
HAL Id: hal-03542536
https://hal.science/hal-03542536

Submitted on 25 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Four years of global carbon cycle observed from the
Orbiting Carbon Observatory 2 (OCO-2) version 9 and

in situ data and comparison to OCO-2 version 7
Hélène Peiro, Sean Crowell, Andrew Schuh, David F Baker, Chris O’Dell,
Andrew R Jacobson, Frederic Chevallier, Junjie Liu, Annmarie Eldering,

David Crisp, et al.

To cite this version:
Hélène Peiro, Sean Crowell, Andrew Schuh, David F Baker, Chris O’Dell, et al.. Four years of global
carbon cycle observed from the Orbiting Carbon Observatory 2 (OCO-2) version 9 and in situ data
and comparison to OCO-2 version 7. Atmospheric Chemistry and Physics, 2022, 22 (2), pp.1097 -
1130. �10.5194/acp-22-1097-2022�. �hal-03542536�

https://hal.science/hal-03542536
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Atmos. Chem. Phys., 22, 1097–1130, 2022
https://doi.org/10.5194/acp-22-1097-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

R
esearch

article

Four years of global carbon cycle observed from the
Orbiting Carbon Observatory 2 (OCO-2) version 9 and

in situ data and comparison to OCO-2 version 7

Hélène Peiro1, Sean Crowell1, Andrew Schuh2, David F. Baker2, Chris O’Dell2, Andrew R. Jacobson3,4,
Frédéric Chevallier5, Junjie Liu6, Annmarie Eldering6, David Crisp6, Feng Deng7, Brad Weir8,9,

Sourish Basu10,11, Matthew S. Johnson12, Sajeev Philip13,a, and Ian Baker14

1GeoCarb Mission Collaboration, University of Oklahoma, Norman, OK, USA
2Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA

3Cooperative Institute for Research in Environmental Sciences,
University of Colorado Boulder, Boulder, CO, USA

4NOAA Global Monitoring Laboratory, Boulder, CO, USA
5Laboratoire des Sciences du Climat et de L’Environnement, LSCE/IPSL,
CEA-CNRS-UVSQ, Université Paris-Saclay, 91198 Gif-sur-Yvette, France

6Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
7Department of Physics, University of Toronto, Toronto, Ontario, Canada

8Universities Space Research Association, Columbia, MD, USA
9NASA Goddard Space Flight Center, Greenbelt, MD, USA

10NASA Goddard Space Flight Center, Global Modeling and Assimilation Office, Greenbelt, MD, USA
11Earth System Science Interdisciplinary Center, College Park, MD, USA

12NASA Ames Research Center, Moffett Field, CA, USA
13Global Modeling and Assimilation Office (GMAO), NASA Goddard Space Flight Center,

Greenbelt, MD, USA
14Atmospheric Sciences, Colorado State University, Fort Collins, CO, USA

anow at: Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India

Correspondence: Hélène Peiro (helene.peiro@ou.edu)

Received: 3 May 2021 – Discussion started: 11 August 2021
Revised: 29 October 2021 – Accepted: 5 December 2021 – Published: 24 January 2022

Abstract. The Orbiting Carbon Observatory 2 (OCO-2) satellite has been providing information to estimate
carbon dioxide (CO2) fluxes at global and regional scales since 2014 through the combination of CO2 retrievals
with top–down atmospheric inversion methods. Column average CO2 dry-air mole fraction retrievals have been
constantly improved. A bias correction has been applied in the OCO-2 version 9 retrievals compared to the
previous OCO-2 version 7r improving data accuracy and coverage. We study an ensemble of 10 atmospheric
inversions all characterized by different transport models, data assimilation algorithms, and prior fluxes using
first OCO-2 v7 in 2015–2016 and then OCO-2 version 9 land observations for the longer period 2015–2018.
Inversions assimilating in situ (IS) measurements have also been used to provide a baseline against which the
satellite-driven results are compared. The time series at different scales (going from global to regional scales)
of the models emissions are analyzed and compared to each experiment using either OCO-2 or IS data. We
then evaluate the inversion ensemble based on the dataset from the Total Carbon Column Observing Network
(TCCON), aircraft, and in situ observations, all independent from assimilated data. While we find a similar
constraint of global total carbon emissions between the ensemble spread using IS and both OCO-2 retrievals,
differences between the two retrieval versions appear over regional scales and particularly in tropical Africa. A
difference in the carbon budget between v7 and v9 is found over this region, which seems to show the impact
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of corrections applied in retrievals. However, the lack of data in the tropics limits our conclusions, and the
estimation of carbon emissions over tropical Africa require further analysis.

1 Introduction

Understanding the global carbon cycle and how quickly the
planet warms in response to human activities is becoming
a global priority. CO2 is a key driver of global warming,
and its dynamics can be explored with a variety of CO2
measurements. Ground-based (in situ) data, while highly
precise and accurate, are distributed very sparsely over the
globe (Ciais et al., 2013). Space-based CO2 retrievals, on
the other hand, allow comprehensive spatial coverage across
the globe, particularly over regions with few surface observa-
tions, such as the tropics. Furthermore, the number of satel-
lites observing atmospheric CO2 has rapidly grown over the
past decade, e.g., the Greenhouse Gases Observing Satellite
(GOSAT/GOSAT2 Kuze et al., 2009; Nakajima et al., 2012)
and the Orbiting Carbon Observatory (OCO-2/OCO-3 Crisp
et al., 2017; Eldering et al., 2017).

The rise in CO2 concentration at a global scale has moti-
vated the drive towards a better understanding of the global
surface fluxes of carbon (World Meteorological Organisa-
tion, 2020). In order to understand the different processes in-
volved in the carbon cycle, such as uptake or release of CO2
by the oceans and the land biosphere, and hence be able to
predict future climate change, we need accurate emissions
estimates and an improved understanding of natural CO2
emissions and uptakes. Top–down atmospheric inversion ap-
proaches that couple atmospheric observations of CO2 with
chemistry (atmospheric) transport models (CTMs) have been
widely used to estimate CO2 fluxes (Ciais et al., 2010; Peylin
et al., 2013; Basu et al., 2013; Wang et al., 2018; Crow-
ell et al., 2019). This is in contrast to “bottom–up” meth-
ods, which often use a mechanistic understanding of the car-
bon cycle, e.g., soil dynamics, photosynthesis, decomposi-
tion processes, and steady-state ocean–atmospheric chemical
exchange, to predict land and ocean–atmospheric exchange
and hence atmospheric CO2 concentrations. While the mech-
anistic underpinnings of these models are attractive, there
is no guarantee that the resulting atmospheric exchange of
CO2 will bear any similarity to reality. By contrast, the “top–
down” approach often uses a “bottom–up” model output as
a starting guess and then optimizes atmospheric exchange to
agree with atmospheric observations.

Formal uncertainties of top–down approaches can be at-
tributed to the errors in the observations assimilated, i.e.,
“observation” errors, and to errors in the starting guess from
mechanistic models. However, past studies have also shown
that top–down estimates can be sensitive to errors in the mod-
eled atmospheric transport as well as in choices related to
the optimization technique (Chevallier et al., 2010; Houwel-

ing et al., 2015; Basu et al., 2018; Schuh et al., 2019), un-
certainties which are difficult if not impossible to character-
ize formally in any one atmospheric inversion scheme. This
shortcoming was the motivation for the OCO-2 Model Inter-
comparison Project (MIP), whose goal was to (1) study the
impact of assimilating OCO-2 retrieval data into several at-
mospheric inversion models and (2) provide an overall en-
semble spread of the model emissions characterizing most
sources of known uncertainty. In addition to its primary goal
of assimilating OCO-2 retrievals, MIP modelers also assimi-
late in situ data, a practice which has a long and documented
history (Enting and Newsam, 1990; Enting, 2002; Gurney
et al., 2002; Rayner et al., 2014). In the first iteration of
the MIP project (the “v7 MIP”), OCO-2 version 7r land ob-
servations were used and analyzed for the 2015–2016 pe-
riod (Crowell et al., 2019). In that study, the authors found
good agreement between in situ and satellite inversions at
the global scale. However, differences appeared at smaller
regional scales, particularly over the tropics in areas such as
northern Africa, where stronger sources were observed with
the OCO-2 inversions than with the in situ inversions. The
authors concluded that the differences over the tropics, be-
sides being due to better observability in a region with few
in situ observations, could be due to the global perturbation
from the 2015–2016 El Niño.

Previous inversion studies have shown the importance of
using accurate and precise satellite retrievals for the CO2 flux
inversion, particularly at regional scales (Chevallier et al.,
2005; Basu et al., 2013; Maksyutov et al., 2013; Cheval-
lier et al., 2014; Deng et al., 2014; Feng et al., 2016; Crisp
et al., 2017). What may appear to be very small biases in the
remote-sensing retrieval of column-averaged CO2 (XCO2)
can have large effects on resulting CO2 fluxes from inver-
sions. In support of bias reduction, OCO-2 retrievals have
been validated against Total Carbon Column Observing Net-
work (TCCON) data, and a precision of 1–2 ppm has been
estimated, with geographic CO2 biases of unknown magni-
tude possibly present at regional scales.

In this study, we want to quantify satellite-informed fluxes
from the latest OCO-2 retrievals (v9) at the global and re-
gional scales and contrast differences with the previous flux
estimates based on OCO-2 v7r data (Crowell et al., 2019). In
some sense, the point of our paper is to update the Crowell
et al. (2019) paper with the latest flux inversion results based
on the longest and most recent set of in situ and satellite
XCO2. In particular, this study aims at evaluating whether
(i) there is some change in the MIP CO2 fluxes using OCO-2
v9 as compared to OCO-2 v7 data and, (ii) if there are some
differences, what would the implications of using v9 be in
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the carbon cycle community regarding previous studies that
have used v7?

The paper is structured as follows. The MIP design as well
as data used in the inversions (i.e., the in situ data and OCO-
2 v9 retrievals, as well as how v9 differs from v7) will be
detailed in Sect. 2. In this same section the independent data
used for evaluation will also be presented. Section 3 presents
the optimized fluxes estimated from the in situ, v7 and v9 in-
versions at global, latitudinal, and regional scales. Evaluation
using independent data will appear at the end of this Sect. 3.
Finally, Sect. 4 will discuss the results and findings.

2 Methodology and dataset

2.1 MIP design

The MIP project, organized by the OCO-2 Science Team, is a
collaboration of CO2 modelers formed to study the impact of
assimilating OCO-2 retrieval data into atmospheric inversion
models. The project’s goal is to create an ensemble of CO2
surface flux estimates to understand how flux estimates us-
ing OCO-2 retrievals and in situ measurements depend on
(i) transport, (ii) data assimilation methodology, (iii) prior
flux and associated errors, and (iv) possible systematic errors
in the OCO-2 retrievals, in particular across viewing modes,
i.e., ocean glint (OG), land nadir (LN), and land glint (LG).
The OCO-2 MIP philosophically mimics past projects such
as RECCAP (REgional Carbon Cycle Assessment and Pro-
cesses) and TRANSCOM (The Atmospheric Tracer Trans-
port Model Intercomparison Project) designed to analyze the
uncertainty in inverse calculations of the global carbon bud-
get resulting from errors in simulated atmospheric transport.
MIP models are more strictly controlled or have more com-
mon elements than previous CO2 inverse model intercompar-
isons such as Peylin et al. (2013). Table 1 gives summary in-
formation of the different modeling systems and their trans-
port models and configurations, while Table 2 gives the infor-
mation of modelers’ names and their respective institutions.

