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Abstract

In many countries, electricity prices on day-ahead auction markets result from
a market clearing designed to maximize social welfare. For each hour of the
day, the market price can be represented as the intersection of a supply and
demand curve. Structural market models reflect this price formation mecha-
nism and are widely used in prospective studies guiding long-term decisions
(e.g. investments and market design). However, simulating the supply curve
in these models proves challenging since estimating the sell orders it comprises
(i.e. offer prices and corresponding quantities) typically requires formulating
numerous techno-economic hypotheses about power system assets and the
behaviors of market participants. Due to imperfect competition, real mar-
ket prices differ from the theoretical optimum, but modeling this difference
is not straightforward. The objective of this work is to propose a model to
simulate prices on day-ahead markets that account for the optimal economic
dispatch of generation units, while also making use of historical day-ahead
market prices. Inferring from historical data is especially important when not
all information is made public (e.g. bidding strategies) or due to difficulty
in accurately accounting for qualitative notions in quantitative models (e.g.
market power). In this paper we propose a method for the parameterization
of sell orders associated with production units. The estimation algorithm for
this parametrization makes it possible to mitigate the requirement for analytic
formulation of all of the above-mentioned aspects and to take advantage of
the ever-increasing volume of available data on power systems (e.g. technical
and market data). Parametrized orders also offer the possibility to account
for various factors in a modular fashion, such as the strategic behavior of
market participants. The proposed approach is validated using data related
to the French day-ahead market and power system, for the period from 2015
to 2018.
Keywords: Day-ahead markets, Electricity prices, Structural market model,
Prospective studies, Power systems
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Nomenclature

Variables
P Production
L Load
E Energy transmitted between bidding zones
Pmin Minimum production
Pmax Maximum production
Lmin Minimum load
Lmax Maximum load
Emin Minimum transmitted energy
Emax Maximum transmitted energy
Shydro Hydro stock
⇧ Observed market clearing price
⇧̂ Simulated market clearing price
⇡̂ Simulated price of an order
↵ Sell price parameter
� Bias correction term
Subscripts
i index for a production unit in set I
j index for a consumption unit in set J
t index for a market time unit in set T
z index for a bidding zone in set Z
c(i) index for a production class in C of unit i

1. Introduction

1.1. Context
Modern societies operate under the assumption that high security of elec-

tricity supply is guaranteed [1]. Over the last decades, electricity markets
have been seen as a pertinent way to provide the supply necessary for the
equilibrium of the system [2].

Studying and anticipating the evolution of wholesale market prices helps
private and public stakeholders to better evaluate the opportunities and risks
they face [3] [4] [5]. For example, renewable energy sources (RES) power
plants, when not under a subsidy regime, generate their revenue through
participation in electricity markets. It is useful for the design of the RES
investment to have estimates of the evolution of electricity prices to assess
the payback and associated risks. Making estimates based on the evolution
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of electricity prices in the years to come is highly challenging due to uncer-
tainties. This calls for the development of numerical models able to account
for the effect of factors of different natures on prices. Such models can help
to gain a better understanding of the mechanisms underlying the formation
of prices, resulting in more rational decisions regarding investments, opera-
tion and maintenance, more appropriate market designs, and easier market
surveillance. In practice, wholesale electricity prices vary according to the
supply-demand equilibrium established by market participants, while consid-
ering the techno-economic constraints of the power system assets and in com-
pliance with a strict regulatory framework that defines the underlying market
mechanism. Thus, the influencing factors of price dynamics include: evolu-
tion of demand, composition of the energy mix, market design, and strategic
behavior of market participants.

In deregulated energy markets, multiple possibilities are offered to pro-
cure or supply electricity. Participants trade on specialized exchange markets
where buy and sell orders are pooled, and also trade over-the-counter through
bilateral contracts. Each transaction is associated with a price that is not
necessarily disclosed. The price observed on day-ahead auction markets is
especially interesting as it is typically unique for a given hour and location
and, as such, can serve as a common, transparent price signal published by
the power exchanges. This price results from the clearing of all buy and sell
orders, submitted one day before physical delivery. It is worth noting that
this price signal commonly also serves as an indicator for pricing on other
markets, such as forward markets (e.g. in [6]).

Two main structures can be distinguished for wholesale electricity mar-
kets: zonal and nodal [2]. Zonal pricing, which is common in Europe, sets a
unique price for a large area called a bidding zone (typically a country or a
region). The usual design of this market is presented in [7] and the technical
implementation for the case of Europe is described in [8]. Nodal pricing, also
known as locational marginal pricing (LMP), is common in North America.
These markets feature a higher spatial granularity since a price is set for each
bus. As a consequence, transmission constraints are better taken into account
and play a greater role in price formation. Also, in some cases, the market
power of a few electricity producers over a single node can be more significant
than it would be over a larger zone with more competing resources; this mar-
ket power could impact price formation. The advantages and disadvantages
of zonal and nodal models of energy markets are discussed more extensively
in [9]. In this paper, we focus on zonal markets, but we propose a discussion
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on the applicability of our method to nodal markets in subsection 2.2.
As mentioned above, in different applications like RES investments it is

beneficial to have an idea about the evolution of electricity prices. To achieve
this requires being able to model the market mechanism and the evolution of
the factors influencing price dynamics. For this purpose, a growing volume
of data is available and helps to reveal the effects observed in practice. This
is especially true now that power system data (e.g. static data, such as the
installed capacity by generation technology, and dynamic data, such as the
hourly outages of production units) are more accessible than ever due to
supportive regulation (e.g. data available on the ENTSO-E Transparency
Platform [10] as specified by the regulation [11]) and thanks to data sharing
initiatives (e.g. Open Power System Data [12]). The availability of market
data (e.g. time series of commodity prices, aggregated supply and demand
curves) is also improving, but the costs associated with such financial data
remain a concern in the EU [13] and in the US [14].

For different applications in the context of energy transition it is neverthe-
less necessary to look beyond global trends in electricity prices and consider
their modeling with a high temporal resolution (i.e. hourly) by accounting
for techno-economic constraints related to the operation of the power system.
This reveals situations where the intraday variations of prices impact the per-
formance of the considered solutions; this could for example be the case when
studying incentives to develop flexibility both on the supply and demand sides
(e.g. storage, demand side response). In the case of less flexible production
technologies driven by weather conditions (e.g. solar and wind power) or lim-
ited by operational constraints (e.g. start and stop costs or ramp limits for
thermal units), being able to simulate their exposure to low or even negative
prices helps to assess their financial performance from the point of view of an
investor.

