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Abstract: Marine hydrological elements are of vital importance in marine surveys. The evolution of
these elements can have a profound effect on the relationship between human activities and marine
hydrology. Therefore, the detection and explanation of the evolution laws of marine hydrological
elements are urgently needed. In this paper, a novel method, named Evolution Trend Recognition
(ETR), is proposed to recognize the trend of ocean fronts, being the most important information
in the ocean dynamic process. Therefore, in this paper, we focus on the task of ocean-front trend
classification. A novel classification algorithm is first proposed for recognizing the ocean-front trend,
in terms of the ocean-front scale and strength. Then, the GoogLeNet Inception network is trained to
classify the ocean-front trend, i.e., enhancing or attenuating. The ocean-front trend is classified using
the deep neural network, as well as a physics-informed classification algorithm. The two classification
results are combined to make the final decision on the trend classification. Furthermore, two novel
databases were created for this research, and their generation method is described, to foster research
in this direction. These two databases are called the Ocean-Front Tracking Dataset (OFTraD) and the
Ocean-Front Trend Dataset (OFTreD). Moreover, experiment results show that our proposed method
on OFTreD achieves a higher classification accuracy, which is 97.5%, than state-of-the-art networks.
This demonstrates that the proposed ETR algorithm is highly promising for trend classification.

Keywords: remote sensing; video signal process; sea surface

1. Introduction

The ocean dynamic process contains essential factors that characterize and reflect
the ocean hydrological status and phenomena. Detection, localization, and classification
of their formation and interaction processes are essential in various ocean-related fields,
such as fisheries and global warming. Several ocean-related variables have been identified
for the ocean dynamic process, such as ocean currents, ocean tides, inner waves, ocean
fronts, mesoscale vortices [1], etc. The oceanfront is an important branch of the ocean
dynamic process [2–4]. Specifically, ocean fronts are located at the boundary between
water masses with different properties [5,6], such as density, temperature, salinity, etc.
Changes in the strength and scale of ocean fronts are some of the most vital subjects being
studied, because they play an important role in the coupling of winds and the ocean
processes [7,8]. For example, water masses in the ocean-front system have a great effect
on air-sea exchange [9–11], activate the biological activity of the region [12], and absorb
atmospheric carbon dioxide [13,14].
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For marine fishing and marine environmental protection, it is vitally important to
characterize the trend of the ocean front [15–19]. In fact, identifying the trend of an
oceanfront is a difficult task, because simply working on short snippets cannot provide
sufficient information to recognize it. The key to achieving high trend-recognition accuracy
is to extract features from the consecutive frames, i.e., a video clip. The video sequence
should include the whole process of an ocean-front trend. Usually, the length of a sequence
is no more than 200 frames. In our dataset, we choose videos containing 5 to 200 frames. To a
certain extent, action recognition is similar to ocean-front trend recognition. Recognizing the
actions in a video, e.g., walking, jumping, etc., requires observing the entire motion process.
Similarly, we have to consider a certain number of consecutive frames for recognizing the
trend of an oceanfront, which is in either an enhancement or attenuation state.

In our previous work [20–25], both traditional machine-learning methods and deep
neural networks were introduced to detect, recognize and predict ocean fronts and eddies.
However, to the best of our knowledge, there is little previous work trying to recognize
ocean-front trends based on oceanfront video sequences, but there are plenty of works
trying to recognize or classify actions based on surveillance video sequences. Action clas-
sification [26–28] is an active field of research attracting increasing attention, due to its
numerous potential applications in surveillance, video analysis, etc. The long-standing
research on this classification task can be roughly divided into two categories. The first
category relies on statistical feature extraction, followed by classifiers [29,30], while the
second category is based on convolutional neural networks (CNNs). Examples of methods
based on statistical features include [31–33]. However, these methods have limited gener-
alization ability compared with CNNs. CNNs, which replace handcrafted features with
“learned-from-data” features, have been successfully used for image classification [34,35].
Specifically, deep-learning-based methods [36–40] have achieved remarkable progress in
video analysis.

According to our previous work, deep learning models are promising methods for
ocean-front recognition and prediction. Thus, in this paper, we propose to use deep
learning methods to classify ocean-front evolution trends. However, if deep learning
models, such as CNNs, are directly applied to a video sequence, Karpathy et al. [41] found
that the recognition performance achieved was inferior, compared with the state-of-the-art
statistical features. Besides, inspired by the success of the region-proposal methods for
object detection [42,43], some methods have attempted to extract temporal information
from short snippets [28,44,45], by sparsely sampling from a long video sequence.

To improve the classification accuracy, a two-stream deep model [46], consisting of
a spatial and a temporal CNN, was proposed, which achieved comparable performance
with the most representative statistical features. One major limitation of the two-stream
CNNs is that the method pays too much attention to the features extracted from a single
RGB frame and the short-term motions, rather than the entire temporal information. Those
frames, which are not within the selected short snippets of the video, may contain important
temporal information, which can help improve the classification accuracy. Therefore, the
deep model dismisses some useful temporal information. On the contrary, statistical
features have an advantage in extracting the temporal information by using a specifically
designed feature extraction algorithm based on prior knowledge. Therefore, in this paper,
we propose a new fusion method for recognizing the ocean-front trend. We propose new
statistical algorithms, which can extract temporal information from a video sequence,
and we also apply a deep learning model to learn the deep feature from the video sequence,
we then use weighted fusion to incorporate temporal information to improve classification
accuracy. In our experiments, we prove that the proposed method can achieve high
classification accuracy, better than using state-of-the-art deep-learning-based methods.