The LoFI (Low-order Flu Inversion) submission (Weir
et al., 2021), new in the v9 MIP, is intended as an addi-
tional metric of flux inversion skill. LoFI uses in situ observa-
tions to match only the global atmospheric growth rate with
an empirically derived land sink (Chevallier et al., 2009).
The inferred fluxes are thus independent of the spatial and
sub-annual variability in atmospheric observations and rely
minimally, if at all, on model atmospheric transport rep-
resentation. Despite the weak data constraint, LoFI is in-
cluded below with the IS inversions because it depends on
the annual, global growth rate determined from observa-
tions. Given the problems flux inversions have facing remote-
sensing retrieval biases (O’Dell et al., 2018) and atmospheric
transport errors (Schuh et al., 2019), LoFI serves as a first-
order check on inversion skill. Times and places where a flux
inversion outperforms or equals LoFI’s skill suggest a nom-
inally operating system, while significantly degraded skill

suggests a problem, e.g., in the prior, atmospheric transport,
and/or ingested data.

The modelers used NASA’s operational bias-corrected
OCO-2 L2 Lite XCO2 product v9 (Kiel et al., 2019, https:
//daac.gsfc.nasa.gov, last access: August 2019) in the v9 ver-
sion of the MIP. The OCO-2 v9 dataset has an improved
bias correction approach that results in reduced biases, par-
ticularly over areas of rough topography. While variations
amongst inversion systems are considered beneficial for the
purpose of characterizing flux uncertainty, some configura-
tions needed to be standardized in order to avoid mean-
inglessly large differences in the ensemble spread. All in-
version modelers were instructed to assimilate OCO-2 data
from 6 September 2014 through 31 May 2019 and to submit
estimated fluxes from 1 January 2015 through 31 Decem-
ber 2018 (to allow the flux estimate some time to spin up
and down on either end). Fossil fuel emissions, which are
typically not optimized in global top down studies (Peylin
et al., 2013), were standardized for the project. Similar to
the experiments described in Crowell et al. (2019), all mod-
elers assumed the same monthly fossil fuel emissions from
the Open-source Data Inventory for Anthropogenic CO2
(ODIAC2019; Oda and Maksyutov, 2011; Oda et al., 2018),
modified with the TIMES diurnal and day-of-week scaling
(Nassar et al., 2013).

Though fossil fuel emissions are fixed, all other prior
flux estimates were chosen independently by each model-
ing group. For instance, regarding fire emissions, most mod-
els used the Global Fire Emission Database – either ver-
sion 3 (GFED3) or version 4 (GFED4). GFED3 and GFED4
mainly differ on burned area, where small fires are included
in version 4 (Randerson et al., 2012; Giglio et al., 2013).
The added information of small-fire burned area increases
the burned area particularly over agricultural and peat land
regions (van der Werf et al., 2017).

2.2 OCO-2 retrievals

The NASA satellite OCO-2 was launched in July 2014 (Crisp
et al., 2017; Eldering et al., 2017) and flies in a near-polar,
sun-synchronous orbit (so ground tracks are spaced more
closely at high latitudes than midlatitudes) at a 705 km alti-
tude with a local crossing time at the Equator between 13:21
and 13:30 local time. OCO-2 flies in the Earth Observing
System’s (EOS) Afternoon Constellation (A-Train) and has
a 16 d ground track repeat cycle that gives globalXCO2 cov-
erage twice per month with approximately 150 km longitu-
dinal offsets between nearby revisiting orbits. OCO-2 has a
spectrometer measuring sunlight reflected by the Earth and
its atmosphere in three spectral bands: the oxygen A-band in
the near-infrared (NIR) at 0.76 µm wavelength and two CO2
spectral bands in the shortwave infrared (SWIR) at 1.6 and
2.1 µm. OCO-2 provides spatially dense data with a narrow
swath (no wider than 10 km) and with spatial footprints of
a few square kilometers (less than 1.25 km by 2.2 km pro-

https://doi.org/10.5194/acp-22-1097-2022 Atmos. Chem. Phys., 22, 1097–1130, 2022

https://daac.gsfc.nasa.gov
https://daac.gsfc.nasa.gov


1100 H. Peiro et al.: Four years of global carbon cycle observed from OCO-2 version 9 and in situ data

Table 1. Configuration of each simulation used in the MIP comparison.

Simulation
name

Transport
model

Meteorology
resolution

Spatial bio Prior land Prior ocean Prior fire Inverse
method

Ames GEOS-Chem MERRA-2 4× 5 CASA-
GFED4.1s

CT2019OI GFED4.1s 4D-Var

CAMS LMDz ERA-Interim 1.9× 3.75 ORCHIDEE CMEMS GFEDv4 Variational

CMS-Flux GEOS-Chem GEOS-FP 4× 5 CARDAMOM ECCOS-
Darwin

GFED4.1s 4D-Var

CSU GEOS-Chem MERRA-2 4× 5 SiB-
4/MERRA-2

Landschützer
v18

GFED4.1s Bayesian syn-
thesis

CT TM5 ERA-Interim 3× 2/1× 1 CT2019
CASA
GFED4.1s

CT2019 OIF CT2019
CASA-
GFED4.1s

EnKF

OU TM5 ERA-Interim 4× 6 CASA-
GFED3

Takahashi GFEDv3 4D-Var

Baker PCTM MERRA-2 6.7× 6.7 CASA-
GFED3

Takahashi GFEDv3 4D-Var

TM5-4DVAR TM5 ERA-Interim 2× 3 SIB-CASA CT2019 Opt
Clim

GFEDv4 4D-Var

UT GEOS-Chem GEOS-FP 4× 5 BEPS (Chen
et al., 2012)

Takahashi
et al. (2009)

GFEDv4 4D-Var

LoFI∗ GEOS GCM MERRA-2 0.5× 0.625 CASA-
GFED3

LoFI Taka-
hashi (Weir
et al., 2021)

QFED

∗ This simulation has been used in the v9 MIP. LoFI uses a different method than the other inversions but fits some independent data as the other simulations do. In addition, it has
the highest resolution. LoFI has then been used in this MIP project to look at a range of different methods, but, in this study, we will focus our analysis on the range of emissions
from the other simulations.

Table 2. Contact and institution of each simulation.

Simulation name Contact Institution

Ames Matthew Johnson NASA Ames Research Center
CAMS Frédéric Chevallier LSCE France
CMS-Flux Junjie Liu NASA JPL
CSU Andrew Schuh Colorado State University
CT Andy Jacobson University of Colorado and NOAA GML
OU Sean Crowell University of Oklahoma
Baker David Baker Colorado State University
TM5-4DVAR Sourish Basu University of Maryland and NASA GMAO
UT Feng Deng University of Toronto
LoFI Brad Weir NASA Goddard

jected onto the surface). O’Dell et al. (2018) reported that the
fine resolution of OCO-2 increased the number of cloud-free
scenes. As is known, clouds are difficult to model, so hav-
ing more cloud-free scenes yields more successful retrievals
with lower errors.

The OCO-2 sensor provides observations in three modes.
Nadir retrievals are those in which the satellite is looking
at the Earth directly below, i.e., at the sub-satellite point.

These retrievals are only usable when the instrument is di-
rectly over land. Glint retrievals are from measurements oc-
curring when the instrument is pointed (usually off-nadir)
toward the solar glint spot. Glint is the primary mode for
over-ocean retrievals, as the ocean surface is very dark in
the SWIR spectral range, only reflecting sufficient solar ra-
diation near the glint point. Target mode retrievals are ob-
tained when the sensor points at a fixed location along the
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orbit to keep a particular point on the Earth’s surface in view
and is employed mainly to collect validation data over lo-
cations such as TCCON sites. In this study, besides using
land nadir and land glint separately from the v7 MIP, both
land nadir and land glint mode retrievals combined together
have also been used, providing data over the oceans. The ad-
vantage of combining both modes is to yield a stronger con-
straint at regional scales on CO2 fluxes (Miller and Michalak,
2020). In addition, biases existing between these two modes
of retrievals have been reduced (O’Dell et al., 2018). In this
study, we focused on the nadir and glint modes, so the tar-
get mode is not discussed further. In addition, we only fo-
cus on the land nadir (LN) and land glint (LG) modes and
do not use the ocean observation mode. Even if, since ver-
sion 7, ocean biases in OCO-2 retrievals have been largely
reduced (O’Dell et al., 2018), inversions assimilating OCO-
2 ocean retrievals produced unrealistic results with annual
global ocean sinks higher of 2.6±0.5 GtCyr−1 compared to
the state-of-the-art estimated in Le Quéré et al. (2018), which
was 2.5±0.5 GtCyr−1 in 2017. Consequently, as for MIP v7
(Crowell et al., 2019), the OCO-2 ocean retrievals will not be
further discussed in this study.

The algorithm developed to retrieve the column average
dry-air mole fraction of CO2 in the atmosphere (XCO2) from
the measured radiance spectrum comes from NASA’s At-
mospheric CO2 Observations from Space (ACOS) project
(O’Dell et al., 2012; Connor et al., 2008). The ACOS algo-
rithm was first applied to GOSAT NIR and SWIR spectral
measurements, which have similar spectral characteristics to
the OCO-2 measurements, before being used for OCO-2 and
OCO-3 (which were launched at later dates). In addition to
the spectral data, ACOS uses meteorology and model data
to constrain retrievals of XCO2 along with a variety of other
parameters such as aerosol optical depth, surface albedo, sur-
face pressure, and total-column water vapor. In this paper,
the modelers have used the ACOS bias-corrected retrievals
(OCO-2 Level 2 Lite XCO2 product) version 9 (Kiel et al.,
2019; O’Dell et al., 2018, https://daac.gsfc.nasa.gov, last ac-
cess: August 2019). Since October 2019, OCO-2 processing
has used the ACOS version 9 (or “ACOS B9”) algorithm,
an update to the previous v7 and v8 versions (O’Dell et al.,
2018). Several changes have been applied in the v9 compared
to the v7. In particular, the v8 data included corrections re-
lated to the spectroscopy, aerosol treatment, prior meteorol-
ogy, and the surface model. More details can be found at
O’Dell et al. (2018). v9 included an addition correction for
the surface pressure estimation (Kiel et al., 2019) which sig-
nificantly reduced biases, particularly over areas of rough to-
pography. This bias correction in v9 allows a more uniform
distribution of XCO2 over regions of interest, decreasing the
standard deviation over the TCCON Lauder (New Zealand)
site, for instance, to 0.74 ppm compared to v8, which was
1.35 ppm.

