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Abstract: Portable sensors have emerged as a promising solution for personal exposure (PE) mea-
surement. For the first time in Île-de-France, PE to black carbon (BC), particulate matter (PM), and
nitrogen dioxide (NO2) was quantified based on three field campaigns involving 37 volunteers
from the general public wearing the sensors all day long for a week. This successful deployment
demonstrated its ability to quantify PE on a large scale, in various environments (from dense urban
to suburban, indoor and outdoor) and in all seasons. The impact of the visited environments was
investigated. The proximity to road traffic (for BC and NO2), as well as cooking activities and
tobacco smoke (for PM), made significant contributions to total exposure (up to 34%, 26%, and 44%,
respectively), even though the time spent in these environments was short. Finally, even if ambient
outdoor levels played a role in PE, the prominent impact of the different environments suggests that
traditional ambient monitoring stations is not a proper surrogate for PE quantification.

Keywords: mobile measurements; ambient monitoring; urban pollution; microenvironments; air quality;
Île-de-France

1. Introduction

Studies based on small sensors for air pollutant measurements are associated with very
different objectives and fields: regulatory monitoring [1], the use of mapping and models [2],
monitoring of industrial sites [3], the characterisation of very specific environments [4] and
sources [5], the measurement of health impacts [6], and even studies of climate concern [7].

The quantification of personal exposure (PE) to pollutants is a field of particular
interest within the sensors community, even though there is no clear consensus on the
definition of the term itself nor standard procedure for its quantification. Indeed, PE has
been employed to define slightly different metrics. For instance, Ostro et al. [8] deduced PE
from chemistry transport models (and, therefore, only considered outdoors pollutants). PE
was also measured on the field, either using static measurement [9] or mobile sensors [10].
It is also possible to combine pollution sensors with respiratory frequency and flow mea-
surements to calculate exposure as the amount of pollutants actually inhaled [11–13]; more
advanced research has even studied the impact of the breathing cycle on the accuracy and
representativeness of the sampled air [14].

Several studies have already focused on PE quantification. However, many suffered
from poor temporal resolution, such as those using passive tubes for nitrogen dioxide
(NO2) quantification or filter-based measurements for particulate matter (PM) [15–18].
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The paramount importance of the sampling time resolution has already been recog-
nized [19]. Other works focused on very specific activity or groups of persons, such
as road traffic [12,20] or children [18,21–23]. On the other hand, the number of volunteers
carrying the sensors and the duration of the campaigns was sometimes low: three volun-
teers for 2-h trips [12], or only one volunteer for successive 24-h measurements [24], or only
a proof-of-concept of a few hours [25]. These limitations may preclude the characterization
of PE associated with different environments (considered individually). Even among stud-
ies exceeding the above-mentioned limits [26–29], few have conducted investigations on
several pollutants simultaneously and even fewer have included measurements of both
gases and particles.

Portable sensors are powerful tools for innovative investigations. Because they are
less expensive than traditional instruments, as well as small and lightweight, many units
can be purchased and as many people can be easily equipped for 24/7 personal exposure
monitoring. Nevertheless, the questionable accuracy and precision of such sensors as well
as the drawbacks inherent to citizen science are limitations that need to be considered.
Different strategies, with a degree of correction, have been implemented. Some works [13]
rely only on following the known procedures (manufacturer manual and statistical treat-
ment), other studies assess the sensors versus reference instruments [30,31], and others
even apply a correction on the sensors [32]. Regarding citizens science, several published
works document the best practices and errors to be avoided [22,23,33].

Île-de-France (the region around Paris) is the most populated region in France (~12 mil-
lion inhabitants). Its airborne pollutants exceed thresholds and WHO recommendation
limits; NO2, PM2.5, PM10, and ozone, in particular, are still a concern [34]. Studies have
already investigated PE in Île-de-France; nevertheless, this research focused on very specific
volunteers or distinct occupations, including taxi drivers [35], office workers [36], particular
activities (such as cyclists) [37], or the narrow population category (such as children) [21].
However, investigations at the individual level which aim to characterise PE of the general
public in Île-de-France remain scarce.

The Polluscope project (funded by the French National Research Agency) precisely
addresses the previously mentioned limitations and suggests a robust experimental protocol
based on optimized previous works, including a complete characterisation of the sensor
performances [30]. This project initiated in 2016 aims at quantifying PE for the general
public in Île-de-France. To achieve this goal, five measurement campaigns were conducted
in the frame of the project and two are scheduled for the years 2021–2022. These campaigns
(conducted in different seasons) involved a total of 139 volunteers equipped with portable
and geolocalised sensor units all day long during one week. These large experimental
deployments yielded a 1-min data set for PM, black carbon (BC) and NO2.

In this paper, PE is considered for a given pollutant as the concentration to which an
individual is exposed to. We will discern between overall exposure (over one or several
days) and PE relative to specific environments. The present work is based on the two first
campaigns of the project plus another field deployment conducted outside Polluscope. This
paper aimed at (i) giving a first quantification of PE for BC, NO2, and PM in Île-de-France,
(ii) defining each environment contribution; and (iv) discussing the relevance of using
ambient measurement as a PE surrogate.