1.2. Modeling prices on day-ahead markets
Various approaches have been proposed in the literature to explore the

relation between energy prices and their drivers [7]. Prices can be simulated
directly as a function of exogenous regressors (e.g. electricity demand, avail-
able capacity) employing time series models, artificial neural networks and
regression trees. These purely statistical models rely on observed correlations
between variables and have good forecasting accuracy, especially for short-
term horizons [15] when the power system composition remains the same.
Nevertheless, to reflect a structural change in the system composition, both

4



the supply-demand equilibrium and the associated price formation mechanism
have to be explicitly taken into account in the regression models.

The equilibrium is usually modeled with an economic dispatch or unit com-
mitment approach, which results in a cost-effective use of production assets to
meet demand in power systems. The optimization solution provides a model
for market prices for a given delivery period, either taking the marginal cost
of the most expensive production mean with non-zero production, or equiv-
alently, using the Lagrange multiplier associated with the demand constraint
[16], also called the shadow price. These types of models are popular among
transmission system operators (e.g. ENTSO-E uses ANTARES), political
institutions (e.g. the European Commission uses METIS) and consulting
companies (e.g. Cornwall Insight uses Plexos). A detailed review of modeling
tools is proposed in [17] and a systematic mapping of power system models in
[18]. For these models, generation units are typically grouped by technology
and clustered in market areas, which are interconnected to partially model
grid constraints. The models are used for long-term studies regarding system
adequacy to estimate future system costs and to assess the potential benefits
of new investments or market design adjustments. Monte Carlo simulations
are used to evaluate the impact of different demand scenarios and meteoro-
logical conditions (temperature, rain, wind speed, solar radiation). However,
because the models solve a global optimization problem they implicitly adopt
the view of a unique central operator. Also, these models require the con-
sideration of numerous techno-economic parameters that are rarely publicly
available and that are hard to collect and estimate precisely (however, it is
worth noting that the European Commission recently released some data sets
used for METIS). Lastly, these models are generally not designed to simulate
market prices. To our knowledge, their capacity to mimic real price dynamics
is not evaluated. In the case of deviations between simulated and observed
prices, the latter are not used for model tuning.

The equilibrium can also be studied from a multi-agent perspective, where
the interactions between owners of different asset portfolios play a key role.
Methods to reveal hidden variables related to bids associated with power sup-
ply assets can for example rely on a Bayesian approach [19] or on inverse
optimization approaches [20], [21]. In these references, real historical data
have not been used, but the studies are instead based on simulated test cases.
More generally, this class of models is a popular choice for studying qualitative
issues rather than for simulating long time series of real market prices [7] and,
as such, the objective is usually not to exploit observed market data. Never-
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theless, in nodal markets, more detailed technical and economic data about
individual units and transmission lines can be leveraged through inverse op-
timization, as in [22], where the Midcontinent ISO electricity market (MISO)
in North America is studied. In [22] learning from historical data primarily
enables to infer information about grid usage, whereas our main focus is on
supply bids.

Alternatively, the system equilibrium can be considered from a more market-
oriented perspective by simulating supply curves [23]. In this case, for a given
hour, the supply curve corresponds to the aggregation of market orders and
not only depends on the merit order (i.e. the ranking of production units
according to their short-run marginal cost), but also on the bidding decisions
of market participants. The technical constraints that would induce tempo-
ral coupling, usually present in unit commitment models, are not included.
Merit order models are also used to support business or policy development
(e.g. EMMA developed by Neon Neue Energieökonomik and Power2Sim de-
veloped by Energy BrainPool). Such models can be classified as fundamental
(or structural) models according to the electricity price forecast taxonomy
proposed in [7]. Fundamental models are used for prospective studies as well
as for ex post analyses (e.g. [24] and [25]). A survey of structural models is
proposed in [26].

For structural models, a key step is supply curve modeling. This is gen-
erally obtained as an aggregation of market orders, but it can also result
from a statistical model as in [27], where the curve is built as a function of
a normalized load and observed market prices. This purely statistical model
is then adjusted to account for the evolution of fuel and emission costs for
coal. The X-model presented in [28] and used in [29] proposes a piecewise
model for the supply curve. Each local model is initially associated with a
price level for which a volume of energy is determined through a statistical
regression. Regressors at time t include solar and wind production or planned
generation. An interpolation is used to build the final supply curve. The
concept of the X-model has recently been extended in [30], where the sup-
ply and demand curves are considered jointly in order to reduce computation
time and improve accuracy. While these piecewise models try to mimic the
standard merit order approach, they do not include the effects of availability
and production costs. On the contrary, a model inspired by [31] is proposed
in [6] for coupled electricity markets, where the supply curve is constructed
by stacking sell orders for which the price offers are a function of the sup-
ply margin (i.e. the difference between the total available capacity and the
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demand) and the production cost by technology. An objective of the paper
by these authors is the analysis of forward markets, which requires a specific
form of price offer that reduces the realism of the day-ahead price dynamics
in simulations. In [32], a clearing market price procedure, which also includes
complex orders, is proposed. The bids are not parametrized and no learning
algorithm is introduced since the case study is based on the Spanish market,
where day-ahead market bids details are disclosed contrary to most European
electricity markets. While the approach is relevant for ex post analyses, it
would need to be extended to be used for prospective studies. In [33], spe-
cific attention is given to the variability realism of simulations. Their model
starts with a description of the supply curve per technology through the short-
run marginal cost. Price offers are then reduced in the case of low demand
(reflecting for example must-run constraints) and increased for high demand
(inducing a scarcity rent). The adjustment of bids is still done at the tech-
nology level without considering individual production units. References [34]
and [25] also propose to model hourly prices using the merit order approach at
the technology level to realistically model the price dynamics on the German
day-ahead market. Both models make use of real data and linear regressions.
The regressions are used in [34] to adjust the output of the merit order model
to account for effects such as ramp constraints and strategic bidding, while
[25] uses statistics to model the foreign trade balance. These models employ
data to enhance realistic simulations, but they do not propose to directly use
statistical calibration for the supply curve modeling.

1.3. Key contributions
As presented in this introduction, structural models are beneficial for the

conduct of prospective studies needed to support long-term decisions. By de-
sign, these models aim at capturing the price formation mechanism according
to explicit techno-economic hypotheses, and as such, these models enable to
simulate electricity prices from various scenarios of evolution of the power
systems, even if analogous conditions have not been observed yet. Although
purely data-driven approaches (e.g. decision trees and artificial neural net-
works used in machine learning) are fundamentally not robust against major
systemic changes and less suitable for such long-term studies, the benefits that
data-driven approaches can bring should not be overlooked, since empirical
verification relying on data from real observations is essential to ensure the
validity of the formulated hypotheses. In order words, exploiting real data
ensures that the theory is coherent with the market phenomena observed in
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practice. Although multiple solutions exist to model the full power system
and unit constraints in order to perform studies for long-run simulations, few
methodologies have been proposed to extract information from observed day-
ahead prices in order to tune the internal parameters of such models. The
novelty of this approach is that information extracted from in-sample data
sets (e.g. past observations) becomes an integral part of the model, which
can be used for out-of-sample forecasts (e.g. prospective studies).