The novelty of this paper is twofold. (1) We introduce an Evolution Trend Recognition
(ETR) method, which is based on classifiers with prior physical knowledge. The method not
only gets rid of the complex operations required for selecting the frames with ocean fronts
from a video sequence but can also aggregate the information extracted from different
classification methods. (2) We have created a new database for ocean-front trend recognition,
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to encourage other researchers to evaluate their methods for ocean-front trend classification
and facilitate them in using data-driven methods, especially deep-learning-based methods,
to deal with this challenging task.

More specifically, our ETR method uses an effective mechanism to combine results
from classification algorithms based on strength and scale, and employs deep-learning-
based classification methods, based on the GoogLeNet Inception network [47], to recognize
the ocean-front trend. Our experiment results show that the proposed ETR method achieves
superior recognition performance over state-of-the-art methods on the Ocean-front Trend
Dataset (OFTreD).

The remainder of this paper is organized as follows. The ETR framework and the
process of building the OFTreD and Ocean-front Tracking Dataset (OFTraD), used in our
experiments, are presented in detail in Section 2. Experimental results are presented in
Section 3 and discussed in Section 4, and finally, Section 5 concludes this paper.

2. Materials and Methods
2.1. The Proposed Method

Extracting representative features from a video sequence is of prime importance for
the task of ocean-front trend recognition. In this section, we will describe a novel idea
for extracting discriminative features for recognizing the ocean-front trend, based on the
analysis of a whole video. The key idea of the proposed method is shown in Figure 1,
the proposed trend recognition method relies on the combination of the statistical algo-
rithms and deep learning models. Softmax classifier is then applied for trend recognition
of enhancement and attenuation. The proposed method avoids the complex operations
required for selecting recommended frames, because the proposed method can extract
representative temporal and deep features from the video sequence, and hence, it is efficient
and effective.

Figure 1. The proposed trend recognition method is composed of the strength-based algorithm,
the scale-based algorithm, and the GoogLeNet network. Each of these three parts will be processed
by the softmax classifier and give 2 scores. The scores then are used to recognize the enhancement
and attenuation oceanfront.

In this section, we first described the network structure of the proposed recognition
method in Section 2.1.1. Then, we described the ocean-front classification algorithm based
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on strength and scale feature in Sections 2.1.2 and 2.1.3, respectively. In Section 2.1.4, we
explained the feature matrices generation method. Then, we described the ocean-front
trend classification algorithm based on the GoogLeNet Inception network in Section 2.1.5.
Finally, we described the ocean-front tracking algorithm in Section 2.1.6.

2.1.1. Network Structure

The proposed recognition framework, which is composed of three parallel networks,
is depicted in Figure 2. The first and second networks are designed for trend classification,
based on prior physical knowledge, which will be explained in Sections 2.1.2 and 2.1.3.
Their inputs are the video sequences from OFTreD. The OFTreD database is proposed for
the ocean-front trend recognition task. The third network is also designed for ocean-front
trend classification, based on GoogLeNet Inception, whose input is the optical flow images
extracted from the video sequences in OFTreD. The first, second and third networks are
integrated to classify the ocean-front trends. In this paper, two kinds of ocean-front trends
are defined, namely, the enhancement trend and attenuation trend. In Figure 2, Score A
and Score B are used to classify the ocean-front trend. The value of Score A denoted as
sA, represents the probability that an oceanfront enhancement trend, and that of Score
B, denoted as sB, represents the probability that an oceanfront has an attenuation trend.
The scores sA and sB are computed as follows:

sA = w1 × s1 + w2 × s3 + w3 × s5 (1)

sB = w1 × s2 + w2 × s4 + w3 × s6 (2)

where wi, i = 1, 2, 3, are the weights, whose values will be discussed in Section 4. sj,
j = 1, ..., 6, represents the value of Score j in Figure 2. The larger score of sA and sB will be
used to determine the ocean-front trend category.

Figure 2. The overall network architecture. The input video sequences are fed to three parallel
networks. The input frames of the Ocean-Front Trend Database (OFTreD) are fed to the strength and
scale-based classification algorithms directly without pre-processing. However, the input frames
of the OFTreD dataset are pre-processed to form warped optical flow images, before feeding to a
GoogLeNet Inception network. Besides, for the three parallel networks, Scores 1 to 6 are produced.
Scores 1, 3, and 5 are combined to obtain the Score A, and scores 2, 4, and 6 are combined to obtain the
Score B according to Equations (1) and (2). These two scores are used to determine if the oceanfront is
under enhancement or attenuation, Score A is for enhancement and Score B for attenuation.

Each of the three proposed networks ends with a softmax layer, which outputs two
scores to represent the probabilities of the input video sequence belonging to the enhance-
ment or the attenuation trend. In total, six classification scores are generated. The six scores,
i.e., Score 1 to Score 6, are used to classify whether the oceanfront is enhancing or atten-
uating. In our experiments, Scores 1, 3, and 5 are used to represent the probabilities of
belonging to the enhancement trend, while the Scores 2, 4, and 6 are used to represent the
attenuation trend. An ocean front in a video sequence belongs to either the “enhancement”
class or the “attenuation” class. Finally, we integrate these six weighted scores to make the
final decision on the trend class.