2. Materials and Methods

The experimental strategy for PE measurement went through the deployment of three
sensors. Three campaigns were conducted, where volunteers were equipped with several
units of each sensor for a week.

2.1. Characterization of the Sensors

The characterization of the sensors was conducted according to a robust and validated
protocol, as extensively detailed by Languille et al. [30]. In 2017, a selection stage was
conducted; it consisted in both static and mobility tests, based on the sensors available on
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the market at that time. To begin with, all the sensors of interest were put in measurements
for several continuous days in ambient air, sheltered from rain. The co-located reference
instruments, maintained by the SIRTA station (Available online: http://sirta.ipsl.fr (ac-
cessed on 5 January 2022)) and included in the research infrastructure ACTRIS (Available
online: https://www.actris.eu/ (accessed on 5 January 2022)), allowed a first appraisal of
the sensors’ quality and helped to rule out sensors which gave aberrant signals. A short
list was then drawn up. In order to confirm the ability of these sensors to perform PE
measurements, they were submitted to mobility tests. Three people were equipped with
three units of each sensor’s model. During the day, they followed a previously set route,
going through different environments and comprising transient stops close to measuring
stations taken care of by Airparif (the accredited association for air quality monitoring
in Île-de-France, Available online: https://www.airparif.fr (accessed on 5 January 2022)).
From this selection step, three sensors were selected out of the eight tested devices: AE51
(AethLabs, San Francisco, CA, USA) for BC measurements; Canarin (developed within
UMR 7606 Sorbonne University—CNRS) for PM measurements; and Cairsens (Envea,
Poissy, France), previously called Cairsens, for NO2 measurements.

Then, the selected sensors underwent the assessment stage; reproducibility between
about fifteen units was quantified, as well as potential interferences with humidity and other
pollutants. In 2018, the fifteen units of each sensor were tested simultaneously in ambient air,
in static measurements, for a week. For the AE51 and the Canarin sensors, references were
provided by the colocation of the SIRTA instruments. In order to encounter high enough
NO2 levels, the Cairsens sensors were tested in the direct vicinity of a traffic-oriented
Airparif station, used as reference. In Languille et al. [30] and its supplementary material,
the Cairsens sensors demonstrated their ability to capture a coarse NO2 concentration
variability, even for ambient levels close or below 20 ppb. Due to a more complex setup,
only one campaign (from 28 August to 4 September 2018) was conducted for the Cairsens,
at the traffic site, whereas two campaigns (from 26 June to 2 July, and from 5 to 9 November
2018, respectively) were organised at SIRTA for the AE51 and Canarin sensors. These
qualification campaigns were conducted as close as possible to the PE measurements
and, therefore, accounted for any eventual drift endured by the sensors over the weeks
and months.

The integrated performance index (IPI) designed by Fishbain et al. [38] was calculated
to evaluate the reliability of pollutant sensors. This metric combines seven parameters: root
mean squared error (RMSE); Pearson, Kendall, and Spearman correlations; data loss; match
score (metric assessing the ranking order similarities); and the lower frequencies energy
(LFE, estimating the sensor ability to properly capture the signal variability). The resulting
IPI ranged from 0 (the worse) to 1 (the best grade).

Generally, all the sensors gave satisfactory results. The correlations with the reference
instruments were elevated (mean r = 0.8); the data loss was very seldom (less than 10%
on average) and the RMSE was low (a third on average) compared to the ambient levels
(measured by the reference instruments). More specifically, the AE51 sensors were graded
a high IPI (around 0.8), an averaged Pearson correlation of 0.8, and a reasonably low RMSE
(below 350 ng·m−3). The Cairsens sensors showed a Pearson correlation (r) above 0.75
and a RMSE always below the quantification limit given by the manufacturer (20 ppb),
resulting in a satisfactory mean IPI of 0.77. The Canarin sensors showed both a high
Pearson correlation (mean r = 0.84), a low RMSE (6 µg·m−3 on average), and a high mean
IPI (0.74). It is noteworthy that the PM sensor extracts three PM size classes from one single
measurement. The unexpectedly high correlation between the PM size classes suggests
that the Canarin was not able to detect all the specificities belonging to each size class. In
the following, this study focuses mainly on PM2.5 as it was both the best measured [30] and
the most relevant class regarding epidemiological studies [39]. The detailed performances
for all the BC, NO2, and PM sensor are given in SI 1 (Tables S1.1–S1.3).

http://sirta.ipsl.fr
https://www.actris.eu/
https://www.airparif.fr
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Finally, the controlled chamber tests helped to pinpoint that the AE51 and Cairsens
sensors could show an artefact in case of a sudden and pronounced humidity variations.
This is an important finding that is to be taken into account for the quality control step.

2.2. Presentation of the Three Measurement Campaigns

All the three devices were deployed during field campaigns, where each volunteer
from the general public was equipped with one Cairsens and one Canarin. Due to its
higher cost, only six units of the AE51 were available and distributed among the volunteers.
They were asked to wear them during the day and to put them on a relevant place when
the persons are at home (close to their bed when they are sleeping for instance). In total,
37 volunteers were involved, which represents 65 days of field campaign and 1,144,616 data
points (at 1 min time step).