In light of the scientific literature and extending [35], we propose a struc-
tural model in which the supply curve is constructed with a bottom-up ap-
proach. Market orders are associated with production units and their prices
are parametrized, which means that we can leverage available market and
power system data. To develop this joint statistical and optimization ap-
proach, we propose the following main contributions in this paper:

1. We propose a new method to simulate hourly electricity prices on day-
ahead markets that meets two objectives: (i) reflect the techno-economic
constraints imposed by the power system that induce the price formation
according to the economic theory of marginal pricing under idealized
conditions of perfect competition (ii) exploit market and power system
data to calibrate and evaluate the model so that the simulations reflect
the prices observed in practice.

2. We propose advanced approaches for the calibration of this structural
model. The calibration process allows us to determine the value of
parameters by production class, to modulate the importance given to
market prices depending on their range, and to account for the observed
supply curves’ prices.

3. We validate the proposed method using data related to the French day-
ahead market and power system, for the period from 2015 to 2018, and
we show the benefits that statistical calibration can bring to structural
models.

1.4. Paper structure
The remainder of this article is structured as follows: in section 2, we

present our methodology, then we illustrate the concept on a use case in
section 3. The advantages and limitations of the method are discussed in
section 4. Finally, conclusions and some perspectives for further work are
proposed in section 5.
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2. Problem statement and methodology

2.1. Market clearing with technical constraints
In this section, we present the formulation of the optimization problem

that emulates the market clearing mechanism and integrates power system
constraints. The considered power system is composed of interconnected mar-
ket areas. No assumptions are made on the nature of the energy mix.

The link between the technical constraints of the power system and elec-
tricity prices is modeled through a simple economic dispatch including a stock
constraint for hydro power. This constraint introduces a temporal coupling
that independently prevents a resolution for each time step. More technical
constraints could be added here, though it is not the purpose of this paper to
add too much complexity here. For a more complete formulation and discus-
sion on economic dispatch, see e.g. the review paper [36]. The formulation
could be further extended to a unit commitment as presented in the review
paper [37]. An elastic demand is introduced in the formulation making it
closer to a market clearing with technical constraints than a pure economic
dispatch. The cost function that is optimized depends on the marginal costs
⇡P
t,i of production units, and the marginal utility ⇡L

t,j for consumption units.
The problem is formulated as a social welfare maximization, i.e. a maximiza-
tion of the producer surplus and the consumer surplus:

maximize
P, L,E

X

t2T

(
X

j2J

⇡L
t,jLt,j �

X

i2I

⇡P
t,iPt,i) (1a)

subject to
X

i2Iz

Pt,i +
X

z02Z

Et,z,z0 =
X

j2Jz

Lt,j 8(t, z) 2 T ⇥ Z, (1b)

Emin
t,z,z0  Et,z,z0  Emax

t,z,z0 8(t, z, z0) 2 T ⇥ Z ⇥ Z, (1c)
Lmin
t,j  Lt,j  Lmax

t,j 8(t, j) 2 T ⇥ J, (1d)
Pmin
t,i  Pt,i  Pmax

t,i 8(t, i) 2 T ⇥ I, (1e)
X

(t,i)2T⇥Ihydroz

Pt,i  Shydro
T,z 8z 2 Z (1f)

where

• (1a) is the social welfare maximization objective

• (1b) is the power balance constraint
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• (1c) is the interconnection capacity constraint

• (1d) is the consumption unit limits constraint

• (1e) is the generating unit limits constraint

• (1f) is the hydro stock constraint

We denote ⇧MC
t,z as the Lagrange multiplier associated with the constraint

(1b). In the case without temporal coupling, the marginal costs ⇡P
t,i are sim-

ply the sell prices of market participants and ⇧MC
t,z is the result of a market

clearing. In a pure market vision, the set of production units I would be the
set of orders rather than a set of production means. With a technical con-
straint, such as the hydro stock constraint, the sell price of hydro is the sum
of the marginal cost ⇡P

t,i and the Lagrange multiplier �(1f) associated with the
stock constraint (1f), also called the value of water. The interest of this kind
of formulation compared to a pure market clearing is that a sell price taking
into account technical constraints is computed internally by the model. In
the general case, Lagrange multipliers associated with all internal technical
constraints included in the model can be allocated to production means, so
that we can write the sell price of production unit i at time t as ⇡P

t,i + �IC
t,i .

This optimization approach is widely used to simulate market prices from
marginal costs and considering the technical description of the electric sys-
tem (e.g. availability of production units, hydro stock constraint, transmis-
sion constraints). By construction, it reflects the day-ahead market clearing
mechanism. However, it does not account for strategic bidding, information
asymmetry and market power that can be observed in practice. In addition,
financial aspects can also impact the formation of prices, such as the existence
of multiple markets, which not only allows participants to sell and buy on the
day-ahead market, but makes doing so more interesting for them regarding
their profit expectation and risk management policies.

2.2. Parametrization of marginal costs
The concluding remark of the previous subsection highlights that, in prac-

tice, sell prices are not only influenced by the well-defined techno-economic
constraints IC that are accounted for in Eq. (1), but also by strategic deci-
sions of market participants that impact price formation. The contribution of
these other factors is denoted ✏t,i. We finally propose the following additive
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decomposition of the sell prices ⇡̂sell
t,i , which accounts for the contribution of

both �IC
t,i and ✏t,i:

⇡̂sell
t,i = ⇡P

t,i + �IC
t,i + ✏t,i (2)

The model’s internal constraints IC are explicit, so the modeler can di-
rectly assess the effect that adding or removing constraints has on simulated
prices (e.g. adding ramp constraints to the existing ones). The modeler
can also easily evaluate the impact of the limits imposed (e.g. by changing
the values of the hydro stock constraint or the maximal available production
capacity constraint). But this approach is not applicable for ✏i,t since it is
not practical to quantify a priori the impact on hourly day-ahead prices of
economic factors such as strategic bidding, information asymmetry, market
power and the co-existence of multiple wholesale electricity markets. Using
a data-driven approach on historical timeseries helps us to empirically quan-
tify the influence of these factors. So, we propose to build a statistical linear
model ⇡̂P

t,i for ⇡P
t,i + ✏t,i. ⇡̂P

t,i is a marginal cost proxy that accounts for both
an objective short-run marginal cost of production unit i (⇡P

t,i) and the in-
fluence of strategic factors (✏t,i). The main drivers of these marginal cost
proxies include: fuel prices, emission prices, global supply margins (i.e. the
difference between the available capacity and the demand), and the rank of
each production unit within its production class, and thus we propose the
parametrization described in Eq. (3). Fuel and emission prices allow us to
account for the evolution of operating costs (OPEX). The contribution of the
margin term reflects an important part of the strategic behavior that can oc-
cur during scarcity situations when market participants add a price premium
to their bids. The rank of a production unit is introduced to reflect the het-
erogeneity within a production class since not all units bid the exact same
price (e.g. due to various levels of efficiency and flexibility).