MIP modelers used all valid cloud-free OCO-2 re-
trievals (those regarded as “good” by the quality_flag

xco2_quality_flag=0) from the OCO-2 Lite files and then se-
lected the bias-corrected data (Wunch et al., 2011). Since
the spatial resolution of OCO-2 data is much higher than the
model grid box scale used in the inversions, the OCO-2 data
are averaged to a coarser scale (in this study, across a 10 s
span, equivalent to about 67.5 km, along track) before being
assimilated. The retrieved column CO2, averaging kernels,
prior CO2 profiles, and a subset of the auxiliary parameters
from the Lite files have all been averaged across these 10 s
spans in the same way, weighted by the inverse of the square
of the retrieval uncertainty (variable xco2_uncertainty) for
each scene in the average. This is similar to the averaging
done for the OCO-2 v7 MIP (Crowell et al., 2019), except
that the 10 s averages are calculated directly, without the in-
termediate step of computing 1 s averages, as was done be-
fore. In computing the uncertainty to be placed upon the new
10 s average XCO2 value, an attempt was made to account
for correlations between the model–data mismatch (MDM)
errors for each individual scene: each scene within the 10 s
span was assumed to have errors that were correlated with
every other scene in the span with the same positive corre-
lation coefficient (+0.3 and +0.6 for scenes over land and
ocean, respectively). Details of the form and derivation of
these average uncertainties may be found in the “constant
correlation” section of Baker et al. (2021). The approach
to handling the correlations, while crude, represents an in-
crease in complexity compared to what was assumed in the
v7 MIP (no reduction in uncertainty due to the averaging pro-
cess, as described in Crowell et al., 2019). Since it is known
that the uncertainty computed by the retrieval (in variable
xco2_uncertainty) underestimates the true level of error in
the retrieved XCO2, an additional term is added onto this
“theoretical” uncertainty, in quadrature, to obtain a more re-
alistic uncertainty per scene: σSD, the standard deviation of
all the XCO2 values used in the 10 s average. In this ad hoc
approach, scenes that have a very small spread in XCO2 val-
ues across the 10 s span are assigned the theoretical uncer-
tainty from the retrieval, while those for which the actual
variability of the XCO2 values is larger than the theoreti-
cal values are assigned a value closer to this computed er-
ror level. Both of these uncertainties are then passed through
Eq. (39) from Baker et al. (2021) to account for error corre-
lations. Finally, an additional error term, σtransport, is added
in quadrature to account for transport model errors. With all
three of these terms considered, the square of the uncertainty
in the 10 s XCO2 average is given as

σ 2
10 s =

1∑
σ−2
j

[
(1− c)+ c

(
∑
σ−1
j )2∑
σ−2
j

]

+ σ 2
SD

[
(1− c)
N
+ c

]
+ σ 2

transport, (1)

where

σ 2
SD =

[
N
∑

X2
CO2j
−

(∑
XCO2j

)2
]
/N/(N − 1) (2)
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and where XCO2j and σj are the individual XCO2 values go-
ing into the average and their retrieval uncertainties, and N
is the number of good 10 s XCO2 values in the 10 s aver-
age. The transport model error term is computed from the
difference between the CO2 concentrations computed by the
TM5 and GEOS-Chem models when both are driven by the
same realistic surface CO2 fluxes, after the annual mean dif-
ference field is subtracted; the values that result are consider-
ably smaller than those model errors added for the OCO-2 v7
MIP (Crowell et al., 2019). In contrast to this level of detail,
the errors between different 10 s averages are assumed to be
independent when assimilated into the inversions (Worden
et al., 2017; Crowell et al., 2019). Several studies have used
this assumption, deeming it appropriate for the resolution of
their inversions or simulations (Basu et al., 2018; Chevallier
et al., 2019).

2.3 In situ CO2 measurements

The set of in situ CO2 measurements used for assimilation
and for evaluation is drawn from five collections in ObsPack
(Masarie et al., 2014, and https://www.esrl.noaa.gov/gmd/
ccgg/obspack/, last access: August 2019) format. These com-
ponent ObsPacks are

1. obspack_co2_1_GLOBALVIEWplus_v5.0_2019-08-12
(Cooperative Global Atmospheric Data Integration
Project, 2019). This is the main source of in situ CO2
measurements for MIP experiments, contributing 93 %
of all in situ measurements. It extends through the end
of 2018.

2. obspack_co2_1_NRT_v5.0_2019-08-13 (NOAA Car-
bon Cycle Group ObsPack Team, 2019). This near real-
time ObsPack distribution is intended to provide data
records after the end of the GLOBALVIEW+ v5.0 prod-
uct, for laboratories and datasets that can provide mea-
surement data outside of an annual update cycle. These
data are provisional and generally have not undergone
final quality control.

3. obspack_co2_1_AirCore_v2.0_2018-11-13. The
balloon-borne AirCore instrument samples almost the
entire atmospheric column. This early release collected
all available profiles between 2014 and 2018.

4. obspack_co2_1_INPE_RESTRICTED_v2.0_2018-11-
13 (NOAA Carbon Cycle Group ObsPack Team, 2018).
This provides aircraft profiles at five sites in Brazil.

5. obspack_co2_1_NIES_Shipboard_v2.1_2019-06-12.
This provides continuous CO2 analyzer measurements
from nine volunteer ships of opportunity operated
by the Japanese National Institute for Environmental
Studies (Tohjima et al., 2005; Nara et al., 2017).

This collection runs from 1 January 2000 to 31 July 2019
with an average of about 520 assimilable observations and 17

withheld observations per day (see Fig. 1b). Measurements
are contributed by 56 laboratories around the world. Mea-
surements are collected at surface flask sites, at observato-
ries and towers with continuous analyzers, onboard research
and commercial ships, from light aircraft at regular profiling
sites, from balloon-borne AirCore samples, and on commer-
cial aircraft (see Fig. 1a)

Only a small subset of ObsPack measurements are desig-
nated as suitable for assimilation, and the remainder are des-
ignated for evaluation. The assimilable measurements meet
two criteria: they can be successfully simulated in coarse-
resolution global models, and they can be assigned an MDM
error value. Many factors can render observations difficult to
simulate in the global models used for this exercise. Sites lo-
cated in areas with complex topography or close to strong lo-
cal sources like cities or strongly influenced by small-scale
circulation features such as land–sea breezes are all con-
sidered difficult to simulate. The CarbonTracker “adaptive
model–data mismatch” scheme from CT2017 (Peters et al.,
2007, with updates documented at http://carbontracker.noaa.
gov, last access: August 2019) was used to assign MDMs
for this experiment. The MDM represents the expected sta-
tistical model residual from a measured value, and the cur-
rent scheme estimates MDM values that vary by geographic
location, month of year, local solar time of day, and dis-
tance from the Earth surface. These values are developed us-
ing model performance from previous simulations, by com-
puting a climatology of expected model errors for a given
dataset. These model errors are driven both by faults in simu-
lated atmospheric transport and by incorrect upstream fluxes,
but it is only the first of these that we attempt to represent
with MDM. At many sites, model performance is dominated
by a conspicuous cycle of seasonal error, attributed mostly to
high ambient variability of CO2 in the local growing season.
Exploratory analysis has demonstrated that model-to-model
differences in performance are significantly smaller than the
other sources of variability in MDM like this annual cycle of
model error.

The adaptive MDM scheme requires sufficient repeated
measurements to develop a climatology of model perfor-
mance, and as a result does not provide estimates of MDM
error for measurements from temporary field deployments
and aircraft campaigns (e.g., ACT-America – DiGangi et al.,
2018 – and ATom – Wofsy and ATom Science Team, 2018).
Many of these measurements without an MDM value are oth-
erwise assimilable, since they sample background conditions
that models should be able to simulate successfully. These
data are particularly useful for model evaluation because they
are generally independent of assimilated measurements.

2.4 Withheld data

In order to evaluate inversion model performance, a small
subset of the assimilable in situ measurements were with-
held for cross-validation. Each withheld measurement has an
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Figure 1. (a) Distribution of assimilated in situ measurements around the world. The instrument platform is indicated by marker shape,
whereas the color represents the laboratory collecting the data. NOAA is the United States National Oceanic and Atmospheric Administration,
CSIRO is the Australian Commonwealth Scientific and Industrial Research Organisation, ECCC is Environment and Climate Change Canada,
LBNL is the Lawrence Berkeley National Laboratory, IPEN is the Brazilian Instituto de Pesquisas Energeticas e Nucleares, NIES is the
Japanese National Institute for Environmental Studies, ICOS is the European Union Integrated Carbon Observation System, and SIO is the
Scripps Institute of Oceanography. Mobile shipboard programs are shown with a single marker at the mean location of the measurements.
Figure from Jacobson et al. (2020a). (b) Number of in situ measurements available per day, broken down by usage category. The total number
of measurements (black) is the sum of assimilated (red), withheld (green), and evaluation (blue) data. The reduction in evaluation data at the
end of 2018 corresponds to the end of available measurements from the Comprehensive Observation Network for Trace gases by Airliner
(CONTRAIL) projects. The reduction in assimilated measurements at the end of 2019 corresponds to the transition from GLOBALVIEW+
to near real-time (NRT) data. Intermittent spikes in evaluation data are linked to campaigns like ATom and ACT-America.

MDM value, which allows model residuals to be normalized
by expected performance. The collection of withheld mea-
surements was then used to evaluate the MIP ensemble.

Approximately 5 % of the assimilable data was chosen for
withholding. These were chosen carefully to maximize inde-
pendence from the data designated for assimilation in the IS
experiment. The criteria for withholding vary by measure-
ment type. Flasks, which are generally taken on a weekly
basis and with sampling criteria that emphasize background

conditions, are already assumed to be independent from one
another. All the measurements in a given aircraft profile
are assumed to be related, so entire profiles were excluded.
Quasi-continuous measurements, like those at towers and ob-
servatories, are assumed to be correlated in time, so all mea-
surements during 5 % of entire days were excluded.

Figure 2 shows the number of withheld data available for
evaluation by latitude (Fig. 2a) and by MIP region (Fig. 2b).
There are only about 1000 data points in the Southern Hemi-
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Figure 2. Number of withheld observations by latitude (a) and by MIP region (b) in the planetary boundary layer (PBL).

sphere and approximately 600 in the tropics, in contrast to
5300 in the Northern Hemisphere. For example, Fig. 2b
shows the dearth of withheld observations for tropical re-
gions such as north and south Africa. There are no withheld
data at all for some MIP regions, such as northern tropical
Asia and tropical South America.

2.5 ATom measurements

Atmospheric concentrations of CO2 collected during the
airborne campaigns of NASA’s Atmospheric Tomography
(ATom) mission (Stephens, 2017; Wofsy and ATom Science
Team, 2018) are particularly useful for evaluation. These
measurements come from four campaigns conducted over
the Pacific and Atlantic oceans between 2016 and 2018. The
ATom samples have been binned into five altitude levels (ap-
proximately of 0–1, 1–3, 3–7, 7–10, and 10–14 km) and nine
latitude bins (every 15◦ latitude) for evaluation (Sect. 3.4).
The density of ATom measurements by latitude and altitude
bin are shown in Fig. 16, which will be discussed in Sect. 3.4.

2.6 TCCON

The Total Carbon Column Observing Network (TCCON)
is composed of around 30 sites around the globe estimat-
ing column-averaged dry-air mole fraction of several atmo-
spheric gases using ground-based remote sensing by Fourier
transform spectrometers (Wunch et al., 2011). TCCON mea-
sures spectra of direct sunlight in the near-infrared region.
TCCON CO2 retrievals are estimated to have precisions bet-
ter than 0.25 % (1σ ) (Wunch et al., 2011). These retrievals
have been used as the primary validation resource for sev-

eral satellite missions, including OCO-2, SCIAMACHY, and
GOSAT (Wunch et al., 2011, 2017). OCO-2 observations
were extensively evaluated against TCCON data in Wunch
et al. (2017).