The three campaigns are hereinafter called spring, autumn, and winter campaigns.
The first two were included in the Polluscope project, and all the sensors were shared
between the volunteers and the measurements, therefore, took place in parallel. On the
contrary, the winter campaign was a side experiment, with limited manpower and only
one set of sensors (one unit of each). This third campaign was included in another project;
with a focus on wood burning, the involved volunteers were all equipped with wood
burning appliances at home. Even considering these specificities, all three experiments
used the same three sensors and the Île-de-France region as geographical location. Table 1
summarizes the three campaign dimensions. The volunteer names were coded with a two-
letter tag (AA, AB, AC, and so on until BI) for anonymization purposes. The association
between the sensors and the volunteers is presented in SI 2 (Tables S2.1–S2.3).

Table 1. Overview information on the three campaigns (time step = 1 min).

Campaign Start–End Number of Volunteers Number of Measurements

Spring 18–22 June 2018 16 302,506
Autumn 19–26 November 2018 15 573,505
Winter 15 January–17 March 2019 6 268,605

2.3. Data Invalidation

These portable instruments were submitted to harsh conditions, which induced sig-
nificant artefacts. Languille et al. [30] showed the impact of environmental changes. An
in-depth data curation was conducted manually. More precisely, abrupt changes in humid-
ity, temperature, or atmospheric pressure (monitored by the sensors) were tracked. Single
measurements with clearly unexpected value (obvious outliers exceeding the neighbour
values by one order of magnitude), even without simultaneous environmental change
recorded, were invalidated (because most likely due to an artefact). As a result, several
data points in the range of a few thousand were invalidated, which represents about 1% of
the total measurements.

The limits of quantification are not specified by the manufacturer for the AE51 and
Canarin. In order to keep all the variability information, as well as the same post processing
of the data from all three sensors, no data were ruled out because of low value.

3. Results
3.1. Overview of the Three Campaign Results and Comparison with Other Studies

The two campaigns conducted in the frame of the Polluscope project (namely spring
and autumn) were achieved with the same protocol and the same process for the recruitment
of volunteers. Figure 1 presents the volunteer positions recorded by the embedded GPS
(1 min data points); a limitation of this approach is the weak signal received in certain
environments (especially in the underground) leading to sporadic lack of location data. The
routes followed by the volunteers during those two campaigns were analogous, with travels
both in the inner Paris city and in the suburbs. Conversely, the volunteers’ recruitment for
the winter campaign (outside the Polluscope project) followed a different process, which
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resulted in noticeable different routes followed by the volunteers. As visible in Figure 1,
in winter, the volunteers commuting were oriented towards the suburban region and
slightly less in the very centre of the Parisian metropolis. This must be taken into account
when comparing the different campaign results. Indeed, during the spring and autumn
campaigns, the volunteers were more likely to be in close contact to heavy traffic and other
sources that characterise highly densely populated areas.

Toxics 2022, 10, 33 5 of 16 
 

 

The routes followed by the volunteers during those two campaigns were analogous, with 
travels both in the inner Paris city and in the suburbs. Conversely, the volunteers’ recruit-
ment for the winter campaign (outside the Polluscope project) followed a different pro-
cess, which resulted in noticeable different routes followed by the volunteers. As visible 
in Figure 1, in winter, the volunteers commuting were oriented towards the suburban 
region and slightly less in the very centre of the Parisian metropolis. This must be taken 
into account when comparing the different campaign results. Indeed, during the spring 
and autumn campaigns, the volunteers were more likely to be in close contact to heavy 
traffic and other sources that characterise highly densely populated areas. 

 
Figure 1. Location of volunteer measurements during the three campaigns over the Île-de-France 
region as well as the monitoring stations used in this study. 

Table 2 gathers the PE measured during the three campaigns; more precisely, the mean, 
standard deviation, as well as the maximum hourly mean, for BC (in ng·m−3), NO2 (in ppb), 
and PM (in µg·m−3). On average, BC and PM concentrations were higher (in the range of 
+50% and +200% respectively) in autumn compared to spring. This difference could be at-
tributed to seasonal variations in the ambient concentrations, as it was observed before [40]. 
However, during the winter campaign, PE to BC and PM were lower than in autumn, and 
even lower than in spring for BC. This might be due to the significant difference in the dwell-
ing and working locations of the volunteers. Indeed, suburban areas are known to be less 
impacted by PM and BC pollution [34,41]. Nevertheless, it is worth noticing that high hourly 
maxima were measured during the winter campaign, which is most likely due to the prox-
imity to wood burning appliances. On the opposite, the lowest hourly maximum was ob-
served for NO2 during the winter campaign. As the high hourly maximum is linked with 
traffic proximity, this assessment highlights the lesser importance of traffic in PE during the 
winter campaign (which is not linked with the season, but due to the volunteers location, as 
mentioned above). These observations underline the preponderance of the activities as PE 
drivers. It is noteworthy that no clear difference in the mean was observed for NO2 over the 
three campaigns. The high limit of detection of the Cairsens sensor is probably the reason 
[30]. It is, therefore, more relevant to study this sensor’s data during periods of higher con-
centration or focusing of the variations rather than general means. 