⇡̂P
t,i = ↵c(i),0 + ↵c(i),F · Ft,c(i) + ↵c(i),E · Et + ↵c(i),M · Mt + ↵c(i),R · Ri

= ↵|
c(i)Xt,i

(3)

where the parameters of the model are only a function of the production unit
class c(i):

• ↵c(i),x - Calibrated parameters by class c(i) for each price driver x

• Ft,c(i) - Fuel price at time t for class c(i)

• Et - Emission price at time t
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• Mt - Supply margin at time t

• Ri - Proxy variable for the rank of production unit i in class c(i)

Since the sell price is obtained by adding �IC
t,i to ⇡̂P

t,i, the price that we
propose is also a statistical model of sell orders. Using the marginal cost
proxy within the optimization problem defined in Eq. (1) results in simulating
a day-ahead market price that we denote by ⇧̂MC

t,z .
The market clearing with technical constraints and the parametrization

of marginal costs presented here is directly applicable for markets with zonal
pricing. The main ideas could also be considered for nodal markets, but the
approach would have to be adapted to account for the differences highlighted
in the introduction. Here, we succinctly introduce some points to be consid-
ered for this adaptation. Since transmission constraints play a greater role, an
additional price driver could be considered in the formulation of the marginal
cost proxy so that the parameter associated with these restrictions reflects
the impact of congestion observed in practice. Also, due to the lower number
of generation units, the parameter values could be specific for each unit (as
opposed to production classes) in order to better account for bidding strate-
gies. Information retrieved at the unit level would then be more precise, but
the optimization problem might become unstable due to the high number of
variables.

2.3. Bias correction
We also introduce a bias correction term �t,z to finally obtain the simulated

market prices ⇧̂t,z studied in this paper that we define as follows:

⇧̂t,z = ⇧̂MC
t,z + �t,z

= ⇧̂MC
t,z + �|

zYt

(4)

where for each region z, �z 2 R24⇥7 is a parameter, and for each time step
t Yt is the 24 ⇥ 7 dimensional vector with Yt[(h, d)] = 1 if hour(t) = h
and weekday(t) = d; otherwise Yt[(h, d)] = 0. This bias correction term
is similar in spirit to that proposed in [34]. However, we made this part
less sophisticated because the correction is applied after the market clearing
meaning that it would not be sensitive to technical changes in the electric
system or structural changes in the market rules. This allows us to account
for additional dependencies not represented in this simplified market clearing
formulation (e.g. additional temporal dependencies) in order to simulate price
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dynamics more accurately. For further use in prospective applications, we
believe this term should be kept as small as possible.

2.4. Metrics
To verify the quality of simulations on out-of-sample tests, we primar-

ily consider the root mean square error (RMSE) which assesses the global
forecast accuracy. In order to also estimate whether the model has accu-
rately captured the price dynamics (i.e. the hourly variations), we evaluate
the difference between the standard deviation of the observed time series of
prices and the simulated one (�sd). Our algorithm can simultaneously opti-
mize RMSE and �sd and generate the associated Pareto front. The metrics
used to evaluate the model performance of the forecast (⇧̂t,z)t2T against the
observed prices (⇧t,z)t2T are defined as follows:

RMSEz =

vuut 1

T

TX

t=1

(⇧t,z � ⇧̂t,z)2 (5)

�sdz = sd((⇧t,z)t2T )� sd((⇧̂t,z)t2T ) (6)

2.5. Estimation algorithm
The parameters of Eq. (3) and Eq. (4) must be estimated from real data.

For a time step t for which we know that the production unit i⇤(t) is marginal,
the at-the-money sell price establishes the simulated market price, which can
be rewritten as:

⇧̂t,z = ⇡̂P
t,i⇤(t) + �IC

t,i⇤(t) + �t,z

= ↵|
c(i⇤(t))Xt,i⇤(t) + �IC

t,i⇤(t) + �|
zYt

(7)

We start the algorithm with �z = 0, and ↵c(i) = ↵0
c(i) as an initial value.

Market Clearing Step. From a set of marginal cost proxies we can solve Eq.
(1). This leads to an estimation ⇧̂t,z of ⇧t,z, and to the identification of
marginal production units. This allows us to group time steps according to
the value of the marginal class c(i⇤(t)) denoting the associated partition as
(Tc)c2C .

In more detail, this first step of the algorithm consists in simulating prices
using the model with the current values of its parameters. Employing the
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simulation outcome, we identify which generation unit is marginal for each of
the simulated hours (i.e. the unit with the highest sell price and a non-zero
production value). We can then group time steps according to the marginal
class. For example, if a gas unit is marginal at time Tgas = {t1, t12, t25, t28}
and a nuclear unit is marginal at time Tnuclear = {t3, t4, t11, t22, t23}, we will
create groups of hours accordingly. These groups are then used in the next
step of the estimation algorithm.

Parameter update through statistical estimation. Residuals ⇧t,z � ⇧̂t,z can be
used to estimate a new value for �z. Meanwhile, ↵c0 is obtained by a linear
regression of (Xt,i)(t,i)2Tc0⇥Iz on the observed price (⇧t,z)t2Tc0

. Coming back
to the example given above, in order to determine the values of ↵gas, we
perform the regression only with the subset of input data corresponding to
Tgas and not with the whole data set (and similarly for the other production
classes).

Constraints can be added at this regression stage, concerning for example
the sign of coefficients, or values that are known (and not estimated) such as
↵c(i),E , which is directly obtained from the average class emissions. We iterate
until a stable RMSE is obtained.

