issue. Indeed, results obtained
with the previous Newton’s method have some small oscillations of the force and moment values during the
mesh convergence, as can be observed in Figures 10, 11, 12, and 13. On the contrary, these oscillations
disappear with the new Newton’s method, see Figure 3 (right), and a smooth convergence of the force and
moment values is obtained, see Figures 10, 11, 12, and 13. This is emphasized in Table 2 where the slight
discrepancy in the aerodynamic coefficients prediction has disappeared between the Finite Volume flow solver
and the Finite Element solvers. For instance, the delta in lift value at convergence is now less than 0.2 lift
count with respect to the finite element flow solvers.

In order to complete the analysis on this example, we want to point out an interesting feature of the
solution-adaptive process. The yT prescribed by the mesh adaptation process is consistent whatever the
mesh size. Indeed, in Figure 14, we plot the normal size prescription at wall the by mesh adaptation process
for the medium (left) and the fine (right) adapted meshes. We note that a smaller normal mesh size is
required at higher complexity which was expected. But more surprisingly, the obtained y™ at wall is the
same for both meshes as shown in Figure 15. This is logical because y depends both on the mesh size but
also on the skin friction, which is an output of the calculation. In conclusion, in a mesh adaptation process,
the yT prescription is constant while the spacing normal to the wall varies which is very different from best
practice process where from the simulation given Reynolds number a global normal sizing is deduced by
fixing a targeted y*.

It is thus interesting to visualize how is the adapted mesh in that region. Figure 16 (left) shows a close-up
view of the adapted mesh on the upper part of the main wing where we clearly see refinements on the slat
off-body shear layer which is transported above the main wing, in the boundary layer and at the upper edge
of the boundary layer. When we zoom in the boundary layer, Figure 16 (right), we note that the evolution
of the sizing in the normal direction is very different from best practice process. Near the wall the normal
sizing is somehow larger because we are in the linear sublayer, then we have a lot of refinement in the buffer
layer, and then the normal size is growing in the log-law region.

Figure 6. CRM-HL airfoil. Velocity solution obtained on the fine adapted mesh composed of 587826 vertices
and 1163564 triangles.
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Figure 14. CRM-HL airfoil. Normal size prescription at wall by the mesh adaptation process.
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Figure 15. CRM-HL airfoil. y= prescription at wall by the mesh adaptation process.

Figure 16. CRM-HL airfoil. Fine adapted mesh composed of 587826 vertices and 1163564 triangles. View of
the mesh on the upper part main wing and a zoom in the boundary layer region.
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V. High Lift Common Research Model of the 3" ATAA CFD High Lift
Prediction Workshop

We consider the high-lift version of the NASA CRM (CRM-HL) geometry used for the 3'4 ATAA CFD
High Lift Prediction Workshop?! (HLPW3), see Figure 1 (left). We select the geometry with the full chord
flap gap which corresponds to the case 1b of the workshop with the following flow conditions:

Mach number | Angle-of-Attack | Reynolds number | Temperature (K)
0.2 16 3.26e6 288.15

The case is considered in SI units. The geometry has been transformed in meters, so in that case the reference
length is 7.00532 m and the reference surface is 191.84477 m?2. This simulation was already analyzed in?
and,? thus the interest in showing the obtained enhancement thanks to the flow solver improvements.

For the mesh adaptation, the RANS goal-oriented error estimate is considered with the lift as output
functional. For each complexity, we perform a maximum of ng4e, = 15 mesh adaptation iterations and
we choose € = 0.003 as threshold to exit the mesh adaptation loop at each complexity. We consider nine
complexities for the convergence study:

{320000, 640000, 1280000, 2560000, 5120000, 10240000} .

For the given complexities, we end-up with final adapted meshes of size between 0.65M and 20M vertices.
The explanation of the factor two between the mesh complexity and the number of vertices is given in.'”

We start the convergence study with an initial very coarse mesh only composed of 51 314 vertices, 265 482
tetrahedra and 26 692 triangles on the surface, see Figure 17. This is a simple inviscid mesh without any
boundary layer or any specific refinement for viscous flows, thus very easy and quick to generate. We choose to
start from this coarse and clearly unresolved mesh to illustrate the non-dependency of the solution-adaptive
process to the initial data.

We compare the results obtained with the solution-adaptive process to all the results obtained during
the workshop on the coarse (8M vertices), the medium (26M vertices), the fine (70M vertices) and the x-fine
(206M vertices) meshes. In Figures 21 and 22 we compare the lift and drag prediction results obtained with
the solution-adaptive process (blue stars) with respect to all the HLPW3 results (red squares).

For the lift prediction, see Figure 21, we observe that a result similar to the fine grid is obtained with
a 1.3M vertices adapted mesh, and the 2.73M and 5.40M vertices adapted meshes provides results similar
to the x-fine mesh that have been run by only five participants. We are predicting a lift value of 2.382
which is above the one of the workshop on the x-fine mesh, i.e. 2.365. Seeing that workshop lift values
tend to increase with the mesh size, it may state that even with the x-fine mesh the solution is not yet
mesh-converged.