Posterior and prior concentrations are sampled for each
30 min average TCCON retrieval before calculating the
statistics following the approach described in Crowell et al.
(2019). For LNLGv9 inversions, the available 10 s prior and
posteriorXCO2 simulated retrievals were averaged and com-
pared to TCCON observations with a 5◦ latitude and longi-
tude geometric coincidence criterion and within 1 h of the
overpass. All TCCON sites used in the evaluation section are
listed in Table 3, and Fig. 3 represents the location of the TC-
CON sites. Figure 4 illustrates the different time ranges and
observation numbers across TCCON sites during the 2015–
2018 period.

3 Results

We discuss results from two v9 MIP experiments: IS, in
which only the in situ CO2 measurements are assimilated,
and LNLGv9, for which OCO-2 v9 land nadir and land glint
retrievals were assimilated together. The v9 MIP simulations
are conducted over the 4 years from 2015–2018. For com-
parison, we also include results from the v7 MIP LNv7 and
LGv7 experiments (Crowell et al., 2019), although those re-
sults are limited to 2015 and 2016 only. In both the v7 and v9
MIPs, ocean glint retrievals were also assimilated in separate
experiments. Those experiments will not be discussed here,
as the ocean glint retrievals have uncharacterized biases in
both v7 and v9 versions. For the purpose of analysis, the stan-
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Table 3. Geolocation and reference of each TCCON station used for the evaluation section.

TCCON sites Country Latitude Longitude Data revision Reference

Eureka Canada 80.05◦ N 86.42◦W R3 Strong et al. (2019)
Ny-Ålesund Spitsbergen 78.9◦ N 11.9◦ E R0 Notholt et al. (2014)
Sodankylä Finland 67.4◦ N 26.6◦ E R0 Kivi et al. (2014)
Białystok Poland 53.2◦ N 23.0◦ E R2 Deutscher et al. (2019)
Bremen Germany 53.10◦ N 8.85◦ E R0 Notholt et al. (2014a)
Karlsruhe Germany 49.1◦ N 8.4◦ E R1 Hase et al. (2015)
Paris France 48.8◦ N 2.4◦ E R0 Té et al. (2014)
Orléans France 47.9◦ N 2.1◦ E R1 Warneke et al. (2019)
Garmisch Germany 47.5◦ N 11.1◦ E R2 Sussmann and Rettinger (2018)
Park Falls Wisconsin (USA) 45.9◦ N 90.3◦W R1 Wennberg et al. (2017)
Rikubetsu Japan 43.5◦ N 143.8◦ E R2 Morino et al. (2018b)
Lamont Oklahoma (USA) 36.6◦ N 97.5◦W R1 Wennberg et al. (2016)
Anmeyondo Korea 36.5◦ N 126.3◦ E R0 Goo et al. (2014)
Tsukuba Japan 36.1◦ N 140.1◦ E R2 Morino et al. (2018a)
Edwards California (USA) 34.2◦ N 118.2◦W R1 Iraci et al. (2016)
Caltech California (USA) 34.1◦ N 118.1◦W R0 Wennberg et al. (2014)
Saga Japan 33.2◦ N 130.3◦ E R0 Kawakami et al. (2014)
Izaña Tenerife 28.3◦ N 16.5◦W R1 Blumenstock et al. (2017)
Ascension Island UK 7.9◦ S 14.3◦W R0 Feist et al. (2014)
Darwin Australia 12.4◦ S 130.9◦ E R0 Griffith et al. (2014a)
Réunion island France 20.9◦ S 55.5◦ E R1 De Mazière et al. (2017)
Wollongong Australia 34.4◦ S 150.9◦ E R0 Griffith et al. (2014b)
Lauder 125HR New Zealand 45.0◦ S 169.7◦ E R0 Sherlock et al. (2014)

Figure 3. Locations of the TCCON sites used in this study over the globe.
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Figure 4. Number of TCCON observations for each site and year.

dardized fossil fuel emissions have also been removed from
all prior and posterior fluxes. Figure A1 in the Appendix rep-
resents the location of the OCO-2 10 s retrievals LNLGv9
for the period of study 2015–2018. We can see that the pos-
terior flux estimates are constrained with OCO-2 LNLG ob-
servations particularly present in the Northern Hemisphere
and with a lower number of observations over the tropics.

This section is organized as follows: we first analyze fluxes
at the global scale before moving to three broad zonal bands.
We then finish with a regional flux analysis. In order to eval-
uate the spatiotemporal variability of regional fluxes, the dif-
ferent modeling groups’ flux estimates have been aggregated
from their individual model grid boxes up to OCO-2 MIP re-
gions (see Fig. 5) similar to those used in the MIP v7 analysis
from Crowell et al. (2019).

3.1 Global flux estimates

Figure 6 represents the median annual emissions (in
PgCyr−1, for Fig. 6a, c, and e) and the monthly median
emissions (in PgC month−1 for Fig. 6b, d, and f) at the global
scale for each experiment. As expected, at the global scale
the posterior fluxes of all OCO-2 observation types, as well
as the prior and IS emissions, have a similar seasonal cycle
(Fig. 6b). Fluxes for all of the models are well constrained
at this scale as they are the difference of the relatively well-
known fossil fuel fluxes and the well-measured global atmo-
spheric increase. However, the peak sinks during the North-
ern Hemisphere growing season (from May through Septem-
ber) are slightly larger with OCO-2 v7 than with OCO-2 v9.

The large sink observed at a global scale during this season
is due to the strong biospheric uptake of CO2 in the temper-
ate and boreal forest of the Northern Hemisphere (Friedling-
stein et al., 2020). Additionally, while the growing season
observed with v7 is shifted earlier in the year relative to IS
and the unoptimized prior fluxes, this is not the case with
v9 (although the priors in the v7 and v9 MIPs are not the
same for some models, this could also be due to the longer
number of years in the v9 experiments and the models par-
ticipating in the two MIP versions). While the median values
for the prior emissions of the land plus ocean fluxes in v7
were around −2.5 PgCyr−1 in 2015–2016 (Fig. 3a in Crow-
ell et al., 2019), they are around−3.75 PgCyr−1 for the same
period (2015–2016) in v9 (Fig. 6a) and have a smaller ensem-
ble spread among the models.

For the annual total fluxes, at the global scale, we can ob-
serve a good agreement between IS and all OCO-2 fluxes
in 2015 with emissions of approximately −3.75 PgCyr−1.
However, in 2016, LNLGv9 gives a stronger sink of −4.5±
0.1 PgCyr−1 compared to IS and v7 with a sink median
around −4 PgCyr−1. This stronger sink observed with v9 in
2016 comes from southern extra-tropics (Fig. 7e). For 2017
and 2018, both IS and v9 are very close to each other with to-
tal annual sinks between−5.5±0.1 and−4.5±0.1 PgCyr−1.
The ensemble spread among the models for the annual fluxes
is smaller with v9 than with v7, which could either be due
to the longer span of data inverted in v9 where the ability to
compute the trend (or the total land+ ocean flux) improves,
reducing noise in the estimates, or it could suggest better
agreement between the models for the v9 version. With a 4-
year record of flux estimates from both IS and LNLGv9, we
are able to group 2015 and 2016 together. These are years
which have been associated with a large CO2 growth rate
due to a strong El Niño event (Malhi et al., 2018) compared
to 2017 and 2018. For the rest of this study, we will call the
2015–2016 period the “El Niño period” and the 2017–2018
period the “recovery period”. Several previous papers have
already studied these periods, focusing on the impact of El
Niño over the tropics (Liu et al., 2017; Palmer et al., 2019;
Wigneron et al., 2020). The contrast between these two dif-
ferent periods can also be observed over the global land in
particular, where the difference between the El Niño period
and recovery is particularly large in the IS inversions. Global
land (Fig. 6c and d) and global ocean (Fig. 6e and f) show
a compensating effect, where v9 finds higher sources dur-
ing the El Niño period over the land that are balanced with
stronger sinks over the ocean. Generally v9 yields a weaker
global land sink and stronger ocean sink. During the recovery
period, IS gives a stronger median sink (3.5 PgCyr−1) than
v9 (1.75 PgCyr−1). Friedlingstein et al. (2020) estimated a
global land uptake of around 2 PgCyr−1 in 2018 over the
global land for the net fire and biospheric fluxes, which is
closer to what we see constrained by the v9 data.
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Figure 5. OCO-2 MIP regions to which gridded fluxes are aggregated for comparison and evaluation.

3.2 Latitudinal bands

As mentioned in Crowell et al. (2019), the observations
should constrain the fluxes over latitudinal bands more ef-
fectively than longitudinally or by geopolitical region, due
mainly to the effects of prevailing zonal winds across much
of the globe. OCO-2 observations are collected across the
sunlit portion of the Earth crossing all zonal bands about 15
times per day. Hence we split our analysis between the trop-
ics and extra-tropics, examining only land emissions since
we expect the data constraint to be strongest there for the
mostly land-based observations that we discuss. Over the
northern extra-tropics (Fig. 7b), we observe flux dynamics
similar to those on the global scale, with large seasonal vari-
ation and deeper sinks during summer for OCO-2 and IS in-
versions compared to the prior. All experiments put the land
sink more in the northern extra-tropics than in the tropics and
southern extra-tropics (Tans et al., 1990).

For the annual fluxes (Fig. 7a), we can see that IS and
LNLGv9 northern extra-tropics fluxes are close to each other
in 2015–2016, with an increase in net carbon uptake relative
to the prior of around 2.5±0.25 to 3±0.25 PgCyr−1 in 2015
and 2016, respectively. In 2017 and 2018, we can observe a
decrease in net carbon uptake larger with v9 (fluxes of around
2 PgCyr−1 in 2017 and 1.75± 0.25 PgCyr−1 in 2018) than
IS (2.75 PgCyr−1 in 2017 and 2.5±0.25 PgCyr−1 in 2018).

We also see some differences between v7 and v9. LNv7
fluxes are closer to what is observed in both LNLGv9
and IS during the El Niño period, with a median sink
around −2.25 PgC yr−1, but LGv7 gives a weaker sink
(−1.5 PgCyr−1) due to larger sources in fall 2015 and 2016.
As we can observe for all other latitudes bands and we will

observe for smaller regions, LNLGv9 tends to be closer to
LNv7 than to LGv7. This points to previously known issues
with the v7 LG data that were resolved with a unified bias
correction in OCO-2 v9. Interestingly, the seasonality for the
v9 results more closely aligns with the IS results, and the
large efflux at the end of the growing season in v7 LNLG has
disappeared in v9.

The southern extra-tropics (SHExt, Fig. 7e and f) are
known to have fewer IS observations as well as little land
mass (Crowell et al., 2019) and hence fewer land retrievals
to constrain the fluxes, which are significantly weaker over
this latitude band. This could explain why, for this latitude,
the prior, IS, v7, and v9 results have different seasonality.
LNv7 and LNLGv9 have different seasonality and v7 has a
delay in the efflux peak for 2015 and no efflux peak at all
for 2016. The seasonal amplitude observed with LNLGv9 is
smaller for the whole period compared to IS and LGv7 and
has a delay in 2017 and 2018 compared to IS. The lack of
IS data over this latitudinal band could explain the differ-
ences in seasonality and sink values between IS and LNLG.
The differences in monthly emissions are also observed in
the annual fluxes. They show, for the whole period, stronger
sinks with v9 than with IS and v7. However, in contrast to
the northern extra-tropics (NHExt), the ensemble spread is
larger with v9 than with v7. The bias reduction of v9 gives a
smaller spread and hence a better agreement among the mod-
els, particularly over the Northern Hemisphere.