As shown in Figure 3, we also propose an oceanfront tracking algorithm to check
whether the current input video sequence contains an oceanfront and where the ocean-
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front trend is in the video sequence. For this task, we train a GoogLeNet network on the
OFTraD dataset.

Figure 3. The procedure of the proposed ocean-front tracking algorithm. The input RGB images
are fed to a GoogLeNet Inception network. Then, the softmax gives the probabilities of the input
image belonging to the foreground or the background. The foreground images are used to track the
ocean-front location in a video sequence.

The input of this network is the RGB images from OFTraD. The network is used to
determine whether the input belongs to the background or the foreground. Those images
that contain a tracking target, i.e., an oceanfront, belong to the foreground class, otherwise,
they belong to the background class. Based on the location information carried by the input
images, the output labeled images can be reconstructed into ocean-front video sequences,
and then the ocean-front trend in the video sequences can be tracked.

2.1.2. Ocean-Front Classification Algorithm Based on Strength

The ocean-front trend classification algorithms based on strength and scale are trained
on OFTreD. As shown in Figure 4, we calculate the mean intensity of the oceanfront to
represent the oceanfront strength information of a frame. For the scale, we count the number
of pixels of the oceanfront in each frame and use it to represent the scale information for
the frame.

Figure 4. The ocean-front classification algorithms are based on strength and scale. These algorithms
are very similar. First, the feature values are calculated from the video sequences (a). Then, these
values are used to fit a curve (b). After that, we can extract points from the curve to form a matrix.
Then, this matrix is processed and fed to softmax for classification. The scores hence can be acquired
and used to label the enhancement and attenuation classes (c).

To improve the classification accuracy, we focus on the classification of ocean-front
trends in a video sequence, rather than the snippets of a video. We analyze the overall ocean-
front trend in a video sequence, based on the ocean-front strength and scale. The ocean-front
strength can be represented by the numerical intensity of an oceanfront, while the ocean-
front scale can be represented by the area of the existing oceanfront. Since the scale and
strength of an oceanfront are highly correlated with the ocean-front trends, they can be
used to effectively infer the trend of an oceanfront in a video sequence. Based on this
prior knowledge, the scale and strength information of an ocean-front video sequence
is used as an important reference for formulating the corresponding feature matrices
B1 and B2 ∈ R(H−1)×W , where W is the number of representative points extracted from
a feature curve, and H represents the number of frames in the video. The details of
computing the strength and scale feature matrices for an ocean-front video are shown in
Algorithms 1 and 2, respectively. The method of generating a feature curve and extracting
representative points from the feature curve will be described later in Section 2.1.4.
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Algorithm 1 Classification Algorithm Based on Strength

1: Input: A video vi(x, y), i = 1, ..., H, where H is the number of frames, and (x, y) are the
pixel coordinates

2: for i = 1 to H do
Calculate the mean intensity of the ocean front in the frame i, denoted as ms(i),

which is computed as follows:

ms(i) =
1

nr × nc

nc

∑
x=1

nr

∑
y=1

vi(x, y), (3)

where nr and nc are the number of rows and columns, respectively, in a frame.
3: end for

Generate the mean intensity vector a1 = [ms(1)...ms(H)]T for the video.
Apply a curve fitting technique to a1 to form the feature curve V1, and sample the

curve V1 with (H − 1)×W points, where W is the number of representative points of
each frame. In our experiments, W is set at 10. The sampled points then formulate a
matrix B1 ∈ R(H−1)×W .

Then, use an average pooling filter to process the matrix B1 to generate the re-
sulting vector c1. The resulting elements are denoted as m f , and hence the vector
c1 = [m f (1)...m f (40)]T , whose dimension is set at 40× 1 in our implementation. c1 is
the feature vector with unified dimension for trend classification.

Use the trained softmax to classify the vector c1
4: Output Classification scores s1, s2

Algorithm 2 Classification Algorithm Based on Scale

1: Input: A video containing H frames
2: for i = 1 to H do

Count the number of ocean-front points in the frame i, denoted as ns(i), which are
detected using the oceanfront detection method [22].

3: end for
Count the number of ocean-front points for each of the H frames, to form the

vector a2 = [ns(1)...ns(H)]T for the video.
Apply a curve fitting technique to a2 to form the curve V2, and sample the curve

V2 with (H − 1)×W points, where W is the number of representative points of each
frame. In our experiments, W is set at 10. The sampled points then formulate a matrix
B2 ∈ R(H−1)×W .

Then, use an average pooling filter to process the matrix B2, get the result-
ing vector c2. The resulting elements are denoted as n f , and hence the vector
c2 = [n f (1)...n f (40)]T , whose dimension is set at 40× 1 in our implementation. c2
is the feature vector with unified dimension for trend classification.