Figure 1. Location of volunteer measurements during the three campaigns over the Île-de-France
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Table 2 gathers the PE measured during the three campaigns; more precisely, the mean,
standard deviation, as well as the maximum hourly mean, for BC (in ng·m−3), NO2 (in
ppb), and PM (in µg·m−3). On average, BC and PM concentrations were higher (in the
range of +50% and +200% respectively) in autumn compared to spring. This difference
could be attributed to seasonal variations in the ambient concentrations, as it was observed
before [40]. However, during the winter campaign, PE to BC and PM were lower than
in autumn, and even lower than in spring for BC. This might be due to the significant
difference in the dwelling and working locations of the volunteers. Indeed, suburban
areas are known to be less impacted by PM and BC pollution [34,41]. Nevertheless, it
is worth noticing that high hourly maxima were measured during the winter campaign,
which is most likely due to the proximity to wood burning appliances. On the opposite,
the lowest hourly maximum was observed for NO2 during the winter campaign. As the
high hourly maximum is linked with traffic proximity, this assessment highlights the lesser
importance of traffic in PE during the winter campaign (which is not linked with the season,
but due to the volunteers location, as mentioned above). These observations underline the
preponderance of the activities as PE drivers. It is noteworthy that no clear difference in
the mean was observed for NO2 over the three campaigns. The high limit of detection of
the Cairsens sensor is probably the reason [30]. It is, therefore, more relevant to study this
sensor’s data during periods of higher concentration or focusing of the variations rather
than general means.
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An abundant literature studying PE measurement using small sensors is available.
Nevertheless, a large part of these studies focus on epidemiology. Furthermore, NO2
is, most of the time, measured with passive samplers which induce both a coarse time
resolution and a high limit of detection. Table 2 presents a selection of the most relevant
studies conducted worldwide to be compared with the PEs measured in this work in Île-
de-France. All the discussed studies used the AE51 for BC measurements, the Cairsens was
only used by Borghi et al. [42], and the Canarin was not used at all due to its newer release.

Large differences were observed in measured levels among these studies. In Stockholm,
Merritt et al. [12] observed slightly higher levels than in our study, as it was expected in
traffic-influenced environments. In Brisbane and Birmingham, relatively low PE to BC were
published—600 ng·m−3 and 1300 ng·m−3, respectively—which is still in the same range
as PE measured in Île-de-France [24,31]. In Delhi, and especially in winter, PE to PM and
BC were more than one order of magnitude higher than our findings [43]. This significant
discrepancy is probably mostly due to the high ambient levels monitored is this city [44].
Regarding PM exposures, important discrepancies were observed between western cities,
such as Birmingham, Milan, or Göteborg (in the single- or low double-digit µg·m−3 range),
as well as heavily polluted cities, such as Delhi and Beijing, with the mean PE exceeding
hundred µg·m−3 [43,45]. Concerning NO2, results from all studies ranged from single-digit
to low double-digit ppb [17,18,31,42,46]. This is consistent with our results, taking into
account the high Cairsens detection limit (20 ppb).

Table 2. Mean measured exposure and standard deviation (sd) in different studies (BC in µg·m−3,
NO2 in ppb and PM in µg·m−3).

Study BC NO2 PM1 PM2.5 PM10

This study

Spring mean (sd) 1.04 (1.97) 9 (10) 5 (10) 7 (16) 8 (17)
Spring hourly max. 7.49 45 311
Autumn mean (sd) 1.68 (1.52) 9 (12) 15 (18) 22 (32) 24 (36)

Autumn hourly max. 8.97 172 490
Winter mean (sd) 0.96 (1.59) 6 (19) 8 (19) 13 (30) 14 (34)

Winter hourly max. 11.27 39 392

Other studies

[43] Delhi Win 22.60 (14.90) 484 (230)
[43] Delhi Sum 3.71 (4.29) 53,9 (136)

[12] Stockholm Spr,Aut,Win 2.07 (1.62)
[24] Brisbane Spr,Aut,Win 0.60

[31] Birmingham Sum,Aut 1.30 (2.20) 23 (50)
[17] Oxford year 15

[18] Southhampton year 5
[46] Birmingham 17 55

[42] Milan Spr,Aut,Win 22–37 15–42
[45] Pekin Aut 102.5

[15] Göteborg Aut,Win 5

For the “other studies”, the season is specified when it is clearly part of the campaign design. Spr, Sum, Aut, and
Win refer to spring, summer, autumn, and winter, respectively; year is used when the whole year was covered.

To conclude, the overall PE values measured in Île-de-France in this present study
are much lower than results from heavily polluted Indian or Chinese metropolis (hourly
maxima in Paris were in the same range as the mean in Delhi). The results disclosed here
are closer to studies conducted in more similar western cities.

Such studies involving volunteers equipped with sensors allow comparisons between
each other, which is valuable to understand the height of the exposure range that citi-
zens are exposed to. However, one of the major assets of the portable sensors is the PE
characterisation for each single volunteer with a fine time resolution.

