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Abstract

We study public goods games played on networks with possibly non-recip-

rocal relationships between players. Examples for this type of interactions

include one-sided relationships, mutual but unequal relationships, and par-

asitism. It is well known that many simple learning processes converge to

a Nash equilibrium if interactions are reciprocal, but this is not true in

general for directed networks. However, by a simple tool of rescaling the

strategy space, we generalize the convergence result for a class of directed

networks and show that it is characterized by transitive weight matrices and

quadratic best-response potentials. Additionally, we show convergence in a

second class of networks; those rescalable into networks with weak exter-

nalities. We characterize the latter class by the spectral properties of the

absolute value of the network’s weight matrix and by another best-response

potential structure.
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1 Introduction

All social and economic networks feature relationships which cannot be described

as a partnership of equals. There are relationships between pairs of agents in which

only one party is interested and the other is not. Some relationships are beneficial

for one party but harmful for the other. Even when both parties benefit or both

are harmed, the extent by which they are affected by their counterpart’s decisions

is not necessarily equal. Nevertheless, most scientific works, both theoretical and

applied, are using models in which the reciprocity of interactions is a fundamental

property. These frameworks, simple graphs and weighted networks, have received

a lot of recent interest from economic theorists due to them providing a highly ac-

curate, rich, and efficient description of real-life interactions. However for reasons

relating to either convenience or convention, non-reciprocal relations, and their

relevance to economic theory, are relatively unexplored in network literature.

In particular, most models featuring externalities in networks such as Ballester

et al. (2006) and Bramoullé and Kranton (2007) assume reciprocal interactions.

These highly influential theoretical papers opened the way for a number of appli-

cations, such as R&D expenditure between interlinked firms (König et al., 2019),

peer effects (Blume et al., 2010), defense expenditures (Sandler and Hartley, 1995,

2007), and crime (Ballester et al., 2010). Most of the applied literature continues

to assume reciprocity of relations and performs equilibrium analysis. However, as

it will be apparent from our results, the basis behind using the Nash equilibrium

as a prediction in networks with non-reciprocal interactions is much weaker than

with only reciprocal ones. Thus, predictions made by models using simple graphs

or weighted networks are only justified for applications where the underlying in-

teraction network is shown to consist only of reciprocal relations.

In this paper we extend the theoretical literature of learning in networks to

include non-reciprocal relations by the use of directed networks. By doing so we

intend to fill a gap in the theory literature and provide a jumping off point for a

stronger connection between subsequent applied literature and real-life interaction

networks. Our setting generalizes games played on weighted networks: instead of

one weight, each link is defined by two distinct weights, one for each direction.

The three important types of non-reciprocal relations we highlight are (1) one-

directional links with one of the weights of the link being zero and the other being
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non-zero, e.g., an upstream city along a river affects a neighboring downstream

city by polluting the river but not vice versa, (2) parasitic links with one weight

being positive and the other being negative, e.g., a criminal organization engaging

in the extortion of a small business gains benefits from the interaction but it comes

with losses for the business, and (3) mutual but unequal benefit or harm, with

both weights being positive or both being negative but they are not equal, e.g.,

a monopolistic seller and a competitive buyer both benefit from their economic

relationship but the gains from the interaction tend to be greater for the seller

than for the buyer.

One of the focuses of theoretical literature of public goods and networks is the

convergence of learning processes to the Nash equilibrium. This is to provide a

behavioral and an evolutionary motivation to use equilibrium as a prediction in ap-

plied settings. Under symmetric weight matrices a number of powerful convergence

results are known: Stability of Nash equilibria with respect to the continuous best-

response dynamic has been established by Bramoullé et al. (2014). Convergence

of the continuous best-response dynamic to some Nash equilibrium in such games

has been shown by Bervoets and Faure (2019). Bayer et al. (2019) shows conver-

gence of a class of one-sided learning processes. Bervoets et al. (2020) constructs a

convergent learning process not requiring the sophistication of the best response.

Bayer et al. (2021) studies the impact of a farsighted agent on the process in a

population of myopic players. Together, these results allow for an interpretation

of the game’s Nash equilibria as the results of a sequence of improvements made

separately by the players.

All of the above papers assume reciprocal network interactions. Thus, they

make use of more general results of games of reciprocal interactions (Dubey et al.,

2006; Kukushkin, 2005), as well as that of generalized aggregative games (Jensen,

2010). The latter structure allows for the use of the theory of potential games

(Monderer and Shapley, 1996), specifically, best-response potential games (Voorn-

eveld, 2000). The main intuition behind the existence of a differentiable best-

response potential function for reciprocal interaction networks is that the poten-

tial’s Hessian, a symmetric matrix, must correspond to the Jacobian of the system

of best-responses, which, in this case, is equal to the network’s weight matrix. In

this paper, however, we show that the best-response potential structure can be

exploited in important classes of networks even when the relations, as expressed
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by the interaction matrix, are not reciprocal.