Interpretation of the algorithm. A natural justification of this algorithm comes
from the following decomposition of the RMSE:

RMSE2
z =

1

T

X

c02C

X

t2Tc0

�
↵|

c0Xt,i⇤(t) + �IC
t,i⇤(t) + �|

zYt � ⇧t,z

�2 (8)

It is important to note that the error here is not just a quadratic function
of ↵ and �z because, when these parameters change, the merit order changes
and this affects the partition (Tc)c2C . In the proposed algorithm, we alternate
between two steps. The first is an estimation of (Tc)c2C from the value of ↵
and �z. It can be interpreted as a computation of the local linearization of
the cost function. In the second, we estimate a new value for the parameters
↵ and �z according to this linearization. This shows that our algorithm is
similar to a gradient descent on the cost function.

2.6. Introducing variability into the cost function
The root mean square error is known to give results that are smoother than

observations. This can be an issue for the kind of application we foresee (i.e.
analyzing the variability evolution of market prices). We therefore propose a
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modification of the cost function that implicitly approaches a minimization
of RMSEz + ��sdz. We propose to introduce weights (!t,z)t2T in the cost
function as a variability hyperparameter of the model:

RMSEz =

0

@ 1

T

X

c02C

X

t2Tc0

!t,z

�
↵|

c0Xt,i⇤(t) + �IC
t,i⇤(t) + �|

zYt � ⇧t,z

�2
1

A

1
2

(9)

such that the price barycenter is not modified, i.e. so that :

1

|Tc0 |
X

t2Tc0

⇧t,z =
1P

t2Tc0
!t,z

X

t2Tc0

!t,z⇧t,z (10)

By giving more weight to hours with extreme low or high prices, we decrease
the value of �sdz.

2.7. Leveraging information from observed supply curves
The estimation algorithm makes use of observed market prices, implying

that only the price information given by the at-the-money order is exploited
for each time step. However, the supply curves bring valuable information
that has not been taken into account in our method so far. As day-ahead
auctions are generally blind (i.e. the identity of market participants is not
made public, and it is not even possible to determine which of the production
units is actually participating in a market), information cannot simply be
retrieved by matching orders to production units. We propose a methodology
to exploit the information contained in observed supply curves St,z, which
translates into an extension of the set of observed prices, called synthetic
prices. A small deviation, �, is applied to the real market clearing volume Vt,z

in order to generate synthetic prices ⇧�
t,z so that:

⇧�
t,z = St,z(V

�
t,z) (11)

The process is illustrated in Fig. 1.
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Figure 1: Data augmentation principle to generate synthetic prices from supply curves

Each relative variation � creates a new synthetic data set used to estimate
model parameters (i.e. the data sets are only used for in-sample training).
As we want our synthetic prices to reflect realistic counterfactual cases, we
consider that the relative variation of the hourly volumes is caused by the same
variation of residual demand. Consequently, the supply margin Mt,z is also
modified in the synthetic data set since it depends on the residual demand.
Finally, the synthetic data set is composed of the new prices (⇧�

t,z)t2T , the
new residual demand, and the price drivers (X�

t,i)t2T , where all variables of
Xt,i remain unchanged except M�

t,z. In subsection 3.3.2, the historical data
set corresponding to the year 2015 is used to generate synthetic data sets, and
the historical data set corresponding to the year 2016 is used for out-of-sample
testing.

3. Case study

We implemented a method following the described approach, with R pro-
gramming language, using data relating to the French market from 2015 to
2018. In our case study, all production units present in the power system are
included in the optimization problem defined in Eq. (1), i.e. we assume that
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all units participate in the day-ahead market. There are several reasons for
this choice. The first is that our aim is to estimate prices with a variabil-
ity reflecting the composition of the whole production system. In addition,
even if only part of the production in the electric system participates in the
day-ahead market, the remaining units that do not participate still influences
prices through other markets that we do not want to model explicitly here.
Finally, no public data are available on the exact composition of the produc-
tion units participating in the market, while production unit participation in
the electric system is publicly available information. As we consider a single
bidding zone case here, the subscript z will be omitted in this section. Ap-
plication to a multizone case would not change the algorithm, but will be the
purpose of further research.

The simulation results are obtained by out-of-sample testing. To do so,
one year is used for training and then we test over each of the remaining years
(we repeat this process for the four calendar years in the dataset). In this
way, each year is used three times as a testing set. The final result for each
year, presented throughout the paper, is the average of the ensemble of the
three alternative simulations in which this year is used as a testing set (e.g.
using the models trained with the 2015, 2016 and 2017 data sets, we simulate
three distinct time series of prices for 2018 and then we calculate the hourly
average). In this section, we first present the method implemented, then the
data used, and finally we show the results obtained.

3.1. Method implementation
3.1.1. Overview

For both training (i.e. the estimation of model parameters) and out-of-
sample testing, considering a whole calendar year allows us to observe simul-
taneously the daily, weekly and seasonal variabilities. In addition, this long
timescale allows us to observe the effect of imposing a yearly constraint on
the usage of the global hydro stock.

We simulate prices in a single bidding zone and incorporate the effect of
the neighboring interconnected zones as additional orders in both the supply
and demand curves. For the numerical application, we use the observed net
transfer capacity values as order quantities (both as Pmax

t,i to account for the
possibility to import and as Lmax

t,j to account for the possibility to export)
and the foreign day-ahead market prices as order prices (⇡P

t,i and ⇡L
t,j respec-

tively for supply and demand). No minimal volumes for import or export are
imposed (i.e. Pmin

t,i and Lmin
t,j are equal to 0 MWh).
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Fig. 2 gives an overview of the case study.

Figure 2: Case study overview

3.1.2. Supply
For the orders that constitute the supply curve, we consider the production

units of five production classes: nuclear, fossil gas, fossil hard coal, fossil
oil and hydro water reservoir. Each order corresponds to a production unit
with an installed capacity of over 100 MW. The quantities supplied each hour
correspond to the available capacity Pmax

t,i , which varies based on the reported
planned and forced outages of the production units. For each production
class, units with a capacity of less than 100 MW are aggregated into a single
order whose quantity only depends on the installed capacity; the potential
unavailabilities are not accounted for. Pmin

t,i is set to 0 MWh for all units.
In the ENTSO-E taxonomy, hydro is classified according to three subcat-

egories: (i) run-of-river and poundage, (ii) pumped storage, and (iii) water
reservoirs. The hourly production of run-of-river and poundage, as well as
the hourly production and consumption of pumped storage, are among the
components which are subtracted from the hourly day-ahead consumption
forecast in order to obtain the aggregated residual demand used as model
input in the case study, as detailed in subsection 3.1.4. For the sell orders
corresponding to supply, we only consider water reservoirs.
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The price drivers considered by production class are summarized in Ta-
ble 1. Note that the variation in uranium prices over the studied period is
neglected compared to the fixed operating costs of nuclear power plants and
that the ranks are based on the nominal power of production units. The rank
in our model refers to a proxy variable indicative of the merit order place of
a unit within its production class. This variable is used to account for dif-
ferences in short-run marginal costs between units, which are due to different
levels of efficiency and specific operational constraints (the lack of publicly
available information at the unit level motivates the use of a proxy variable).
To define the variable for the rank of production (Ri) we consider each pro-
duction class c(i) separately and we sort its production units i by ascending
order of nominal power Pmax

i , then we compute Ri by recurrence: R0 = Pmax
0

and Ri = Ri�1 + Pmax
i . This construction is motivated by the fact that we

consider large power plants to be more efficient than smaller ones (especially
for the French nuclear power plants for which the nominal power is correlated
to the installation date).