Figure 2 shows an exemplary time series of the three sensors carried by volunteer
AH; it shows the typical signal variation observed during the campaigns. Both BC, NO2,
and PM measurements presented long low-value periods and short events with high
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concentrations. More specifically, first assumptions can be made based on these time series,
without considering the environment tags (identified based on the schedules given by the
volunteers studied in the next section). For instance, the two first BC spikes that occurred on
19 and 20 June in the late afternoon were concomitant with NO2 peaks. The time in the day
and the correlation of these two pollutants suggest that these were traffic episodes. On the
contrary, in the evening of 19 June (around 22:00), another episode was characterised by a
chemical fingerprint only driven by a huge PM signal (BC and NO2 stayed low). This event
resembled an indoor pollution episode. Indeed, long tailing after the peak could be due
to non-dispersive conditions peculiar to indoor environments. Furthermore, the chemical
fingerprint of this episode rules out any combustion source (such as traffic) and is more
alike cooking or cleaning activity patterns. Nevertheless, these environment and activity
attributions were based on assumptions and need to be confirmed for a strengthened
identification.
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3.2. Environments: Characterization and Contribution to PE

Volunteers filled in detailed schedules about their different activities throughout the
day. This valuable extra information allowed investigating PE for each single environ-
ment. Variations in level of details, completeness, and accuracy in the schedules given by
volunteers led us to distinguish five different environment types, namely “commuting”
(car, motorbike, bus, train, underground, etc.), “outdoor” (for outdoor activities other than
commuting), “indoor” (by default for time spent indoor), “polluted indoor” (for obvious
polluted indoor environments or activities such as cooking, hoovering, smoking, etc.),
and “wood burning” (nearby a running wood burning appliance, specific to the winter
campaign). It is noteworthy that no polluted indoor episode was identified during a “wood
burning” period. The environments identified using the volunteer’s schedule are plotted on
Figure 2. The most frequently visited environment was indoor, where the levels were low
and stable. More seldom, polluted indoor episodes were observed, as shown on the time
series, on 19 June around 22:00, which was due to cooking activities. During commuting
periods of time (early morning and afternoon), increased PE was monitored, especially
for BC and NO2. Like most volunteers, time spent outdoors is short. This is an expected
result knowing that, in France, more than 85% of the lifetime is spent indoors [47]. It is
nevertheless possible to pinpoint transient outdoor periods on Figure 2 (after the evening
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commuting trips and before the morning one). This first overview helped to show the huge
impact that the activities had on PE. Nevertheless, this qualitative approach is not sufficient.

Table 3 summarizes the mean PE by environment for each campaign. For all pollutants,
the lowest levels were measured indoor. On the opposite, the highest BC and NO2 PE
were observed during commuting. Polluted indoor environments were characterized by
the highest PM2.5 levels and by rather high BC values (especially close to wood burning
appliances). At last, outdoor, varied levels were monitored, depending on the conducted
activities and possibly the ambient levels.

Table 3. PE mean for each environment and for each campaign (for BC, NO2, and PM2.5 for all volunteers).

Environment BC (ng·m−3) NO2 (ppb) PM2.5 (µg·m−3)

Spring

Commuting 3722 (1886) 24 (6) 6 (1)
Polluted indoor 1555 (803) 11 (3) 115 (80)

Indoor 574 (13) 9 (2) 5 (1)
Outdoor 1986 (960) 19 (6) 6 (3)

Autumn

Commuting 4590 (932) 21 (7) 35 (6)
Polluted indoor 3607 (1275) 11 (6) 113 (98)

Indoor 1331 (115) 8 (3) 17 (2)
Outdoor 3178 (379) 22 (7) 41 (6)

Winter

Commuting 2455 (782) 16 (4) 11 (8)
Polluted indoor 1937 (1377) 11 (3) 53 (47)

Indoor 542 (539) 5 (2) 8 (7)
Outdoor 1187 (874) 11 (7) 15 (17)

Wood burning 2085 (2104) 4 (2) 50 (88)

Studying the mean PE encountered in each environment offers valuable information.
However, to fully understand the possible influence that this represents to health, it is of
great importance to include the amount of time spent in each environment. The obtained
metric is the contribution of each environment to the total PE. Its formula is given below
for a given pollutant.

ContributionEnv. i =
ExposureEnv. i
ExposureTotal

× %TimeEnv. i

A systematic data processing was conducted to determine the PE contribution of
each environment for a given pollutant, using this formula. The resulting contribution
(ContributionEnv. i) is the ratio between the mean exposure in this environment and the total
exposure (i.e., for all the environments) multiplied by the percentage of time spent in this
particular environment. The figures for all volunteers are presented in SI 3 (Figures S1–S3),
and two symptomatic examples are shown here (Figures 3 and 4).

Volunteers AI and AH spent most of the time indoor (from 78% to 93%), which is
in agreement with previous studies [48]. Nevertheless, as the concentrations measured
indoors are rather low, its contribution is lower than the time spent in it. On the contrary,
the few and short indoor polluted events were characterized by such high values that can
represent a significant contribution to the total PE. This is clearly visible in Figure 3, which
shows how the volunteer AI spent only 2% of its time in polluted indoor environments,
but this contributed to 41% of its PE to PM2.5. Similarly, little time was spent in commuting,
but this environment can represent an important contribution to BC and NO2 PE (Figure 4:
6% of the time but 34% and 15% of the PE to BC and NO2, respectively).