Use the trained softmax to classify the vector c2
4: Output Classification scores s3, s4

2.1.3. Ocean-Front Classification Algorithm Based on Scale

With the proposed algorithms, we will illustrate how to extract the strength and scale
information about the oceanfront in a video sequence and the databases used for training
and testing. Algorithm 1 is designed for recognizing ocean-front trends based on the
strength of an oceanfront. To classify the trend, we need to compute the variations of the
ocean-front strength. Since the strength of an oceanfront varies from point to point, we
propose to use the mean intensity of an oceanfront in a frame to represent its strength.
Similarly, Algorithm 2 is designed to classify the ocean-front trend based on its scale.
The scale of an oceanfront is calculated based on the number of oceanfront points in a
frame. The greater the number of ocean-front points, the larger the ocean-front scale is.
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Here, the vectors a1 and a2 represent the strength and scale information, respectively,
and the matrices B1 and B2 represent the points extracted from the corresponding curves,
and the feature vectors c1 and c2 represent the filtered output from the corresponding
matrices B1 and B2. Thus, the feature vectors c1 and c2 represent the processed strength
and scale information, respectively. We use the feature vectors c1 and c2 to classify the
ocean-front trend. Then, these feature vectors are sent to softmax for classification and
generate the output si, i = 1, 2, 3, 4.

2.1.4. Feature Matrices Generation Method

In the ocean-front trend algorithms, the number of frames of different videos may be
different, so the dimensions of the strength vector a1 and the scale vector a2 of different
videos, as described in Algorithms 1 and 2, respectively, are different. To make the two
vectors always have the same length, Algorithms 1 and 2 apply curve fitting to the vectors
a1 and a2, then resamples the two curves with a fixed number of points. Specifically,
as shown in Figure 5, we use the cubic polynomial interpolation method to fit the curves.
With a fixed number of points on the curve, two matrices, B1 and B2 ∈ R(H−1)×W , are
generated. The matrices generation process is shown in Figure 6, starting from the point
representing the strength/scale of the first frame, we sample points on the curve at regular
intervals until the point that represents the last frame. We set W = 10 in our experiments,
because we need to extract more than 40 points from the curve. As analyzed in Section 4,
the best vector dimension is 40× 1, too small will not meet the requirement, too large is
unnecessary. After that, the matrices B1 and B2 are processed by three pooling filters to
obtain fixed-dimensional vectors c1 and c2.

Figure 5. The curve fitting technique. The strength and scale features extracted from each frame are
represented by a point in (a,b). Therefore, the number of the points is equal to the frame number.
Then, using the cubic polynomial interpolation method to fit the curves, we get feature curve (c,d).

Given matrices B1 and B2 ∈ R(H−1)×W , we vectorize the matrices B1 and B2 to acquire
the feature vectors b1 and b2. The elements of the matrices B1 and B2 are denoted as mp
and np, and hence the vector b1 = [mp(1)...mp((H− 1)×W)]T , b2 = [np(1)...np((H− 1)×
W)]T , whose dimension is [(H − 1)×W, 1]. As shown in Algorithm 3, according to the
dimension of the matrices B1 and B2, we use different pooling filters. If the dimension
of the feature vectors b1 and b2 is greater than 200 × 1, average pooling is performed
every 5 elements from the first and the last 50 elements in the feature vectors, that is
b1[1 : 50, 1], b1[(H − 1)×W − 49 : (H − 1)×W, 1], b2[1 : 50, 1], and b2[(H − 1)×W − 49 :
(H− 1)×W, 1], the filter size is [5, 1]. Then, We assign c1[1 : 10, 1], c1[31 : 40, 1], c2[1 : 10, 1],
and c2[31 : 40, 1] the value of the processed data. Then, the number of the remaining
elements in the feature vectors b1 and b2 is (H − 1)×W − 100. The pooling size is set at
((H − 1)×W − 100)/20× 1, the stride is set at ((H − 1)×W − 100)/20. Average pooling
is performed every ((H − 1)×W − 100)/20 elements from b1[51 : (H − 1)×W − 50, 1]
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and b2[51 : (H − 1)×W − 50, 1]. And then we assign c1[11 : 30, 1] and c2[11 : 30, 1] the
value of the processed data.

Figure 6. The construction of the matrices B. 10 points are sampled from every two adjacent frames,
there are totally (H − 1)×W points sampled from the curve. The sampled points are sorted into a
matrix B ∈ R(H−1)×W .

Algorithm 3 The matrix processing method

1: Input: Matrices B1 and B2
Given matrices B1 and B2 ∈ R(H−1)×W , we vectorize them to acquire its feature

vectors b1 and b2.
2: if the dimension of the feature vectors b1 and b2 > [200, 1] do

Average pooling is performed every 5 elements from the first 50 elements and the
last 50 elements of the matrices, the filter size is [5, 1], the stride is 5. The processed
data is assigned to c1 and c2. Average pooling is applied to the remaining elements
in the feature vectors b1 and b2, the filter size is set according to the number of the
remaining elements.

3: else if the dimension of the feature vectors b1 and b2 > [100, 1] do
Average pooling is performed every 2 elements from the first and the last 30 ele-

ments, the filter size is [2, 1], the stride is 2. The processed data is assigned to c1 and c2.
Average pooling is applied to the remaining elements in the feature vectors b1 and b2,
the filter size is set according to the number of the remaining elements.

4: else do
The first and the last 15 elements of the vectorized matrices B1 and B2 are assigned

to c1 and c2. Average pooling is applied to the remaining elements in the feature vectors
b1 and b2, the filter size is set according to the number of the remaining elements.