Production Unit Supply Fuel Emission
class ranking margin cost cost
(c) (R) (M) (F) (E)

Hydro water reservoir x x
Nuclear x x

Fossil gas x x x x
Fossil hard coal x x x x

Fossil oil x x x x

Table 1: Price drivers of marginal cost proxies considered by production class

3.1.3. Parameter estimation
For each class, we initialize ↵c,0 introduced in Eq. (3) to be constant and

equal to an average short-run marginal cost (i.e. the cost associated to the
production of additional energy output). To avoid over-fitting, we constrain
the regression to impose a sign on the coefficients ↵c,x during calibration,
so that an increase in fuel cost or a decrease in supply margin leads to an
increase in energy price. We do not calibrate the parameters ↵c(i),E associ-
ated with emissions and choose instead to rely on data from RTE, the French
transmission system operator. The data used for the estimation of the param-
eters associated with the unit ranking, the supply margin and the fuel costs
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are presented in subsection 3.2. Alternatively, we could have chosen to set
the parameters ↵c(i),F associated with fuel prices using public data, since the
parameters correspond to the average energy conversion efficiency by produc-
tion class. We chose instead to estimate the parameters associated with fuel
prices in order to mitigate against uncertainty regarding the available data.
First, for each class, different values of efficiencies are published (these values
depend on technology, operating points, etc.). Second, the actual cost of fuel
procurement depends on undisclosed hedging strategies of electricity produc-
ers, so this cost can differ from the variable Ft,c(i), which corresponds to the
fuel price on a specific market and at a specific time. As both the values of
fuel costs and the price parameters (e.g. ↵gas,F) are uncertain, we applied the
estimation approach to set the values of ↵c(i),F instead of relying on public
data. We note that both ↵c(i),E and ↵c(i),F can be predefined or estimated
depending on modeling choices and the reliability of available data.

For the reference case presented here, we estimate the model parameters
with all weights !i equal to 1 and we do not exploit the real supply curves. In
a second step, we also assess the impact of weight variations as presented in
subsection 2.6, and of exploiting the supply curves as presented in subsection
2.7.

To estimate � introduced in Eq. (4), we compute the average of the
residuals over the training set by hour and day of the week (i.e. 24x7 offset
values) and we then apply this correction on out-of-sample tests.

3.1.4. Residual demand
We consider an aggregated residual demand for the bidding zone Lmax

t,j

with a price set to the day-ahead market price cap (i.e. ⇡L
t,j is equal to EUR

3,000 per MWh). The price cap value does not set a market price in this
case study as no supply shortage was observed. Since this residual demand
j is always fulfilled in the case study, Lt,j is equal to Lmax

t,j for all time steps.
For the simulation, we set the value of Lmin

t,j to 0 MWh, but the same results
would have been obtained for all values between 0 MWh and Lmax

t,j . The de-
mand Lmax

t,j results from the difference between the day-ahead consumption
forecast by RTE and the contribution of supply assumed to be a price-taker
for the studied period and location. Here, this supply is composed of fatal
power production (solar, wind and run-of-river hydro), co-generation (ob-
served production according to a baseload profile), storage (we consider only
the contribution of pumped-storage hydroelectricity, not batteries, etc.) and
production classes with low installed capacity (biomass). Including storage as
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a production unit in the initial optimization problem would not change the
algorithm, but as already mentioned, it is not the objective of this paper to
include complex technical constraints.

3.1.5. Market clearing
We solve Eq. (1) in two steps, which corresponds to dualizing the hydro

stock constraint. In the first step, we maximize social welfare using the orders
for each hour separately and we obtain a time series of market prices. In
the second step, we adjust the availability of hydro power plants so that
they produce only at higher prices within the limit of the annual hydro stock
constraint, then we solve the market clearing anew as in the first step. This
two-step procedure is reproduced at each iteration of the whole estimation
algorithm.

3.2. Data
The raw data sets used for the simulation and results analysis are listed

in Table 2.

Data set Source
Installed capacity by production class

ENTSO-E transparency platform1Installed capacity of production units
(Pnom > 100MW)
Unavailability of production units
(Pnom > 100MW)
Prices on day-ahead markets Open Power System Data [38]
Day-ahead consumption forecast

RTE (Eco2Mix platform)2Hourly production by production class
CO2 emissions by production class
Net Transfer Capacity to and from
neighboring bidding areas (NTC) RTE (Data portal)3

Operating costs by production class RTE/ADEME study [39]

Import costs of coal and oil in France French Ministry for the Ecologi-
cal Transition (PEGASE)4

Gas market prices ERCE5

CO2 European Emission Allowances Business Insider6

Hourly supply and demand curves EPEX SPOT
Atmospheric temperature Meteo France

Table 2: Data sources for the case study
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The hydro stock Shydro
T,z , computed using the data set "Hourly produc-

tion by production class", is equal to the sum of the hydro water reservoir
production over one year.

Two remarks can be made about the data sets:

• The UK National Balancing Point (NBP) was used instead of the French
Point d’échange de gaz (PEG) for gas prices due to data availability,
but these prices are considered to be correlated enough for our modeling
purposes.

• All data sets were collected from the web, except for EPEX Spot’s supply
and demand curves, and Meteo France’s average atmospheric temper-
atures, which are not open data but commercially available or under
special conditions for research purposes. However, these two data sets
are used here to further validate extensions of the core methodology
(respectively for data augmentation and error analysis), therefore the
core approach proposed can be developed and evaluated using publicly
available data only.

3.3. Results
3.3.1. Reference case

The results obtained using the method and data described above are shown
in Fig. 3. In addition to the model’s output (i.e. time series with hourly
resolution), we analyzed its variability by computing the average prices by
day of the week and hour of the day. The temporal variations appear to
be globally captured by the model. A more detailed analysis relying on the
presented metrics features in the next subsection.