Over the tropics (Fig. 7c and d), the seasonal peak efflux
is typically in the fall, with an anomalously strong source in
fall 2015 during the El Niño intense period. On average, the
seasonality seems to be similar for the IS and OCO-2 inver-
sions but different from that of the prior. However, for the
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Figure 6. Monthly median fluxes in PgCmonth−1 (b, d, f) and annual flux in PgCyr−1 (a, c, e) from 2015 through 2018 for the different
experiments: prior (black) and posterior ensemble fluxes constrained by in situ data (red), OCO-2 v7 LN (cyan with hatched cross), OCO-2
v7 LG (green with hatched), and OCO-2 v9 LNLG (blue) retrievals. LoFI fluxes (purple circles) are plotted alongside IS fluxes. For both
the monthly time series and the annual fluxes plots, the shaded bar represents the range of emissions among the models and the solid lines
represent the median of the model ensemble for both annual and monthly plots. Top plots are for global (land + ocean), middle plots for
global land and bottom plots for global ocean.

whole period, the v9 OCO-2 annual mean source is about
0.5±0.1 PgCyr−1 stronger than for IS. OCO-2 observations
have a more frequent coverage over the tropics than the in
situ network. However, OCO-2 retrievals can be biased due
to cloud coverage during the wet season and aerosol from
biomass burning during the dry season (Merrelli et al., 2015;
Massie et al., 2017). LNLGv9 gives stronger annual sources,
particularly for the El Niño period, and with a smaller en-
semble spread than does v7. The OCO-2 LGv7 ensemble
spread does not deviate from the prior spread, showing the
large impact of v9 corrections on the retrievals. We can also
observe that the IS ensemble spread does not deviate from
the prior spread. Neither IS nor LNLGv9, for each model,

follows their priors in the tropics during the period of study
(not shown here). The in situ Obspack dataset used for this
study has been updated and includes more data per site, con-
trary to the in situ dataset used in Crowell et al. (2019) for
the v7 MIP. We then have stronger sources observed with
ISv9 than with ISv7 in 2015 and 2016. In addition, we can
observe with both IS and LNLGv9 two clearly distinguished
periods in terms of annual mean flux: the El Niño period for
2015 and 2016, with sources between 1.5 and 2 PgCyr−1,
and the recovery period, with median values between −0.5
and 0.5 PgCyr−1. For both monthly and annual fluxes, large
sources of carbon are observed over the tropics for the whole
period of study. Wigneron et al. (2020) found that the pan-
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Figure 7. Same as Fig. 6 but for the zonal band: northern extra-tropics (NHExt, a, b) with latitudes from 23–90◦ N, tropics (c, d) with
latitude from 23◦ S–23◦ N, and southern extra-tropics (SHExt; e, f) with latitude from 90–23◦ S.

tropical above-ground carbon stocks in the tropical humid
forests did not recover after the 2015–2016 El Niño, due pre-
sumably to a combination of deforestation and climate con-
ditions.

3.3 Fluxes by region

3.3.1 Northern extra-tropical region

We see similarities in the seasonality and annual flux across
zonal bands in the OCO-2 (mainly v9) and IS results for the
northern extra-tropics but also differences between v7 and
v9: now we look at smaller spatial scales to see where these
agreements or disagreement are observed. Figure 8 shows
monthly and annual fluxes for North America (Fig. 8a and
b), Europe (Fig. 8c and d), and northern Asia (Fig. 8e and f).

Over North America (Fig. 8a and b), monthly and annual
fluxes show different patterns for all data types. Prior annual

median fluxes are around −0.25 PgCyr−1 for 2015–2018.
Median values for LNLGv9 show 0.5 PgCyr−1 stronger
sinks during the El Niño period, with LNv7 showing even
deeper sinks. IS and LGv7 have deeper sinks than the prior
but weaker than LNv7 and v9.

Over Europe, we can see that IS agrees better with
LNLGv9, with similar annual median fluxes. For this region,
v7 and v9 are particularly different, as v9 gives larger sinks
during summertime. Interestingly, LNLGv9 seems then to be
in a better agreement with what was observed in Houweling
et al. (2015) than v7. Houweling et al. (2015) assimilated
GOSAT data over the 2009 and 2010 period and observed a
larger carbon uptake for Europe with GOSAT than with in
situ data, as was also observed by Chevallier et al. (2014)
and Reuter et al. (2014). Inferred fluxes using v9 seem then
to be more consistent with other studies, but more analy-
sis is needed to understand why this difference between v7
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Figure 8. Same as Fig. 6 but for the northern extra-tropics regions: North America (a, b), Europe (c, d), and northern Asia (e, f).

and v9 appears over Europe (which could be due to a dipole
between Europe and northern Africa as observed and men-
tioned by the previous studies of Houweling et al., 2015;
Chevallier et al., 2014; Feng et al., 2016; Reuter et al., 2014,
and Reuter et al., 2017) but not for North America and north-
ern Asia. Previous studies already observed and mentioned
a larger European land sink in balance with a large tropi-
cal land source. Specifically, Houweling et al. (2015) found
a difference in flux between these two regions of around
0.8 PgCyr−1. They found that this balance was caused by
a lack of GOSAT observations during the winter over Eu-
rope. Additionally, Chevallier et al. (2014) also observed this
balance between Europe and northern tropical Africa in their
GOSAT inversions, and they considered the large source over
North Africa as unrealistic. According to Feng et al. (2016)),
the large sink over Europe, inferred from GOSAT data, was
caused by large biases outside of the region; for mass bal-
ance, the inversions was removing more CO2 over Europe,
in agreement with Reuter et al. (2014, 2017).

For northern Asia (including temperate Eurasia and boreal
Eurasia), while IS gives large sinks (with an ensemble spread
between −2.5 and −0.5 PgCyr−1 for the whole period), v9
and v7 both show weaker sinks (with an ensemble spread be-
tween −1.25 and −0.25 PgCyr−1 for 2015 and 2016) and a
decrease with v9 for 2017 (−0.5± 0.5 PgCyr−1) and 2018
(−0.25± 0.5 PgCyr−1). The 2017 and 2018 LNLGv9 emis-
sions are closer to the priors. For the El Niño season (2015
and 2016), LNv7 has the same annual emissions as LNLGv9
but with a smaller ensemble spread; however, LGv7 shows
weaker sinks with particularly strong emissions during the
fall, which could be due to either fewer observations or a pos-
sible bias at higher latitudes during the Northern Hemisphere
winter. The disagreement between the OCO-2 and in situ in-
versions might be driven by the differences in the amount of
data assimilated since both inversions have the same trans-
port model and inverse setup. We know that there are fewer
in situ than OCO-2 observations above northern Asia, and
particularly above the boreal forest of Eurasia, which is an
important area for sources and sinks of atmospheric CO2
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Figure 9. Same as Fig. 6 but for the tropical band: northern tropics (a, b) with latitudes from 0–23◦ N and southern tropics (c, d) with latitude
from 23–0◦ S.

(Houghton et al., 2007; Siewert et al., 2015). The combina-
tion of sparse data, in an area not well observed, with trans-
port uncertainty could be the cause. We see that the ensemble
spread of the models is larger for IS than for v7 or v9 and that
the annual fluxes differ by almost 1.5 PgCyr−1 between the
IS and OCO-2 inversions during the El Niño period. This is
not the case for Europe and North America, where the sur-
face measurements are most densely concentrated (Fig. 1a).
Finally, due to the additional 2 years of fluxes using IS and
v9, we see a trend towards a weaker sink from 2015 to 2018
for northern Asia that is not observed for Europe or North
America. Further investigation is needed to explain the de-
crease in the carbon sink in this region with both IS and v9.

3.3.2 Tropical region

We now look at the tropics split across the Northern and
Southern hemispheres. The southern and northern tropics are
represented in Fig. 9, with annual fluxes on the left side
(Fig. 9a and c) and monthly fluxes (Fig. 9b and d) on the right
side of the plots. As observed earlier for the tropical band,
and in contrast to what was found in Crowell et al. (2019)
using the in situ data, the IS inversions give similar seasonal
amplitude and annual mean emissions as OCO-2 for both the
northern and southern tropics in 2015 and 2016, the El Niño
period. However, for 2017 and 2018, IS seems to follow the
pattern of the prior at the annual timescale. This difference,
particularly for the northern tropics, in 2017–2018 seems to
suggest a different signal observed with IS compared to v9.

We can also observe that the ensemble spread is almost the
same between both version v7 and v9 for both tropical bands.
In both tropical hemispheres, LNv7 gives relatively more net
CO2 emitted to the atmosphere than LGv7. LNLGv9 agrees
with LNv7 over 2015–2016 for the northern tropics, but gives
more of a source (0.5 PgCyr−1) than LNv7 (0.1 PgCyr−1)
and LGv7 (−0.4 PgCyr−1) over the southern tropics. This
0.5 PgCyr−1 source of carbon observed with v9 is also ob-
served with IS, suggesting that more carbon could have been
released during the El Niño period than previously inferred
with v7. During the recovery period in the northern tropics,
v9 only has net sources of carbon, while for IS some mod-
els have sinks of up to −1 PgCyr−1. In contrast, over the
southern tropics, the median CO2 flux values given by IS are
positive, while they are strongly negative for v9.

In order to see the resolution provided by the data at finer
scales in the tropics, we examine fluxes for six tropical re-
gions (three over the northern tropical hemisphere (Fig. 10)
and three over the southern tropical hemisphere; Fig. 11).

Figure 10 shows the monthly and annual fluxes over north-
ern tropical South America, northern tropical Africa, and
northern tropical Asia. When we look at the annual fluxes
of the northern tropical regions (Fig. 10a, c, and e), we do
not observe significant differences between v7 and v9 inver-
sions with respect to the ensemble spread and the median
values, except for northern tropical South America, where
v9 has a slightly higher net CO2 outgassing (0.5 PgCyr−1)
than v7 (around 0.4 PgCyr−1 for LNv7 and 0.2 PgCyr−1 for
LGv7). The IS and OCO-2 annual fluxes have a similar tem-
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Figure 10. Same as Fig. 6 but for the northern tropical regions: northern tropical South (so) America (a, b), northern tropical Africa (c, d),
and northern tropical Asia (e, f).

poral pattern over north tropical South America, with average
fluxes close to 0.5 PgCyr−1 and a smaller ensemble spread
for OCO-2 than for IS. But the most obvious differences ap-
pear between the IS and OCO-2 inversions over northern
tropical Africa and northern tropical Asia. The OCO-2 in-
versions give a larger source of carbon over northern tropi-
cal Africa compared to the IS inversions, similar to conclu-
sions from the v7 MIP (Crowell et al., 2019). These large
inferred emissions are consistent with Palmer et al. (2019)
and Wigneron et al. (2020), who found that the Africa con-
tinent accounted for 56 % of carbon emissions during the
2015 El Niño event. However, for northern tropical Asia,
both v7 and v9 give sinks of carbon (around−0.25 PgCyr−1

for LNv7 and v9 and −0.4 PgCyr−1 for LGv7), while IS
gives a source of around 0.25 PgCyr−1 during the El Niño
season. Northern tropical Asia is the only region where we
found a change in fluxes between the in situ inversions used
in the v7 MIP and in the v9 MIP. Indeed, the v7 IS inversions
(Crowell et al., 2019) had a median value for 2015 and 2016

of−0.10 PgCyr−1 over northern tropical Asia. Sparse in situ
coverage over the tropical regions compared to the Northern
Hemisphere (Fig. 1a) could explain this difference with the
OCO-2 inversions, but further analysis over this region needs
to be done. The monthly seasonality is more similar between
all experiments for northern tropical Africa than it is for the
two other northern regions.