5: Output Feature vectors c1 and c2

Otherwise, if the the dimension of the feature vectors b1 and b2 > [100, 1], average
pooling is performed every 2 elements from the first and the last 30 elements in the
feature vectors, that is b1[1 : 30, 1], b1[(H − 1) ×W − 29 : (H − 1) ×W, 1], b2[1 : 30, 1],
and b2[(H − 1)×W − 29 : (H − 1)×W, 1], the filter size is [2, 1]. We assign c1[1 : 15, 1],
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c1[26 : 40, 1], c2[1 : 15, 1], and c2[26 : 40, 1] the value of the processed data. Then, the number
of the remaining elements in the feature vectors b1 and b2 is (H− 1)×W − 60. The pooling
size is set at ((H− 1)×W− 60)/10× 1, the stride is set at ((H− 1)×W− 60)/10. Average
pooling is performed every ((H− 1)×W− 60)/10 elements from b1[31 : (H− 1)×W− 30]
and b2[31 : (H − 1)×W − 30]. We assign c1[16 : 25, 1] and c2[16 : 25, 1] the value of the
processed data, assign c1[11 : 30, 1] and c2[11 : 30, 1] the value of the processed data.

If the dimension of the feature vectors b1 and b2 < [100, 1], we assign c1[1 : 15, 1],
c1[26 : 40, 1], c2[1 : 15, 1], and c2[26 : 40, 1] the value of the first and the last 15 ele-
ments in the feature vectors, that is b1[1 : 15, 1], b1[(H − 1)×W − 14 : (H − 1)×W, 1],
b2[1 : 15, 1], and b2[(H− 1)×W − 14 : (H− 1)×W, 1]. Then, the number of the remaining
elements in the feature vectors b1 and b2 is (H − 1)×W − 30. The pooling size is set at
((H − 1)×W − 30)/10× 1, the stride is set at ((H − 1)×W − 30)/10. Average pooling
is performed every ((H − 1)×W − 30)/10 elements of b1[16 : (H − 1)×W − 15, 1] and
b2[16 : (H − 1)×W − 15, 1]. Then we assign c1[16 : 25, 1] and c2[16 : 25, 1] the value of the
processed data. In this way, feature vectors c1 and c2 can be constructed.

2.1.5. Ocean-Front Trend Classification Algorithm Based on GoogLeNet

The structure of the GoogLeNet is shown in Figure 7, the Inception block helps to
handle the high-dimensional features and balance the width and depth of the network.
It also enables the network to perform spatial aggregation in low-dimensional features
without worrying about losing too much information. So, we apply this network to
recognize the ocean-front trend and track the ocean-front location.

Figure 7. The architecture of GoogLeNet Inception V2 network [48]. Its basic convolutional block is
named Inception. There are three kinds of Inception blocks in the network, Inception A, Inception B,
and Inception C, respectively.

Figure 8 shows the process of the ocean-front trend recognition, GoogLeNet Inception
network is employed to classify enhancement and attenuation of an oceanfront. The video
input is warped by using the optical flow method. The GoogLeNet Inception network
is trained and tested on the OFTreD dataset. The video sequence is first processed into
warped optical flow images. Then, these images are sent to the GoogLeNet Inception
network for classification. The softmax layer of the network generates the scores si, i = 5, 6,
which are used to label the video sequence as an enhancement or attenuation trend.
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Figure 8. The oceanfront classification network is based on the GoogLeNet Inception network,
including the following steps. First, the video sequence (a) is processed into warped optical flow
images (b). Then, these images are sent to the GoogLeNet Inception network (c) for classification.
The softmax layer (d) of the network produces the final scores, which are used to label the video
sequence as an enhancement or attenuation trend. The ocean-front tracking algorithm. Firstly,
the images are sent to the GoogLeNet Inception network to perform classification. The foreground
images are changed to white, and the background image blocks remain unchanged. Finally, the images
are used to reconstruct the video sequence.

2.1.6. Ocean-Front Tracking Algorithm Based on GoogLeNet

As shown in Figure 9, the ocean-front tracking algorithm is also based on the GoogLeNet
Inception network. The network is used to classify image blocks into two classes: the
oceanfront and the background. We first colored the oceanfront image blocks in white,
and then, we further use the location information and place them back to the same position
in the original frame. In this way, we can track the ocean-front location in a video sequence.
It is worth noting that this network is trained on OFTraD, with 8000 and 2000 image blocks
from the database used for training and testing, respectively.

(b)(a) (d)(c)

Figure 9. The ocean-front tracking algorithm. Firstly, the images (a) are sent to the GoogLeNet
Inception network (b) to perform classification. The foreground images are changed to white, and the
background image blocks remain unchanged (c). Finally, the images are used to reconstruct the video
sequence (d).

The input of our algorithm is the image blocks and their time-position information.
Firstly, we extract the RGB image blocks from each video sequence, and feed them into
the GoogLeNet Inception network for classification. The color of the image blocks is set to
white, if the image block is classified as the oceanfront. In our experiments, the block size
is set to 5× 5, because this size can cover mesoscale ocean fronts. If the size of the blocks
is too large, it will be hard to find the exact location of the background. If the block is too
small, the classification accuracy will be reduced. Then, according to the corresponding
time-position information, the blocks are put together to form a video sequence. When
dividing an ocean-front frame into image blocks, we label their names with the time-
position information, so that when getting their classification labels, we can put them back
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to their original time-position location. Therefore, the location of the oceanfront in a video
sequence can be located.