The drag prediction requires larger adapted meshes, 5.41M to 10.5M vertices adapted meshes are needed
to get a drag value corresponding to the one obtained on the x-fine grid.

In conclusion, we achieve the same accuracy as meshes done with the best practice meshing guidelines
but with 75 times less vertices for the lift prediction and 20 to 40 times less vertices for the drag prediction.

The convergence of the lift and the drag value throughout the whole mesh-convergence analysis is shown
in Figure 18. It shows the evolution of the lift and the drag values for each computation in red (i.e., each
adaptation at each complexity) and the final retained values obtained for each complexity in blue. As in 2D,
we note that a lot is done on coarse adapted meshes (which is cheap) while a minimum number of iterations is
done on the finer adapted meshes. Converging on coarse meshes is advantageous and enable early capturing
of the solution. Moreover, these plots point out that we are able to achieve mesh-convergence for this 3D
case.

In order to emphasize that we achieve mesh-convergence, we plot our lift convergence results with respect
to all the workshop results in Figure 19. Workshop entries are plotted with green lines, feature-based mesh
adaptation results with red lines, and goal-oriented mesh adaptation results with blue lines. Label Wolf19
corresponds to results in,? label Wolf20 corresponds to results in,® and label Wolf21 corresponds to the
current results. We clearly see the improvement in the prediction thanks to the improvements in the finite
volume flow solver, and the higher lift prediction obtained by the solution adaptive process.
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Finally, in Figure 20, we show views of the adapted mesh composed of 10.5M vertices and its associated
local Mach number field in the slat and the flap regions. It points out the highly resolved adapted mesh
obtained by the solution-adaptive process. Similarly to the 2D case, the adaptation of the mesh is resolving
important flow features, such as the attached and off-body shear layers, suction peaks on the upper surfaces,
gaps between the slat/wing and wing/flap, and the stagnation regions on the slat wing and flap. It also
resolves the wakes where they interact with downstream geometry. Again, we clearly see that the isolines
are L-shape at the upper edge of the wake showing a discontinuity of the gradient in that region.

VA
A

VS
V\%}L

Figure 17. HLPW3 CRM-HL 16° case. Initial coarse and clearly unresolved mesh only composed of 51314
vertices, 265482 tetrahedra and 26692 triangles on the surface.
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Figure 18. HLPW3 CRM-HL 16° case. Convergence history of the total lift value C; (left) and total drag
value (right) for the viscous goal-oriented error estimate throughout the whole mesh-convergence analysis. In
red, the convergence of the total lift at each complexity and, in blue, the global convergence of the total lift
by retaining the final lift value for each complexity.
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Figure 19. HLPW3 CRM-HL 16° case. Convergence of the total lift for the solution-adaptive process with the
feature-based error estimate (red lines) and the viscous goal-oriented error estimate (blue lines) with respect
to all workshop entries (green lines). Wolf19 corresponds to results in,2 Wolf20 corresponds to results in,® and
‘Wolf21 corresponds to the current results.
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Figure 20. HLPW3 CRM-HL 16° case. Adapted mesh composed of 10.5M vertices and associated solution
field (local Mach number) for the cut plane y = 15.5 in the slat region (top) and the flap region (bottom).
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VI. Conclusion

This paper has presented some improvements of the solution-adaptive platform based on the finite volume
flow solver WOLF and the adaptive remesher Feflo.a. These enhancements have been made in the Newton’s
method of the flow solver to achieve better convergence on highly anisotropic adapted meshes at each
simulation. Mesh-converged and accurate results have been obtained on the 2-D CRM-HL airfoil, and on
the CRM-HL geometry of the 3'4 ATAA CFD High Lift Prediction Workshop. We have demonstrated on
the CRM-HL case that very accurate solutions can be obtained with anisotropic mesh adaptation on pretty
coarse meshes made only of tetrahedra. In conclusion, each part of the mesh adaptation platform is a source
of improvements

This new strategy has been applied to the High-Lift Common Research Model of the 4** ATAA CFD
High Lift Prediction Workshop, see Figure 23. But, it requires larger size adapted meshes to obtain accurate
solutions mainly because of the many bracket-induces separation, see Figure 24. Moreover, this more complex
case makes the adjoint problem a lot more difficult to solve. This will be addressed in a future publication.
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Figure 23. HLPW4 CRM-HL 7° case. Adapted mesh composed of 20M vertices and associated solution field
(local Mach number) for the cut plane z = 50.
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Figure 24. HLPW4 CRM-HL 7° case. Surface Cf contours obtained for an adapted mesh composed of 5M
vertices (left) and 35M vertices (right).
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