Looking at the monthly emissions of the southern trop-
ical regions (Fig. 11), we can see the strong impact of El
Niño between August and November 2015 over southern
tropical Asia. The emissions reach a maximum of 0.35±
0.01 PgCyr−1, larger by around 0.30 Pg C yr−1 compared to
the rest of the period. The large emissions from southern
tropical Asia (Fig. 10f) primarily come from Indonesian fires.
Field et al. (2016) estimated fire emissions in 2015 over In-
donesia to be 380 TgC. This El Niño impact started in the
end of 2014, peaked in fall 2015, and ended in May 2016
(Liu et al., 2017). The impact of the El Niño is particularly
noticeable with the long period available from v9 compared
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Figure 11. Same as Fig. 6 but for the southern (So) tropical regions: southern tropical South America (a, b), southern tropical Africa (c, d),
and southern tropical Asia (e, f).

to the 2 years from v7. In addition, this peak is reflected in the
annual mean fluxes, where v9 gives a strong separation be-
tween 2015 and the rest of the period (2016 and the recovery
period), which is also observed with the IS. Annual median
fluxes between v7 and v9 are almost similar, with sources in
2015–2016 of around 0.2 PgCyr−1 (−0.05 PgCyr−1) with
LNv7 (LGv7) and of 0.4 PgCyr−1 with v9. Similarly, even
if there is a change in data coverage between the two ver-
sions, we do not observe much difference between v7 and
v9 for southern tropical South America (Fig. 11a and b), ex-
cept that the ensemble spread is larger with v9 than with v7.
The bias correction in v9 allowed us to have more data than
v7 over the Amazon in order to pass the quality flag crite-
ria (Miller et al., 2018; O’Dell et al., 2018). In addition, we
can observe a different amplitude in the seasonality between
IS and OCO-2 for this region. This difference over tropical
South America might be due to the cloud effect (Crowell

et al., 2019) of the wet season over the Amazon affecting
OCO-2 data. But this could also be because most of the in
situ data are located mainly inside the Amazon and not in
the Cerrado savanna of Brazil, resulting in IS inversions be-
ing dominated by tropical forest seasonality. Alternatively,
the OCO-2 inversions could be dominated by savanna sea-
sonality. Finally, over southern tropical Africa (Fig. 11c), we
obtain a large difference between the annual means of v7 and
v9 that we did not observe for the other regions. While LN
and LGv7 give a sink of carbon during the El Niño period of
around −0.25 PgCyr−1, LNLGv9 gives a source of around
0.25 PgCyr−1, which seems not to be compensated by a flux
signal in northern tropical Africa. These sources of carbon
come from weaker sinks during the growing season (from
November through March). This source of carbon during the
El Niño period is also observable with the IS inversions (and
was also observed with the ISv7; Crowell et al., 2019).
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3.4 Evaluation against independent data

To assess the accuracy of the posterior flux results presented
previously, we evaluate them here by sampling the resul-
tant posterior concentrations and comparing them to with-
held data, ATom aircraft measurements and TCCON data.
All modelers have sampled their posterior concentrations at
the times and locations of the evaluation data.

3.4.1 Withheld in situ evaluation data

Here, we evaluate against the withheld in situ data introduced
in Sect. 2.4.

Figure 12 shows the evaluation with the withheld data by
latitude band for IS and LNLGv9. Over the Southern Hemi-
sphere, a large underestimation of the ensemble mean of
LNLGv9 appears compared to the observations. While biases
are larger over the Southern Hemisphere they are smaller
over the tropics. The large biases observed in LNLGv9 and
not with the IS could be due to a latitudinal bias in the OCO-2
data. Going from the Southern to the Northern Hemisphere,
we can see a change in the v9 biases, which go from underes-
timation to overestimation by the models. This behavior also
appears in the IS but with lower biases (less than 0.5 for all
latitudes). The variability between the models and observa-
tions is higher in the Southern Hemisphere than in the tropics
and the northern latitudes (Fig. 12b). In addition, this same
variability seems to be disproportional to the number of with-
held data (see Fig. 2). Indeed, the standard deviation for both
IS and LNLG is low when the number of withheld data is im-
portant (more than 10 000 data). Overall, the IS experiments
are more consistent with the in situ measurements than the
LNLG experiments are.

Figure 13 shows the normalized bias and standard devi-
ation of the ensemble mean by MIP regions for LNLGv9
and IS. Evaluation by MIP regions reveals a different behav-
ior than observed by latitudes. For instance, over temperate
South America and northern tropical Africa, v9 has a larger
underestimation than IS. Over Europe, we see here that v9
has smaller biases (less overestimation) than IS. Finally, if
we look at southern tropical Africa, v9 is less biased than
IS. Regarding the standard deviation, it seems that the three
experiments have similarities but with closer agreement be-
tween IS and v9 for some regions.

Since the MDM values range over 2 orders of magnitude,
the use of the normalized residuals gives the most meaning-
ful interpretation of the residuals. When we look at the nor-
malized bias and standard deviation for each model between
IS and LNLGv9 experiments by latitudes (Fig. 14a, b, c, and
d) and by MIP regions (Fig. 15a, b, c, and d), we can see
this large difference with underestimation for all models as-
similating v9 in the southern and tropical latitudes. This un-
derestimation with all models is, however, generally not ob-
tained with IS. When comparing the root-mean-square error
(RMSE) between the models and the withheld data (Fig. 14e

and f), we can observe a higher value for all models between
30 and 75◦ N with RMSE between 6 (4) and 10 ppm (7 ppm)
for LNLG inversions (for IS inversions, respectively), while
RMSE are below 3 ppm in the southern latitudes and in the
tropics. These larger raw errors observed in the northern lat-
itudes could come from the difference in the in situ network
between northern and southern latitudes. Indeed, there are
more measurements in the Northern Hemisphere close to
regionally significant sources and sinks compared to other
latitudinal bands (tropics and Southern Hemisphere). Com-
pared to the ensemble mean, every model shows small nor-
malized standard deviations across the latitudes, with values
near 0.1 in the Northern Hemisphere and going from 0.2 to
0.6, according the models, between 75 to 60◦ S. However,
the evaluation by MIP regions shows similarities between IS
and v9 for all regions. This similarity is also found for the
RMSE values (Fig. 15e and f) with however larger values for
LNLG (maximum values of 10 ppm) than with IS (maximum
of 8 ppm) over temperate North America, boreal Eurasia, bo-
real North America, Europe, and southern tropical Asia. Ad-
ditionally, errors are larger for temperate North America than
for temperate Eurasia as expected due to the sampling distri-
bution. Normalizing the models with the MDM’s values is
equivalent to normalizing against this expected variability.
We can also observe that some models do better at some lati-
tudes and regions, while the others are better at other regions.
However, the goals of the study are to envelop the uncertainty
in the inversions, rather than ranking model performance.

3.4.2 ATom evaluation

Figure 16 shows the comparison of the posterior concen-
trations that were sampled at the locations and times of
the ATom flight campaigns during 2015–2018. IS inversions
overestimate CO2 concentrations for almost all latitudes and
altitudes, with the exception of an underestimation between
30 and 60◦ N at low altitudes. On the other hand, LNLGv9
shows an underestimation at almost every latitude and gives
larger biases than IS in general. This underestimation is con-
sistent with the large underestimation observed, particularly
in the Southern Hemisphere, with the withheld data (Fig. 14).
In addition, for both experiments, we observe a large overes-
timation (with biases of 1 to 2 ppm) in the stratosphere of the
boreal latitudes. This stratospheric region is affected by at-
mospheric circulation and has few observations to constrain
the inversions. It is possible then that this excess of concen-
tration, in both experiments, reflects the initial conditions of
the inversion.

3.4.3 TCCON evaluation

Figure 17 shows bias and standard deviation for the prior,
IS, and LNLGv9 experiments over all TCCON sites avail-
able during the 4 years of the study. We can observe that
prior concentrations are biased high for almost all TCCON
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Figure 12. Normalized bias (model minus observation divided by model data mismatch; MDM, see Sect. 2) in (a) and standard deviation in
(b) for the ensemble mean of IS (in red), LNLGv9 (in blue), and LoFI (in purple). The evaluation is done by latitude and in the PBL. The
data have been averaged over the 4 years of study (2015–2018).

Figure 13. Same as Fig. 12, but instead of an evaluation by latitude, the evaluation is by MIP region. No: northern; So: southern.

sites and all models. Compared to the evaluation of ISv7 in
the study of Crowell et al. (2019), ISv9 and LNLGv9 biases
are closer to each other (in the v7 MIP, the LNv7 were bi-
ased high compared to ISv7). Additionally, the OCO-2 bi-
ases have decreased (to values between −1.0 and 1.0 ppm)

with v9 compared to v7, where biases ranged between −1.5
and 1.5 ppm (Crowell et al., 2019). As observed here as well,
IS and v9 have large positive biases over most of the Euro-
pean sites, which could indicate either an issue related to the
coarse resolution used by the transport models or to a lati-
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Figure 14. Normalized bias (a, b), normalized standard deviation (c, d), and root-mean-square error (RMSE in ppm; e, f) by latitudes for
each model and for the IS experiment (a, c, e) and the LNLGv9 experiment (b, d, f).

tudinal bias (though this is not shown here, positive biases
are also observed for the East Trout Lake TCCON site sit-
uated in Canada at almost the same latitudinal band as the
European sites). The Caltech, Saga, and Tenerife sites show
large underestimation in both the IS and v9 results across all
models. As mentioned and observed in v7 MIP, differences
between the Caltech and Edwards sites (which are very close
each other) could be due to the location of Edwards over the
mountains and Caltech is affected in the Los Angeles Basin
(Kort et al., 2012; Schwandner et al., 2017): the coarse reso-
lution of models cannot differentiate the variability of these
two sites (Crowell et al., 2019; Schuh et al., 2021). This
could also explain the underestimation observed over Saga
and Paris, which are urban regions. However, Saga is also a

small island and could hence be influenced by ocean fluxes,
where the assumed uncertainties are small compared to land.
The underestimation observed for Izaña (Tenerife island) is
probably linked to the same uncertainty (being a small is-
land) but could also be due to the high altitude of the site.
Finally, most sites over southern latitudinal bands are under-
estimated with LNLGv9 but slightly overestimated with IS,
as also observed with the withheld in situ and ATom obser-
vations. However, Ascension Island, situated in the tropics,
shows an overestimation of around 0.6 ppm for all models
and for both IS and LNLGv9. This bias could be linked to the
low density of data of this site compared to the other tropical
sites (as observed in Fig. 3). The biases in v9 have decreased
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Figure 15. Same as Fig. 14 but for the MIP regions. No: northern; So: southern.

for Ascension Island compared to v7, where the biases were
around 1.0 ppm for LN and LG.