Epidemiological studies showed that both acute and long-term exposures have severe
adverse health effects [49]. This underlines the importance of monitoring both the ambient
levels and the short-term exposures associated with specific activities or environments.
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The strong impact of short time spent in polluted environments is obvious. On the
other hand, PE was higher during autumn for most environments, in particular outdoor,
which follows the ambient measurements trend. This would suggest that ambient levels
could influence PE both outdoor and in the other environments. Based on that hypothesis,
several studies proposed using ambient monitoring as a surrogate for PE quantification.
This approach is discussed in the next section.
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3.3. Temporal Variability of PE and Correlation with Urban Background Levels

Computing diurnal cycles of compounds is a commonly used methodology for source
apportionment [50]. Therefore, we analysed the diurnal patterns of the measured pollutants.
Even if every single individual had his own schedule, common time habits were observed.
Figure 5 presents the average normalised diurnal pattern (normalisation achieved by
dividing by the mean value) for all the volunteers for the three campaigns. The BC pattern
showed two peaks: the first one occurred in the morning (around 08:00) was rather short,
while the second one started in the late afternoon (around 17:00) and lasted late, slowly
decreasing overnight. PM showed higher values overnight (from 20:00 to 02:00 roughly),
with a long peak beginning after the evening BC one. NO2 had a clearly different cycle
with maximum values during the day (from 08:00 to 21:00 approximately) and very low
levels at night. These diurnal patterns resemble the characteristic daily patterns attributed
to specific source in Île-de-France [50]. More precisely, the traffic pattern showed two peaks,
and the domestic wood burning pattern was defined by a longer and later peak in the
evening. These diurnal patterns are similar to the BC and PM2.5 diurnal cycles displayed in
Figure 5. Nevertheless, it is not straightforward to attribute this pattern to ambient outdoor
levels variations or to the volunteer’s activities (and therefore the visited environments)
following a certain schedule. These two possible explanations are discussed below.
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Intuitively, it seems that PE is both driven by outside pollutant levels and concentra-
tions encountered in specific environment, as well as potentially indoor levels. A critical
question in the epidemiological field is whether ambient outdoor monitoring conducted in
background stations is suitable as a surrogate for PE quantification. Based on satisfactory
enough high correlation between fixed outdoor monitoring stations and PE measurements,
several studies came to the conclusion that ambient levels have a strong impact on PE
and, subsequently, that ambient monitoring can be used as a proper surrogate for PE
quantification [11,15,16,43,45,51].

More specifically, Kim et al. [16] showed a correlation of 0.69 for PM2.5 (median of the
28 volunteers’ Spearman coefficients between ambient monitoring and their PE). Regard-
ing PM10, Hsu et al. [51] observed Spearman correlation coefficients (PE versus ambient
measurements) ranging from −0.18 to 0.79 among the 24 participants. Du et al. [45] pub-
lished Spearman coefficients of 0.81 for PM2.5 (PE versus fixed monitoring site, N = 114).
Similarly, Johannesson et al. [15] presented a correlation of 0.61 for PM2.5 (N = 25). Re-
garding BC, Pant et al. [43] observed a Spearman correlation of 0.72 (N = 204) and 0.28
in winter and summer, respectively (PE to BC versus PM2.5 ambient measurements).
Johannesson et al. [15] presented similar correlations using black smoke (BS) as a proxy
for BC ambient measurements (r = 0.65). Du et al. [45] published Spearman coefficients
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of 0.61 for BC (PE versus fixed monitoring site, N = 114). Obtaining these results, all the
above-mentioned studies concluded that fixed ambient monitoring stations could be used
as appropriate surrogates for PE quantification.

However, it seems noteworthy to highlight some limitations of this reasoning. First,
the Spearman correlation was considered in all these works (even if the normality of the
data sets are not systematically discussed). Unlike the Pearson correlation, it does not
quantify the linear relation between the two datasets, but the ranking order consistency of
the elements. For instance, Spearman correlation would not detect some disagreements
between ambient and PE measurements, such as discrepancies for extreme values. In the
previous sections, we showed that portable sensors were able to monitor quick environment
changes. This fine temporal resolution was possible because of the high measurement
frequency (time step of one minute). However, the correlation studies mentioned above
considered hourly [43] or daily averages [15,16,45,51]. Increasing the averaging time is
expected to artificially increase the correlation. Lastly, the representativeness of the sample
size was sometimes questionable (only six volunteers in winter in [43] and a total number
of only 25 data points in [15]).

For comparison purposes, similar correlation calculations were conducted in the
present work and, since the previously mentioned studies considered the whole available
PE data set (including indoors), it was necessary to apply the same calculation protocol for
a relevant comparison. Comprehensive correlations were computed for both Spearman
and Pearson, whereby each single volunteer was considered separately, and each campaign
was considered as a whole for time resolutions of 1 h and 1 day, as well as for the three
measured pollutants (BC, NO2, and PM2.5). These comprehensive correlation results are
presented in Table 4. The considered ambient monitoring stations were: Paris XIIIe for BC
measurements; Paris VIIe, Paris XIIe, and Paris XIIIe for NO2 measurements (three stations
were available); and Paris IVe for PM2.5. These stations are located on the map presented in
Figure 1.