2.2. Construction of the Dataset

To the best of our knowledge, there is no public database available for ocean-front
trend classification. This may be one of the reasons why ocean-front trend classification is
a difficult task. In this paper, one of our contributions is the creation of the two training
databases: OFTreD and OFTraD. The OFTreD contains 1000 video sequences, and the
number of image blocks of OFTraD reaches 10,000. 90% of the video sequences are used
for training, and 10% are used for testing. 80% of the image blocks are used for training,
and 20% are used for testing. We believe that our work will inspire more researchers to
research trend classification and will be used as a benchmark for this new research area.
The microcanonical multiscale formalism (MMF) will first be described in detail, and then
used to detect the ocean front.

2.2.1. Microcanonical Multiscale Formalism

In this paper, we aim to recognize an oceanfront and classify it into either the en-
hancement or the attenuation type. To recognize an ocean-front trend, we need to detect
and locate the oceanfront from remote sensing images. Currently, ocean-front detection
methods can be roughly divided into three categories. The methods in the first category
are those based on the computation of the vertical and horizontal gradients [49,50]. In the
second category, the methods make use of the ocean-water characteristics for ocean-front
detection, since ocean fronts are often located at the boundary of two or more ocean waters
with different characteristics. These methods include those based on histogram representa-
tions [51] and those based on the MMF [22,52]. The third category includes those based on
data-driven methods, such as deep neural networks [20]. Each of these categories has its
own advantages. In this paper, we use MMF, because it is efficient, accurate, stable, and
has been one of the best automatic ocean-front detection approaches.

To extract an oceanfront from a video sequence, we use the mathematical formalism,
which is computed based on the strength variations between adjacent pixels. By using
MMF [22], physical processes, like ocean fronts and eddies, can be easily recognized,
and then a deep neural network [20] can be used to classify them.

The key point of MMF is the accurate computation of the Singular Exponent (SE) value
h(−→x ) at pixel position x. In this context, the method proposed in [53] provides numerically
stable computation of the SE value at each pixel, as follows:

h(−→x ) =

log(τψµ(−→x ,r0))

<τψµ(.,r0)>

log r0
+ o(

1
log r0

) (4)

where r0 is used for image normalization. Given an image with the size of N × M,
r0 = 1

N×M . < τψµ(., r0) > is the average value of the wavelet coefficients of the whole
signal, and τψµ(x, r0) is the wavelet projection at point x. The smallest SE, namely the Most
Singular Manifold (MSM), corresponds to the strongest temperature variations in the SST
image, i.e., the oceanfront. The MSM is defined as follows:

F∞ = −→x : h(−→x ) = h∞ = min(h(−→x )) (5)

To simplify the detection task, we use the inverse of SE. This is because it is more
desirable to recognize and track the more obvious parts of an image.

2.2.2. Ocean-Front Trend Database (OFTreD)

The OFTreD takes the time-space variations of ocean fronts into account. The video
sequences were taken from the Advanced Very High-Resolution Radiometer (AVHRR)
satellite, which has a high-resolution imaging system and can collect images with a resolu-
tion of 5 km. Our databases focus on the videos captured in the Atlantic Ocean and the
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Pacific Ocean, from 2010 to 2015. We created a total of 1000 ocean-front video sequences.
Then, we divided these video sequences into ocean-front enhancement and attenuation
classes, according to the trend of the ocean fronts in the video sequences. In the process
of creating the databases, an ocean front is classified to have an enhancement trend, if its
tendency is becoming larger and stronger. However, a part of the oceanfront with the
enhancement trend may become weaker and smaller in a short snippet of a video sequence.
In the same way, an ocean front with the attenuation trend tends to become smaller and
weaker. It is also possible that a part of the oceanfront with the attenuation trend becomes
larger and stronger in short snippets. The existence of this phenomenon is determined by
the variability and irregularity characteristics of the ocean fronts. In OFTreD, the number
of frames in the ocean-front video sequences ranges from 5 to 200, and the size of each
frame is always larger than 20× 40. These characteristics can ensure the robustness of the
database. If the frame number is too short or too long, it is difficult to classify its trend.
If the size is too small, it may not be able to cover an ocean front.

This database was created based on the efforts of six graduate students, with expertise
in oceanography. Each student labeled about 200 video sequences, and then, checked the
correctness of the video sequences labeled by the other five students. On average, it took
about 20 min to label one video sequence. In total, the students took two weeks to complete
the labeling and checking tasks for this database.

In addition, in order to facilitate calibration, we start by randomly selecting an area of
the selected ocean and randomly selecting a frame. Then, we display the ocean-front images
of the same area 20 days before and after. Thus, we need to check whether the area contains
an oceanfront. If an ocean front exists, we change the time-span and choose the suitable
start and end frames of the video sequence. Otherwise, another frame will be chosen
randomly. The space-time information of the selected frames is also recorded automatically.

We invited a number of oceanographic experts to check the classification results of
the 1200 video sequences created, and eliminated 200 of them, which are hard to classify.
The difficult sequences contain many ocean fronts, each ocean-front has its own trend.
The variation of the speed of the ocean-front trends is another factor that increases the
classification difficulty. However, this is a problem we should solve. Therefore, in this
research, we locate the ocean fronts in a video sequence, followed by identifying which
parts of the ocean fronts are enhancing and which parts are attenuating.