4 Discussion

We have analyzed inversions assimilating OCO-2 version
9 XCO2 retrievals and compared them to in situ (IS) in-
versions, and to the OCO-2 v7 inversions. Our study is an
update to the v7 MIP analysis of Crowell et al. (2019),
which used OCO-2 v7 retrievals. In addition to comparing
the LNLGv9 viewing mode inversion results to the IS ones,
we also wanted to see if differences existed between an en-
semble of atmospheric inverse models using either LNLGv9
or LNv7 and LGv7. We remind the reader that differences
between XCO2 in v7 and v9 are not related to meteorology
which is fixed, but to spectroscopy and geolocation improve-
ments and better representation of aerosols (O’Dell et al.,
2018). We have compared these different experiments, start-
ing at the global scale, moving on to latitudinal scales, and
finishing with regional scales. As expected, we did not find
large differences between v7 and v9 at the global scale or
latitudinal scale, except that the ensemble spread among the
models was smaller with v9 than with v7. Transport model

uncertainty is not expected to have changed dramatically
since v7. This suggests that the reduction in the ensemble
spread is likely related to a decrease in OCO-2 retrieval er-
rors in v9 compared to v7.

However, posterior flux estimates between LNLGv9 and
LNv7 and LGv7 differ for some regions. The key regions
of interest that emerged from previous OCO-2 v7 MIP exer-
cise and papers were in the tropics, including tropical Africa,
tropical South America, and tropical Asia. The comparison
between v7 and v9 for the northern tropical regions did not
show large differences, except a small increase in carbon
sources with v9 compared to v7 in northern tropical South
America and a larger ensemble spread in southern tropical
South America. Differences were also very small between
v7 and v9 over tropical Asia. However, we have observed
a change in the carbon cycle between v7 and v9 for south-
ern tropical Africa, with a carbon sink with v7 and a car-
bon source with v9 during the El Niño period. Palmer et al.
(2019) assimilated OCO-2 v7 land data and GOSAT v7 data
separately during the El Niño period and analyzed the poste-
rior emissions over the pan-tropical regions. With their inver-
sions, they found carbon sources of 1.56 PgCyr−1 in 2015
and 1.89 PgCyr−1 in 2016 over the Northern Hemisphere
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Figure 16. Comparison between ATom measurement samples and
the MIP ensemble for the IS and LNLG experiments. The ATom
samples have been binned into five altitude levels (going from the
ground to 14 km). Panel (a) shows the number of measurements for
each bin. Panels (b) and (c) show, respectively, IS and LNLG ex-
periment biases compared to ATom measurements. Biases are ex-
pressed in ppm CO2.

of the tropics. The carbon sources they found with OCO-2
v7 are similar to what we obtain with our OCO-2 v9 inver-
sions. Palmer et al. (2019) found with v7 that the largest sea-
sonal cycle of carbon fluxes in the tropics was over north-
ern tropical Africa. This analysis would have probably been
similar with v9. However, while they had−0.21 PgCyr−1 in
2015 and −0.12 Pg Cyr−1 in 2016 over the southern tropi-
cal latitudes, we observe around 0.70 PgCyr−1 in 2015 and
0.4 PgCyr−1 in 2016 with v9 (Fig. 9). Analyzing our in-
versions at regional scales, we saw that this opposite sign
in emissions was coming from southern tropical Africa. In
our Fig. 11, we have been able to observe a source of
around 0.25 PgCyr−1 in 2015–2016, while v7 emissions
were around −0.25 PgCyr−1 for the same period, which is
also what Palmer et al. (2019) found approximately. They
concluded that the largest carbon uptake was over the north-
ern Congo Basin, situated in the southern tropical Africa MIP
region. This result and the difference between v7 and v9 sug-
gest that the conclusion over the southern tropical Africa MIP
region with v7 would have been different with v9. Liu et al.
(2017) have assimilated OCO-2 v7 data to study the carbon
cycle responses of the tropical regions to the 2015 El Niño

and compared it to the 2011 La Niña. They found a respira-
tion anomaly over tropical Africa, with an increased release
of carbon of 0.6 PgCyr−1 in 2015 compared to 2011. Gloor
et al. (2018) did a similar study as Liu et al. (2017), but in-
stead of comparing 2015 El Niño to 2011 La Niña, they com-
pared the 2015 El Niño to the 1998 El Niño. Additionally,
they did not assimilate satellite retrievals but rather in situ
data from the NOAA surface station network. While their
conclusions for southern tropical America and southern trop-
ical Asia were similar to what Palmer et al. (2019) and Liu
et al. (2017) found, they were surprised by their results over
tropical Africa. Contrary to their expectations, Gloor et al.
(2018) found hot conditions in the Congo Basin in Febru-
ary 2016 suggesting a release of carbon. Their results for
the Congo Basin (with source of carbon) were in opposi-
tion with the previous papers, which found sinks of carbon
during the El Niño period of 2015–2016. This anomaly over
Africa was not expected, as Africa is generally not a tropical
region affected by El Niño events. When Gloor et al. (2018)
looked at the total-column carbon monoxide (CO) anoma-
lies using MOPITT data, they found an anomalous flux in
southern tropical Africa, with a large CO release in February
2016. Finally, they also found a water deficit at the beginning
of 2016 (weaker than over the Amazon). We can then see that
this study assimilating in situ measurements is in agreement
with what we observe with v9 and our IS inversions. The
corrections in the retrievals (in going from v7 to v9) hence
seem to be important for CO2 emissions estimates, particu-
larly over tropical regions.

5 Conclusions

In this study, we compare an ensemble of inversion models
separately assimilating in situ data, OCO-2 v7 LN and LG
retrievals, and OCO-2 v9 LNLG retrievals across the 2015–
2018 period. Using the 4 years available with v9, in compar-
ison to the two with v7, we have been able to observe bet-
ter the impact of the El Niño period during 2015–2016 and
the recovery period during the 2017–2018 period, especially
over the tropics. Additionally, the ensemble spread among
the models assimilating OCO-2 v9 retrievals is smaller for
almost all regions compared to the ensemble spread with
OCO-2 v7 retrievals, meaning either the impact of the long
period used with the different models and priors or a better
agreement in emissions among the models and the impact of
the v9 retrieval bias correction. We find at the global scale
a good agreement overall between fluxes inferred from the
v7, v9, and in situ data. However, differences are found at
smaller scales over northern latitudes and particularly over
the tropics. While seasonality in the tropics differs signifi-
cantly between the OCO-2 v7 and v9 compared to in situ
results, the annual emissions show better agreement between
the in situ data, LNv7, and v9, except over northern tropi-
cal Africa and northern tropical Asia. As was observed with
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Figure 17. Comparison between TCCON data and the MIP ensemble for the IS and LNLG experiments. Panels (a–c) show experiments
biases and (d–f) show standard deviation compared to TCCON sites. Biases and standard deviation are expressed in ppm CO2. Priors are in
(a, d), IS in (b, e), and LNLG in (c, f).

v7, v9 also shows a stronger source of carbon over north-
ern tropical Africa than that observed with in situ data. This
weaker source given by the in situ data seems to be balanced
over northern tropical Asia with a larger outgassing during
the El Niño period that is not observed with the OCO-2 re-
trievals, as they show only sinks of carbon there for the whole
period. It is difficult to conclude where these sources come
from, as there are few in situ observations over this region.
Finally, we see, as previously mentioned in several studies,
a carbon uptake (of around −0.25 PgCyr−1) over southern
tropical Africa using the v7 data but a carbon release there
using the v9 data of around 0.25 PgCyr−1 during the El Niño
period. The in situ data also suggest a carbon release. This
difference between v7 and v9 over southern tropical Africa
seems to show the impact of retrieval bias corrections on the
regional CO2 fluxes, particularly in the tropics. This contra-
diction in the carbon budget conclusion between the two sets
of OCO-2 inversions requires further investigation over this
African region.

Evaluation with the withheld data, ATom aircraft measure-
ments, and TCCON retrievals suggests similarities in biases
between the in situ data and LNLGv9 data, with negative
bias in the v9 OCO-2 data for almost all latitudes, particu-
larly large in the Southern Hemisphere and slightly negative
the tropics, where few evaluation data are available. Evalua-
tion against TCCON also shows a reduction in retrieval errors
with v9 ensemble models compared to v7.

Now that OCO-2 v10 retrievals are available, analysis and
comparison between this new release and the two preceding
ones presented in this study should bring further flux infor-
mation and comparison for the tropical regions regarding re-
trieval corrections.
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Appendix A: OCO-2 retrievals

Figure A1. Locations of OCO-2 land nadir and land glint 10 s retrievals for the period of study (2015 through 2018).

Appendix B: Model information

Further information including figures on individual mod-
els can be accessed using the following link https:
//gml.noaa.gov/ccgg/OCO2_v9mip/index.php (last access:
September 2021).

B1 Ames

The Ames inversion system used the transport model GEOS-
Chem (Goddard Earth Observing System – Chemistry;
Bey et al., 2001), driven by meteorological parameters
from the MERRA-2 reanalysis (Bosilovich et al., 2017)
and run at a 4◦× 5◦ resolution (further description pro-
vided in Philip et al. (2019)). Surface fluxes were op-
timized monthly. The prior land biospheric CO2 fluxes
(also called prior NEE) used in the model setup come
from CarbonTracker CT2019 (Jacobson et al., 2020b) based
on CASA-GFED4.1s (Potter et al., 1993; Giglio et al.,
2013). The prior ocean fluxes are from the unoptimized
CT2019 Ocean Inversion Fluxes prior (OIF) product (Jacob-
son et al., 2007, 2020a). Finally, prior emissions for fires are
from GFED4.1s (Giglio et al., 2013; van der Werf et al.,
2017). Prior NEE flux error was calculated as the range of
five different biospheric CO2 flux models (CT2019-CASA-
GFED4.1s, CASA-GFED3, NASA-CASA, Lund–Potsdam–
Jena (LPJ), and Simple-Biosphere model version 4 (SiB-4))),
scaled with 1.35 to represent unaccounted uncertainty com-
ponents and keeping an upper bound of 5 times the absolute
value of monthly prior NEE for each surface grid box of the
model. The scaling was also done to get global total NEE
uncertainty values in agreement with Global Carbon Project

(GCP) estimates for the period of study (years 2015–2018).

Oceanic prior flux error was assigned to be 5.0 times the
absolute value of monthly oceanic prior fluxes in eachsur-
face grid box of the GEOS-Chem model. This scale factor
was also done to get global total ocean uncertainty values in
agreement with GCP estimates for 2015–2018. For both NEE
and oceanic prior fluxes, no spatial or temporal correlations
were considered.