Table 4. Comprehensive correlations between PE to each pollutant (BC, NO2, and PM2.5) and
background stations (Paris XIIIe for BC; Paris VIIe, Paris XIIe, and Paris XIIIe for NO2; and Paris
IVe for PM2.5) for each campaign (spring, autumn, and winter), for each time averaging (1-h and
1-day), for the correlations of Spearman and Pearson, and for each campaign as a whole (rs and
rp) and in-between the volunteers (In-vol rs and In-vol rP). This last metric refers to the correlation
between each volunteer (taken separately) and the monitoring station. The value range is given here
(as min, max).

Campaign Station Pollutant
1-h Average 1-Day Average

rS rP In-vol. rS In-vol. rP rS rP In-vol. rS In-vol. rP

Spring

Paris XIIIe BC 0.58 0.34 0.45, 0.74 0.23, 0.52 0.52 0.57 0.30, 0.90 0.29, 0.97
Paris VIIe NO2 0.27 0.26 0.21, 0.47 0.14, 0.38 0.17 0.26 −0.70, 0.60 −0.49, 0.86
Paris XIIe NO2 0.13 0.14 0.07, 0.47 0.05, 0.40 0.25 0.28 −0.30, 1.00 −0.24, 0.99
Paris XIIIe NO2 0.19 0.24 0.07, 0.50 0.10, 0.51 0.25 0.30 −0.40, 1.00 −0.49, 1.00
Paris IVe PM2.5 0.51 0.12 0.15, 0.69 −0.14, 0.68 0.64 0.41 −0.20, 1.00 −0.51, 0.97

Autumn

Paris XIIIe BC 0.71 0.54 0.67, 0.79 0.51, 0.66 0.74 0.68 0.48, 0.95 0.49, 0.96
Paris VIIe NO2 0.20 0.07 0.02, 0.52 −0.15, 0.49 0.07 0.02 −0.38, 0.90 −0.33, 0.93
Paris XIIe NO2 0.13 0.10 −0.16, 0.55 −0.13, 0.64 0.10 0.17 −0.94, 0.67 −0.77, 0.74
Paris XIIIe NO2 0.15 0.06 −0.07, 0.38 −0.18, 0.45 0.10 0.04 −0.83, 0.62 −0.83, 0.60
Paris IVe PM2.5 0.58 0.30 0.15, 0.88 0.00, 0.76 0.56 0.36 0.48, 0.90 −0.36, 0.94

Winter

Paris XIIIe BC 0.59 0.35 0.28, 0.77 0.07, 0.56 0.70 0.68 0.29, 0.93 0.07, 0.92
Paris VIIe NO2 0.16 0.23 −0.08, 0.48 −0.01, 0.53 0.35 0.40 0.10, 0.80 0.18, 0.67
Paris XIIe NO2 0.07 0.15 −0.17, 0.43 −0.15, 0.42 0.30 0.40 −0.40, 0.71 −0.05, 0.69
Paris XIIIe NO2 0.10 0.19 −0.07, 0.38 −0.04, 0.43 0.35 0.41 −0.40, 0.79 −0.20, 0.65
Paris IVe PM2.5 0.66 0.23 0.39, 0.84 −0.01, 0.79 0.55 0.38 −1.00, 0.97 −1.00, 0.95
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The first observation is that correlations out of the 1-day average data set are higher
than the 1-h average (about two thirds of the times). This means that the daily averaging
artificially increases the correlation. Regarding the correlations among each volunteer
considered separately, very wide ranges were observed (columns “In-vol” in Table 4 for the
value ranges and detailed results in SI 4, Figures S4–S6), particularly for NO2 where corre-
lations often went from extreme negative to extreme positive. This is partially explained
by the few amount of available data points, even leading to sporadic perfect correlations
(−1.00 or 1.00) when only two points could have been computed. This highlights the
primary importance of working with data sets as solid and substantial as possible, and
being cautious with less exhaustive ones.

In spite of these limitations, this correlation study showed a few clear trends. It is
notable that BC and, to a lesser extent, PM2.5 are the pollutants that show the highest
correlations. These two pollutants generally showed higher correlations during the autumn
campaign compared to spring. In comparison with others studies, fairly high correlations
were obtained. For instance, regarding BC, Johannesson et al. [15] and Du et al. [45] found
lower correlations than in this work for the autumn campaign (for 1-day average: 0.65 and
0.61, respectively, compared to rS = 0.74).

However, the correlation results were highly variable, in term of seasons, pollutants,
calculation method, average period of time, and among the volunteers. In addition, in
Section 3.2, we demonstrated the huge impact of activities and visited environments on
each single volunteer’s PE. This predominant variability in PE among individuals confirms
the primary importance to measure PE at the person-to-person level. This questions the
relevance of using fixed monitoring stations as surrogates for PE quantification.