2.2.3. Ocean-Front Tracking Dataset (OFTraD)

The construction procedures of the ocean-front tracking database can be summarized
as the following steps. First, we split each frame in an oceanfront video sequence into
multiple fixed-size image blocks. The time-space-position information of each image block
is also recorded. Then, each image block is sequentially, from left to right and from top
to bottom, sent to the GoogLeNet Inception network for classification. The image blocks
are rearranged into frames so that we can locate the position of the oceanfront from frame
to frame.

3. Results

The environment configuration used in our experiments is Ubuntu16.04 + GeForce
GTX 1080 GPU card + Caffe deep learning framework [54]. The algorithm proposed in this
paper is partly based on the GoogLeNet Inception network. Fine-tuning is performed to
the pre-trained GoogLeNet Inception network [48] to reduce the negative impact of using a
small dataset and to improve the classification accuracy. Furthermore, we apply the TVL1
method [55] to extract optical-flow images. Every two consecutive frames can generate
one warped optical-flow image, and these optical-flow images can be used to capture the
tendency of the oceanfront between two consecutive frames. Experiment results show that
our algorithm is robust, efficient and effective.

As shown in Figure 10, we use the ocean-front tracking algorithm to obtain the position
of the ocean fronts in a video sequence. Sixteen representative frames were selected as
examples. Figure 10 displays the frames of an ocean-front sequence with the enhancement
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trend on the top row, the frames with the attenuation trend on the second row, and their
tracking label in the third and the bottom rows, respectively.

Figure 10. The ocean-front trend example. From the top to bottom is an ocean-front attenuation video
sequence, an ocean-front enhancement video sequence, an ocean-front attenuation video sequence
tracking label, and an ocean-front enhancement video sequence tracking label.

To verify the effectiveness of the ocean-front tracking method, a comparison exper-
iment is carried out. The comparison methods include the traditional method, machine
learning method, artificial neural network, and deep learning method. A traditional
method, such as BoVW (Bag of Visual Words), learns to classify the foreground and back-
ground images by extracting dense sift features from the training data [56]. Different from
BoVW, SVM (Support Vector Machine) can simplify the classification task to a minimization
problem of loss function [57]. In recent years, CNN (Convolutional Neural Network) has
become a classical method in the field of image classification. CNN also relies on extracting
features from the training data, but different from BoVW, CNN can extract robust features
which are invariant to various degrees of distortions and illumination, the effectiveness
of the CNN model has been proved in various recognition and classification tasks. Deep
learning is large neural networks. As the development of machine learning, deep learning
model, such as GoogLeNet Inception network, has been proposed and gradually become
the most widely used machine learning method. It has the advantage of learning from
massive amounts of data and has outperformed state-of-the-art machine learning methods,
such as SVM and CNN in many domains [58].

As shown in Table 1, we trained the GoogLeNet Inception network on OFTraD. Suf-
ficient training data allows us to train the network to track the position of ocean fronts,
with an accuracy of 96%. Compared with BoVW, SVM, and CNN, the GoogLeNet Incep-
tion network achieves the highest prediction accuracy. Therefore, we use this network
to classify image blocks into the background and foreground classes, and to track the
ocean-front location.

Table 1. Tracking accuracy using different methods.

Algorithm Accuracy Dataset

BOVW 64.5% OFTraD
SVM [58] 90% OFTraD

CNN 94.9% OFTraD
GoogLeNet Inception 96.1% OFTraD

4. Discussion

We analyzed the effect of different dimensions of the feature vectors c1 and c2 on
classification accuracy. Specifically, we use different pooling operations to produce the
feature vectors c1 and c2, whose dimensions are hence different. The experimental results
are shown in Table 2. We set the vector dimensions of c1 and c2 to 40× 1, 60× 1, 80× 1 and
100× 1. As the vector dimension is limited by the number of frames in a video sequence,
the largest vector dimension is 100× 1. The experiment results show that the best vector
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dimension is 40× 1, reaching the highest classification accuracy of 90.96%. This is probably
because 40 pixels are enough to represent the strength information of a video sequence.
Thus, we set the vector dimension at 40× 1.

Table 2. Classification results using different feature vector dimensions.

Dimension 40 60 80 100

Accuracy 90.96% 87.63% 87.16% 87.75%

Then, we compare the classification accuracy and maximum runtime of the classifica-
tion algorithms based on strength (N1), scale (N2), the GoogLeNet Inception network (N3).
As shown in Table 3, the classification algorithm based on strength (N1) achieves the highest
accuracy among N1, N2, and N3. Besides, the accuracy of the classification algorithms
based on strength (N1) and scale (N2) are both higher than that of the GoogLeNet Inception
network (N3). When comparing the runtimes, as shown in Table 3, we found that the train-
ing time is only 283 min totally and the testing time of the classification algorithms based
on strength and scale is only 0.375 s, twice faster than that of the GoogLeNet Inception
network, which is 0.7 s. Therefore, our algorithm is computationally efficient.

Table 3. Classification accuracy using different networks of the proposed algorithms.