B2 Baker

The transport model used in the Baker simulations is the Pa-
rameterized Chemical Transport Model (PCTM; Kawa et al.,
2004). The meteorology fields come from the MERRA-2
reanalysis: these have been coarsened to a resolution of
2◦× 2.5◦ for the forward runs of the prior fluxes and to a
resolution of 6.67◦× 6.67◦ for the assimilation of the mea-
surements; the vertical resolution has been coarsened to 40
levels in both cases by grouping together the original 72 lay-
ers in the upper atmosphere. Biospheric priors come from the
CASA-GFED3 (Potter et al., 1993; Randerson et al., 1997;
van der Werf et al., 2004) and include gross primary produc-
tivity (GPP), net ecosystem respiration, wildfires, and bio-
fuel emissions. A multiple of the respiration forward run is
added onto the others to bring the global trend of CO2 at
Mauna Loa into agreement with the observations across the
2014–2018 time span. The results shown are the mean of four
separate inversions, each done using a different air–sea flux
prior: (a) the NASA ocean biosphere model (NOBM; Gregg
et al., 2003; Gregg and Casey, 2007), (b) the Takahashi et al.
(2009) fluxes, (c) the Landschützer et al. (2015) fluxes, and
(d) those same Landschützer et al. (2015) fluxes with a sink

Atmos. Chem. Phys., 22, 1097–1130, 2022 https://doi.org/10.5194/acp-22-1097-2022

https://gml.noaa.gov/ccgg/OCO2_v9mip/index.php
https://gml.noaa.gov/ccgg/OCO2_v9mip/index.php


H. Peiro et al.: Four years of global carbon cycle observed from OCO-2 version 9 and in situ data 1121

of 0.95 PgCyr−1 added across the Southern Ocean. Uncer-
tainties in the priors are based on Baker et al. (2006), with
no correlations assumed between different weeks/grid boxes.
Weekly fluxes are estimated using a variational data assimi-
lation scheme (Baker et al., 2006).

B3 CAMS

CAMS simulation used the global general circulation model
LMDz (Laboratoire de Météorologie Dynamique Zoom)
with a spatial resolution of 1.9◦× 3.75◦ resolution and 39
vertical layers. The inferred fluxes are estimated in each hor-
izontal grid point of the transport model with a temporal res-
olution of 8 d, separately for daytime and nighttime. ERA-
Interim reanalysis meteorology fields are used. This inver-
sion system is part of the PyVAR-CO2 configuration. Bio-
spheric priors come from the climatology of the ORCHIDEE
model version 4.6.9.5 (Krinner et al., 2005). Ocean priors are
from the CMEMS (Denvil-Sommer et al., 2019). And fire
priors are from GFED4 (Giglio et al., 2013; van der Werf
et al., 2017).

The biospheric prior errors are assumed, over land, to
dominate the error budget, and covariances are based on
an analysis of mismatches with in situ flux measurements
(Chevallier et al., 2006, 2012). Spatial correlations on daily
mean NEE decay exponentially with a length of 500 km;
standard deviations are set to 0.8 times the climatologi-
cal daily-varying heterotrophic respiration flux simulated
by ORCHIDEE, with a ceiling of 4 gCm−2 d−1. Over a
full year, the total 1σ uncertainty for the prior land fluxes
amounts to about 3.0 GtCyr−1.

Ocean prior uncertainty is defined as follows: (i) tem-
poral correlations decay exponentially with a length of 1
month, (ii) unlike land, daytime, and nighttime flux errors
are fully correlated, and (iii) spatial correlations follow an
e-folding length of 1000 km; standard deviations are set to
0.1 gCm−2 d−1.The global air–sea flux uncertainty is about
0.5 GtCyr−1. Land and ocean flux errors are not correlated.

B4 CMS-Flux

Carbon Monitoring System (CMS)-Flux used a four-
dimensional variational (4D-Var) inversion approach with
the model GEOS-Chem. The model is driven by the God-
dard Earth Observing System version 5 of the NASA Global
Modeling Assimilation Office (GEOS-FP) meteorology and
runs at a 4◦× 5◦ resolution. A net biospheric exchange
(NBE) prior has been constructed using the CARDAMOM
framework (Carbon Data Model Framework; Bloom et al.,
2016). The CARDAMOM data assimilation system explic-
itly represents the time-resolved uncertainties in the NBE.
The prior estimates are already constrained with multiple
data streams accounting for measurement uncertainties fol-
lowing a Bayesian approach similar to that used in the four-
dimensional variational approach. The CMS-Flux simula-

tion uses the CARDAMOM setup as described by Bloom
et al. (2016, 2020) resolved at monthly timescales; data con-
straints include GOME-2 solar-induced fluorescence (Joiner
et al., 2013), MODIS leaf area index (LAI), and biomass
and soil carbon. In addition, mean GPP and fire carbon
emissions from 2010–2017 are constrained by FLUXCOM
RS+METEO version 1 GPP (Tramontana et al., 2016; Jung
et al., 2017) and GFEDv4.1 s (Randerson et al., 2012), re-
spectively, both assimilated with an uncertainty of 20 %. The
prior ocean error is 100 %. Fires are not optimized sepa-
rately; they are part of the NBE. The Olsen and Rander-
son (2004) approach has been used to downscale monthly
GPP and respiration fluxes to 3-hourly timescales, based on
ERA-Interim reanalysis of global radiation and surface tem-
perature. Fire fluxes are downscaled using the GFEDv4.1
daily- and diurnal-scale factors on monthly emissions. Pos-
terior CARDAMOM NBE estimates are then summarized as
NBE mean and standard deviation values. The NBE from
CARDAMOM shows net carbon uptake of 2.3 GtCyr−1 over
the tropics and is close to neutral in the extra-tropics. The
year-to-year variability (i.e., interannual variability, IAV) es-
timated from CARDAMOM from 2010–2017 is generally
less than 0.1 gCm−2 d−1 outside of the tropics. Because of
the weak interannual variability estimated by CARDAMOM,
the same 2017 NBE prior is used for 2018. CARDAMOM
generates uncertainty along with the mean state. The relative
uncertainty over the tropics is generally larger than 100 %,
and the magnitude is between 50 % and 100 % over the extra-
tropics. We assume no correlation in the prior flux errors in
either space or time.

B5 CSU

The CSU simulation used the GEOS-Chem model with a
Bayesian synthesis technique. Transport was performed at
4◦× 5◦ resolution, and CO2 fluxes for both respiration and
GPP were optimized at the TRANSCOM3 level as a func-
tion of plant functional type (PFT). The model is driven
by MERRA-2 meteorology fields. Biospheric prior emis-
sions are based on the Simple Biosphere Model Version 4
(SiB-4; Baker et al., 2013) at a 1◦× 1◦ resolution grid. SiB-
4 is a land surface model that predicts vegetation and soil
moisture, land surface energy, and terrestrial carbon cycle.
It used carbon fluxes to determine biomass above and below
the ground. Prior ocean comes from a climatology based on
Landschützer v18. Prior standard deviations (independent,
no prescribed correlations) for ocean exchange, respiration,
and GPP were 10 % of the net exchange (or respiration or
GPP). Fires are from GFED4.1s.

B6 CT

The CarbonTracker (CT) simulations presented here closely
follow the methods used for CT2019B (Jacobson et al.,
2020b), except that only one set of biosphere, wildfire, and
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oceanic emissions data was used. For the present experi-
ments, first-guess land carbon emissions were provided by
GFED4.1s (Giglio et al., 2013; van der Werf et al., 2017),
and first-guess ocean emissions come from Jacobson et al.
(2007). CT inversions optimize surface fluxes by estimating
weekly scaling factors multiplying first-guess emissions for
156 ecoregions covering the globe. The optimization scheme
is an ensemble Kalman filter with a 12-week assimilation
window. Atmospheric transport is simulated by TM5 (Krol
et al., 2005) with meteorology from the ERA-Interim reanal-
ysis (Dee et al., 2011) with a global resolution of 3◦ longi-
tude by 2◦ latitude and a 1◦× 1◦ zoom region over North
America. Prior standard deviation is equivalent to 50 %.
Prior covariance is applied such that the correlations between
the same ecosystem types in different TRANSCOM regions
decrease exponentially with distance scale L = 2000 km.
More information can be found in https://gml.noaa.gov/
ccgg/carbontracker/CT2019B_doc.php#tth_sEc8.2 (last ac-
cess: September 2021).

B7 LoFI

While the OCO-2 MIP v7 (Crowell et al., 2019) was com-
posed of models assimilating OCO-2 retrieval v7 or in situ
data, the OCO-2 MIP v9 also has the model Low-order Flu
Inversion (LoFI; Weir et al., 2021), which is an integrated
Earth system model with data assimilation capabilities. LoFI
(Weir et al., 2021) reproduces atmospheric and oceanic
growth rates from a group of remote-sensing carbon fluxes.
The model used is the Heracles 4.0 Goddard Earth Observing
System (GEOS) general circulation model (GCM) including
MERRA-2 meteorological inputs and a 0.5◦×0.625◦ resolu-
tion grid with 72 vertical levels. Biospheric fluxes have a 3-
hourly time step, while all other fluxes have a daily time step.
Biospheric and biofuel priors come from the CASA-GFED3.
Biomass burning priors are based on the Quick Fire Emis-
sions Dataset (QFED; Darmenov and Silva, 2015). QFED
is based on MODIS fire radiative power estimates using the
technique from GFAS (Kaiser et al., 2012). Finally, oceanic
priors are an extension of the Takahashi et al. (2009) clima-
tology product used with NOAA zonal-mean surface CO2
and MERRA-2 wind speed. This approach is also used in the
NOAA CarbonTracker system.

B8 OU

The OU simulation used the chemistry transport model TM5
(Krol et al., 2005) with a 4D-VAR assimilation algorithm.
The model has been run at a 4◦× 6◦ resolution with 25
vertical layers. ERA-Interim meteorology fields are used
here as well. Initial conditions are provided from Carbon-
Tracker. Oceanic priors were constructed from Takahashi
et al. (2009). Biospheric priors are based on CT2019 CASA-
GFED3 and the fire prior from GFED3. Uncertainties are de-
rived from different climatological fluxes. Exponential spa-

tiotemporal correlation is assumed for the uncertainty in the
prior flux. For the oceanic component, the length is 1000 km
and the timescales is 3 weeks, while for the terrestrial com-
ponent, length and timescale are 250 km and 1 week.

B9 TM5-4DVAR

The TM5-4DVAR simulation used the same transport model
as the OU simulation with the same meteorological fields
but on a 2◦× 3◦ resolution grid. A climatological average of
CT2019 oceanic fluxes estimates constrained oceanic prior
fluxes. Biospheric priors are taken from SiB CASA GFED4
(Van Der Velde et al., 2013) and fire priors from GFED4
(Randerson et al., 2012). The uncertainties in the biospheric
prior are fixed to 0.5 times the heterotrophic respiration from
SiB CASA. For the oceanic prior, the uncertainties are fixed
at 1.57 times the absolute flux at each grid cell and time step.
The same correlation, length, and timescale as the OU simu-
lation are assumed and used in this TM5-4DVAR simulation.

B10 UT

The GEOS-Chem model has been used in the UT simula-
tion, driven by assimilated meteorological observation from
GEOS-FP and used with the 4D-Var assimilation algorithm.
The model is run at 4◦×5◦ resolution with 47 vertical layers.
More information can be found in Deng et al. (2016). Fire
priors are based on GFED4. Oceanic prior fluxes are based
on the monthly climatology of Takahashi et al. (2009). And
finally, biospheric priors are based on 3-hourly fluxes from
the Boreal Ecosystem Productivity Simulator (Chen et al.,
2012). Annual terrestrial ecosystem exchange is assumed to
be neutral in each grid box (Deng and Chen, 2011; Deng
et al., 2014). Optimized scaling factors are estimated with a
monthly temporal resolution. Uncertainty is assumed to be
38 % for the fire emissions in each month and each model
grid box, while it is 44 % for the ocean emissions and 22 %
for terrestrial emissions.

Data availability. The surface gridded flux are available
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(NOAA, 2019a). The in situ measurements are available from
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