4. Discussion and Conclusions

Environment contributions were successfully quantified, but only a relatively small
amount of volunteers filled in their schedules in a comprehensive way. Larger campaigns
(with more diversity among volunteers), additional measured pollutants, and possibly new
tools to track the volunteer activities (such as tablets) would be efficient ways to improve
the representativeness of the results. More consistency among the volunteers from one
campaign to another (keeping the same volunteers) would strengthen the comparison
consistency in-between seasons. The high limit of detection of the Cairsens sensor is
another limitation of this study. Consequently, conclusions regarding NO2, especially
in low-level environments (such as indoor), are not as solid as for the other pollutants.
A more accurate NO2 sensor would solve this drawback. The Cairsens manufacturers
improved the limit of detection, which is now below 10 ppb [52]. It is also noteworthy
that PM sensors might suffer from questionable performances in specific environments.
Indeed, it was recently shown that Canarin sensors significantly underestimate PM where
the chemical composition is significantly different from outdoor air, such as underground
stations. This is due to the difference of the average particles density (a parameter used to
convert the number of particles as determined by the optical sensor into PM concentration)
in underground stations, which are highly loaded with metals (Petit et al., unpublished
data). This could explain why, as seen in Figure 2, the BC values were higher (up to
30 µg·m−3) than the PM values (below 20 µg·m−3) during the first commuting episode.
Regarding the correlation calculations between PE measurements and ambient monitoring,
four background stations were used. Another perspective would be to fetch the ambient
data from the closest available station or even from the output of the predictive model used
by Airparif (combination of ESMERALDA, Heaven, and ADMS-Urban models) [53].

Despite its limitations, this study yields valuables conclusions. This was the first
time that PE to BC, NO2, and PM was measured in Île-de-France using portable sensors
carried by volunteers. Results showed similar levels as those previously measured in
comparable western urban environments, but much lower than in heavily polluted Indian
or Chinese metropolis.
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Environment contributions were successfully quantified, showing that some activities
can represent significant parts of the total PE, even with a short time spent in these envi-
ronments, especially in commuting trips (for BC and NO2), polluted indoor (for PM), and
wood burning vicinity (BC and PM). Taking actions on these environments is, therefore,
the most efficient way to mitigate PE.

Higher levels were observed in autumn than in spring, and lower levels were observed
in a more suburban-oriented campaign than in the more densely populated area. This
shows the importance of both seasonal and geographical gradients.

At last, we investigated a remaining open question of particular interest in epidemi-
ology, i.e., whether fixed ambient monitoring stations act as proper surrogates for PE
quantification. Rather high correlations were observed between ambient levels and PE
measurements (e.g., rS = 0.74 for 1-day average BC during the autumn campaign). Nev-
ertheless, the varied observed correlations (PE versus ambient monitoring) in between
volunteers, as well as for different pollutants, seasons, campaigns, averaging time peri-
ods, and monitoring stations, demonstrated the complexity and the diversity of the PE
among each individuals. This underlines the questionable use of ambient monitoring as a
proper PE surrogate and highlights the need to keep refining PE quantification, possibly
using portable sensors, potentially associated with results from multiple static instruments
localised in various environments or high-resolution modelling tools.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/toxics10010033/s1, Figure S1: Environment contribution to PE for volunteers AD, AH and
AI during the spring campaign, Figure S2: Environment contribution to PE for volunteers AT, AY,
AU, AQ, AD, AZ and AI during the autumn campaign, Figure S3: Environment contribution to PE
for volunteers BI, BE and BD during the winter campaign, Figure S4: Correlation matrices between
PE measured by sensors and urban background concentrations monitored by fixed stations for the
spring campaign (1-h averaged data set), Figure S5: Correlation matrices between PE measured by
sensors and urban background concentrations monitored by fixed stations for the autumn campaign
(1-h averaged data set), Figure S6: Correlation matrices between PE measured by sensors and urban
background concentrations monitored by fixed stations for the winter campaign (1-h averaged
data set). Table S1.1: IPI results for the AE51 (BC sensors) from the spring assessment campaign.
Mean: mean concentration (ng·m–3); Match: match score; RMSE: root mean squared error (ng·m–3);
r: Pearson correlation coefficient; t: Kendall correlation coefficient; S: Spearman correlation coefficient;
Pres: presence parameter; LFE: low frequencies energy parameter; IPI: integrated performance index,
Table S1.2: IPI results for the Cairsens (NO2 sensors). Mean: mean concentration (ppb); Match: match
score; RMSE: root mean squared error (ppb); r: Pearson correlation coefficient; t: Kendall correlation
coefficient; S: Spearman correlation coefficient; Pres: presence parameter; LFE: low frequencies energy
parameter; IPI: integrated performance index, Table S1.3: IPI results for the Canarin (PM2.5 sensors)
from the spring assessment campaign. Mean: mean concentration (µg·m–3); Match: match score;
RMSE: root mean squared error (µg·m–3); r: Pearson correlation coefficient; t: Kendall correlation
coefficient; S: Spearman correlation coefficient; Pres: presence parameter; LFE: low frequencies energy
parameter; IPI: integrated performance index, Table S2.1. Sensor distribution among volunteers
during the spring campaign. The sensors are identified by their serial number. *: volunteers that
participated to several campaigns. -: sensor used but for which data was corrupted or unusable,
Table S2.2: Sensor distribution among volunteers during the autumn campaign. The sensors are
identified by their serial number, Table S2.3: Sensor distribution among volunteers during the winter
campaign. The sensors are identified by their serial number.
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