1https://transparency.entsoe.eu/
2https://www.rte-france.com/eco2mix/telecharger-les-indicateurs
3https://www.services-rte.com/
4http://developpement-durable.bsocom.fr
5https://www.erce.energy/graph/uk-natural-gas-nbp-spot-price
6https://markets.businessinsider.com/commodities/historical-prices/co2-european-

emission-allowances/euro/1.12.2014_1.2.2019
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Figure 3: Time series of prices on the French day-ahead market over four years (top),
average prices by day of the week (bottom-left) and average prices by hour of the day
(bottom-right)

A focus on a period of one month presented in Fig. 4 gives a more detailed
representation of the dynamics of day-ahead prices.
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Figure 4: Time series of prices on the French day-ahead market over one month

3.3.2. Advanced calibration
Hyperparametrization. In Fig. 5, we show how tuning the variability hyper-
parameter of the model during calibration can improve the out-of-sample per-
formance as measured by the RMSE and �sd metrics. This hyperparameter
is equal to the sum of the weights !i introduced in Eq. (9), which are added
to the minimal and maximal price values used for estimating the parameters
↵c0 for each production class. We ensure that the weights are added in a
balanced way so that the mean price of the set remains unchanged.

In other words, weights are used during the training phase when we esti-
mate the ↵ parameters of the sell prices. Let us recall that data sets are split
according to the class of the production unit considered to be marginal. For
each production class, when considering only the relevant time steps accord-
ing to the marginality criterion, we have a subset of observed prices and the
corresponding explanatory variables. We identify the time corresponding to
the lowest and highest market prices and we assign extra weights only to these
two time steps. We call the sum of added weights the variability hyperparam-
eter. The weights are shared between these two points so that the average of
observed prices remains unchanged after assigning these new weights.
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Figure 5: Out-of-sample performance for different values of the variability hyperparameter

We observe in Fig. 5 that hyperparametrization can help to improve the
dynamics of the simulation (i.e. the variation of the simulated prices is more
similar to the variation of the observed prices) at the expense of lower global
accuracy as measured by the RMSE.

Data augmentation. Due to data availability issues, we applied the technique
presented in subsection 2.7 on the supply curves only for the year 2015. We
tested the performance on the year 2016 where more price spikes are observed.
In the reference case, the spikes are not fully captured, which lead to degraded
performances compared to the other simulated years as measured by our two
metrics. As training sets, we consider 12 additional synthetic years with a
relative variation of hourly traded energy volumes from -3% to +3% by steps
of 0.5%. In Fig. 6, we represent the performance obtained when averaging
the simulated prices for 2016 obtained using the models trained with different
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synthetic data sets (e.g. the case "demand variation 1.0%" is obtained by
averaging the outputs obtained with the models trained using the data sets
-1.0%, -0.5%, 0.0%, 0.5% and 1.0%).

Figure 6: Out-of-sample performance for different augmented data sets (training set: 2015,
testing set: 2016)

Contrary to the results obtained with different variability hyperparameter
values, the data augmentation approach tends to increase the global accuracy
at the expense of less realistic price variations.

The advanced calibration techniques proposed in this subsection impact
model performance over the whole test period, but they do not have a sig-
nificant impact on simulation outcomes during hours corresponding to price
spikes. This is likely due to the linear formulation of the marginal cost proxy.
The training phase enables us to estimate parameters that provide a relevant
compromise in most cases, but performances are still to be improved for price
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spikes. The presented calibration techniques allow us to vary the importance
of the points in the training data set (hyperparametrization) or to consider
alternative training data sets (data augmentation), without modifying the
marginal cost proxy formulation. The model could be further extended, for
example by introducing non-linear relationships between price offers and mar-
ket drivers (piecewise-linear, quadratic, etc.).

3.3.3. Benchmark
We aim to (i) assess the benefits of the model calibration to estimate the

contribution of statistics to our structural model, and (ii) compare our perfor-
mance to purely data-driven methods (i.e. linear regression as a reference for
statistical modeling and random forests as a reference for machine learning
modeling). The results are summarized in Fig. 7. We observe that model cal-
ibration, which corresponds to our reference case, improves the performance
for our two metrics. Also, when we consider only a basic data set consisting
of power system data as an input for the statistical and machine learning
models (i.e. excluding information about prices and costs), our calibrated
model tends to perform better. Nevertheless, when considering an extended
data set for calibration, which includes power system and market data (fuel
costs and day-ahead prices in the neighboring bidding zones), the purely data-
driven approaches tend to be better at exploiting correlations between prices
on different markets.

Although purely data-driven approaches perform well in this case study,
they are given only as a reference since they do not fulfill the objectives set
in the introduction of this paper, which is to propose a suitable method for
prospective studies. As these methods exploit the outcome of past observed
situations and do not intrinsically consider the price formation mechanism,
they are less relevant to study the impact in terms of prices of long-term
scenarios where major system changes are considered. As requirements for
prospective studies, the model must offer the possibility to estimate the po-
tential consequences of changes in electricity mix or market design. By con-
struction, structural models are well-suited to integrate the technical con-
straints imposed by the electricity mix, and the optimization problem can be
extended beyond the current formulation if needed. Nevertheless, our data-
driven approach would not be suitable for scenarios which radically differ from
the training data set (e.g. in the case of 100% renewable energy). First of
all, in case of radical changes, the behavior of market participants will differ
from the behavior inferred from historical data. In addition, the bias cor-
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rection term �t,z in Eq. (4) reflects a periodicity of spot prices that would
also change in case of a major evolution of the energy mix. Regarding the
market design, our model represents the price formation induced by a zonal
double-sided auction market with uniform pricing. The impact of the design
of other electricity markets on the day-ahead market is not the object of this
case study, but it could be the focus of additional analyses under the current
framework. For example, in the case of France, the ARENH mechanism forces
EDF to sell nuclear electricity to competitors in order to mitigate the effect
of EDF’s historical monopoly on the French energy supply (up to 100 TWh
of electricity at EUR 42 per MWh from 2015 to 2018). Market participants
might want to resell a share of this energy at a higher price. To do so, they
would only have to bid the ARENH price since the day-ahead market is pay-
as-clear (this would correspond to an additional offer in our model and the
availability of nuclear plants would then be reduced accordingly). Sensitivity
analyses can be performed in order to assess how the ARENH price, the total
ARENH volume, or the percentage of ARENH resold could impact prices on
the French day-ahead market.
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Figure 7: Performance comparison of benchmarked models

4. Sensitivity analysis and discussion

4.1. Sensitivity analysis of initial conditions
When we initialize the parameters ↵c,0 to a different value for each pro-

duction class, we make assumptions on the merit order (i.e. the energy is
supplied in priority by the production class with the lowest cost, then the
second lowest, and so on). This initial choice has an impact on the parameter
estimation procedure, since the marginal unit for each hour determined while
solving the market clearing problem directly depends on this merit order. In
this section, we perform a sensitivity analysis to investigate how alternative
cost scenarios affect the initial merit order and as consequence the final result
of the calibration. To do so, we initially assign five distinct constant prices to
our five production classes (i.e. nuclear, hydro, gas, coal and oil) and consider

29



all possible permutations, then we analyze the initial merit order for the best
decile in terms of RMSE (see Fig. 8).