Algorithm Accuracy Test Time

N1 91.32% 0.375 s
N2 87.50% 0.375 s
N3 69.90% 0.7 s

As shown in Table 4, we tabulate the classification scores of the classification algo-
rithms for strength (N1) and scale (N2), with that of the output of the softmax layer of
the GoogLeNet Inception network (N3), which is called the ETR algorithm. Moreover,
we conducted comparative experiments to integrate the three classification results, using
different weights for the strength, scale, and actual output, i.e., w1, w2, and w3, used to
implement the weighted fusion.

Table 4. Classification results using different integration weights.

Algorithm
Integration Weights

Accuracy
w1 w2 w3

ETR

1 0 0 91.3%

0 1 0 87.5%

0 0 1 69.9%

1 1 0 90%

1 1 1 87.5%

−1 1 1 60%

1 −1 1 65%

1 1 −1 95%

2 1 −1 97.5%

The scenarios in this experiment can be divided into the following categories: (1) we
use the strength-based classification algorithm only. (2) we use the scale-based classification
algorithm only. (3) we use the GoogLeNet network only. (4) we combine the strength-based
and scale-based algorithms, and the weight of the two algorithms is 1:1. (5) we use the
three algorithms together, and the weight of the strength-based, scale-based algorithms,
and GoogLeNet network is 1:1:1. (6) we set the strength-based algorithm weight at −1,
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and the weight of the strength-based, scale-based algorithms, and GoogLeNet network is
−1:1:1. (7) we set the strength-based algorithm weight at−1, and the weight of the strength-
based, scale-based algorithms, and GoogLeNet network is 1:−1:1. As the recognition
accuracy achieved by the strength-based algorithm is the best, and that of the GoogLeNet
network is the worst. We employed two more sets of experiments. (8) we use the three
algorithms together, but the weight is 1:1:−1. (9) we use the three algorithms together,
but the weight is 2:1:−1.

As shown in Table 4, the accuracy of each network in our algorithm can reach, or even
exceed, 70%. This indicates that these networks are effective. Furthermore, when we
integrate these networks together, we can obtain much better classification accuracy. This
proves that the different networks in our algorithm are complementary to each other.
Although the classification accuracy of the GoogLeNet Inception network is only about 70%,
the final classification accuracy can be improved by integrating with the other two networks.

What’s more, the experimental results show that the classification accuracy is the
highest, when the weights are in the proportion of 2:1:−1. From Table 4, we have the
following interesting results. (1) The classification accuracy is higher when the weight of
the GoogLeNet Inception network is negative, lower when the weight of the GoogLeNet
Inception network is 0, proving that the classification results given by the GoogLeNet
network are relevant. The reason for this might be that there is a negative correlation
between the GoogLeNet Inception network and the classification algorithms based on
strength and scale. (2) The classification accuracy is higher when the classification algorithm
uses a larger weight for strength. This is probably because the strength information can
better represent the ocean-front trend. Therefore, increasing the weight for strength, relative
to that for scale, can achieve higher accuracy. (3) When the weights for strength and scale
are negative, the classification accuracy is the worst. This indicates that the strength and
scale information is closely correlated to ocean-front trends.

As shown in Table 5, we compare the classification accuracy of different learning
models on OFTreD. It can be seen that our algorithm can achieve higher classification
accuracy than that of SVM, Structured Segment Networks (STN), and GoogLeNet Inception
network. This proves that our algorithm is effective, in terms of classification accuracy.

Table 5. Classification accuracy compared with other networks.

Algorithm Accuracy Dataset

SVM 41% OFTreD
STN [48] 52% OFTreD

GoogLeNet Inception 69.90% OFTreD
ETR 97.50% OFTreD

5. Conclusions

In this paper, we proposed a novel and effective algorithm for ocean-front trend
recognition, namely Evolution Trend Recognition (ETR), which combines the GoogLeNet
Inception network and classification algorithms based on the strength and scale of ocean
fronts. For this research, we have also created two novel databases for ocean-front trend
recognition and ocean-front tracking. Firstly, we use the Microcanonical Multiscale Formal-
ism (MMF) method to detect the oceanfront in an ocean-front image. Then, we classify the
evolution trend in ocean-front video sequences. In our method, we classify the evolution
trend of an oceanfront based on its strength, scale, and optical-flow information. The trend
classification algorithms are based on strength and scale, and use a curve fitting method to
generate feature matrices, which are converted to a specific dimension by using average
pooling. Then, based on the feature matrices, the trend category of an oceanfront is deter-
mined by the softmax classifier. The trend classification method based on warped optical
flow images uses the GoogLeNet Inception network to directly classify the evolution trend
of an oceanfront. All of the three trend classification methods have their own advantages.
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Finally, a weighted fusion method is used to combine the three trend classification methods
to achieve the highest classification accuracy.

Although our proposed method applies to any video classification task, there are
still some constraints, which can be reflected in two aspects. First, for complex scenarios,
creating and labeling a database with a large number of samples is very labor-intensive.
Second, feature extraction requires prior knowledge, which may be hard to obtain. These
constraints are the shortcomings of our proposed algorithm. Besides, the ocean-front
enhancement and attenuation trend recognition is only a simple scenario for the ocean-
front evolution process, and the proposed fusion method for trend recognition still needs to
be improved. In our future research, we will try to analyze more complex scenarios in the
oceanfront evolution process, and try to propose a novel end-to-end deep learning network
to improve the classification accuracy.
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