Figure 8: Best initial merit orders (first decile)

The results illustrate that the model initialization should be consistent
(e.g. nuclear to constitute a less expensive baseload and oil for more expen-
sive peaks). The place of hydro in the merit order is likely due to the strategic
use of stock during high-price hours. Therefore, since the initial merit order
impacts the assessment of hourly marginal production classes, the initializa-
tion must be considered carefully.

4.2. Impact of unexpected events
The occurrence of an unexpected event can influence selling and procure-

ment requirements. Here we assess the impact on simulation errors due to
temperature anomalies (i.e. the difference between the observed atmospheric
temperature and the long-term average) and the impact of unexpected un-
availability of production units. The hourly temperatures are spatially aver-
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aged for the French bidding zone in order to consider a single representative
temperature for each hour. Regarding the production unavailability published
on the ENTSO-E transparency platform, we distinguish between planned out-
ages (e.g. maintenance) and forced outages (e.g. plant failure), where only
the second category is considered as being unexpected. The evolution of un-
availability is shown in Fig. 9.

Figure 9: Unavailability of production units

We perform regressions between the prediction errors of simulated prices
on the out-of-sample data set and our variables quantifying unexpected events
using the Loess procedure [40] (i.e. locally estimated scatterplot smoothing).
For the univariate cases, a coefficient of determination R2 of 0.10% is obtained
for the temperature anomalies and 1.23% for the impact of forced outages. In
the bivariate case, the coefficient of determination is not improved compared
to considering only forced outages (R2 = 1.14%). The results for forced
outages are presented in Fig. 10.
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Figure 10: Impact of forced outages on prediction errors. Hourly values (black dots), their
corresponding densities (blue lines) and locally estimated scatterplot smoothing, i.e. Loess
(the estimation is shown by the solid red line and the 95% confidence interval by the dashed
red lines)

4.3. General remarks
The case study illustrates how the method can be implemented to sim-

ulate prices on the French day-ahead market. The model makes it possible
to simulate price dynamics and calibrate improved performance. Exploiting
fundamental data proves interesting to simulate these prices over the long
run. We note that the French market is characterized by a dominance of
nuclear power plants operated by a single electricity producer (EDF). This
makes the French case particular and further analyses of other markets could
be the purpose of further work.

Moreover, the model captures the main characteristics of price dynamics
but underestimates the prices in case of spikes. The formulation of sell order
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prices could be extended to include non-linear price increases in case of limited
supply margins.

Finally, for prospective studies, scenarios could be generated to assess the
potential impact of the evolution of fundamentals, such as the demand, energy
mix or fuel and emission costs. For the French market, an evolution of the
energy mix could be considered in light of the studies made by RTE to reach
carbon neutrality in 2050 rather by mainly developing nuclear power, or by
significantly increasing the share of renewable energy, or a balanced combi-
nation of both. Results for this distant future have to be studied critically,
but analyzing simulated prices during the upcoming transition years leading
to these significant changes can be informative for decision-makers. For de-
tailed studies at the European level, scenarios could for example be based
on the Ten-Year Network Development Plans (TYNDP) published every two
years by ENTSO-E. When using scenarios, some price-sensitive factors, such
as flows in interconnections and storage usage, should be made part of the
optimization problem. The aim here is to ensure that these variables remain
internal to the model and thus become dependent on spot prices. To do so,
multiple bidding zones can be simulated at once in order to compute intercon-
nection flows with the model. Moreover, the optimization problem presented
by Eq. (1) could be enhanced with additional constraints in order to actively
manage storage assets, so that storage management also becomes internal to
the model (such constraints typically account for capacity, state of charge,
efficiency and ramp limits of storage assets).

5. Conclusions

Long-term simulations of wholesale electricity prices help to support in-
vestment and policy decisions. Structural models of day-ahead markets,
which enable to account for both the price formation mechanism and techno-
economic constraints of the power system, are commonly used in the indus-
try for such prospective studies. These models are built upon theoretical
foundations and make it possible to find an optimal price corresponding to
the maximization of social welfare. Nevertheless, empirical testing of models
contributes to verify that the theory reliably accounts for the observations,
and data-driven approaches can help to reduce the gap between theory and
practice. While many models developed for electricity price forecasting are
presented in the academic literature, methods specifically designed for long-
term considerations that propose to combine optimization and statistical ap-
proaches are less common. In this paper, we propose a model which meets the
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aforementioned criteria. Having a bottom-up approach with a high granular-
ity starting from production units for the supply side allows us to introduce
a detailed and modular formulation of the market orders, which is suitable to
properly leverage the power system and market data. We introduced a calibra-
tion method of structural model parameters capable of exploiting real data
in a differentiated fashion by considering the production classes separately,
emphasizing key market conditions and integrating additional price informa-
tion from real supply curves data. The method has been validated using data
relating to the French market from 2015 to 2018. The global price dynamics,
especially the hourly and weekly variations, has been captured by the cali-
brated model on out-of-sample tests. However the amplitude of price spikes
is underestimated and could be the focus of future work for the more specific
formulation of the orders’ prices. The case study shows that the calibration of
parameters using real data improves the accuracy of the simulations. More-
over, the calibrated model reaches performances on historical data that are
close to the ones obtained using purely data-driven methods, while also ful-
filling our requirement regarding the possibility to explicitly model changes
in the electricity mix or market design. A sensitivity analysis revealed the
importance of initially configuring the model with a realistic merit order to
ensure that the model parameters are properly calibrated. For future work,
the model can be extended by incorporating additional technical constraints,
such as ramp rate limits of generation units, and by modelling additional
market orders corresponding to the demand side flexibility. Finally, scenar-
ios corresponding to the likely or desired evolution of the power system can
be formulated and be used with our calibrated model thanks to Monte-Carlo
simulations in order to estimate the possible consequences of the considered
changes on wholesale electricity prices.
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