We consider convergence to Nash equilibria under one-sided improvement dy-

namics taking place in discrete time. Starting from a profile of production de-

cisions, in every time period one player receives an opportunity to change her

production, while every other player remains on the previous period’s level. In

the next period, another player receives a revision opportunity, and so on. We

consider three versions of the best-response dynamic. In increasing order of gener-

ality, these are the pure best-response dynamic, in which every revision takes the

player to her current best choice given the actions of others, the best-response-

approaching dynamic, in which every revision moves the player into the interval

between her current action and her current best choice, and the best-response-

centered dynamic, in which every revision reduces the distance between her action

and her current best choice. Pure best-response dynamics as described above are

widely studied. In directed network games, best-response-approaching dynamics

include the naive learning dynamics introduced by Bervoets et al. (2020), while

best-response-centered dynamics are studied in Bayer et al. (2019). These two

dynamics are similar to the directional learning model (Selten and Stoecker, 1986;

Selten and Buchta, 1998) in which players are making attempts to find their tar-

gets by adjusting towards the direction they believe the target is located. Such

qualitative learning models are known to explain experimental behavior in various

settings (Cachon and Camerer, 1996; Cason and Friedman, 1997; Kagel and Levin,

1999; Nagel and Vriend, 1999).

While none of these dynamics can cycle under reciprocal interactions, in di-

rected network games cycles can emerge. Cycles indicate that convergence to the

Nash equilibrium is not a universal property of learning processes. We discuss

two examples: (1) directed ‘net’ cycle networks allow for best-response cycles as

economic activity of the players flows in the opposite direction as the external

‘net’ effects of the network, and (2) parasite-host networks lead to best-response

cycles as the parasite’s economic activity increases with the host’s activity level,

while the host’s economic activity decreases with that of the parasite.

Nevertheless, classes of networks exist without cycles where convergence to a

Nash equilibrium can be shown, given some mild assumptions on the order of up-

dates. In this paper we identify two such classes, networks with transitive relative

importance, and games rescalable to exhibit weak influences or weak externalities.
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The former class captures networks that can be transformed into symmetric

networks with some appropriate rescaling of the action space, an idea raised by

Bramoullé et al. (2014). Rescaling can be understood as changing the measure-

ment of one player’s production from, e.g., euros to dollars. Rescaling does not

affect the equilibrium structure or the convergence properties of the game, but

it does change its nominal interaction structure as expressed by the network’s

weight matrix. Thus, a network with reciprocal interactions can be rescaled into

non-reciprocal ones, which thus inherit its convergence properties. A network can

be rescaled in such a way if and only if it satisfies the property of transitive relative

importance and it does not have one-way or parasitic interactions.

The relative importance of a link for a player is measured by the relative

payoff-effects between the two players. If a link is reciprocal, then the relative

importance of that link for both players is unity. A link with a larger weight

for one player and a small weight for the other is relatively more important to

the former and, inversely, not so important for the latter. Transitive relative

importance restricts the network through these values. For instance, if the link

{i, j} is more important to i than to j, and if the link {j, k} has equal importance

to both participants, then the link {i, k} must be more important to i than to

k. This property presumes a common hierarchy of players with important players

whose production matters greatly in relative terms for all individuals and less

important players whose production matters little.

This property is closely connected to Kolmogorov’s reversibility criterion for

Markov chains (see e.g. Kelly (2011)), as well as transitive matrices (Farkas et al.,

1999) a property applied in pairwise comparison matrices (Bozóki et al., 2010)

and Analytic Hierarchy Processes (Saaty, 1988). We show that these networks

and only these can be rescaled into symmetric ones, and these are the only ones

that have a quadratic best-response potential function.

The second class of networks with convergent best-response dynamics are those

that are rescalable to exhibit weak influences or weak externalities. A player is

influenced weakly by her opponents if the total effects of a unit change in all of

her opponents’ actions on her are smaller than the effect of a unit change in her

own action. These networks are characterized by row diagonally dominant weight

matrices. In social networks, this property can be interpreted as a form of indi-

vidualism. On the other hand, weak external effects are characterized by column
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diagonally dominant weight matrices, meaning a unit change in any player’s action

has a larger effect on herself than on all the other players combined. In economics,

small level of externalities is a characteristic of efficient markets.

In non-cooperative game theory, weakness of externalities is known be suffi-

cient for uniqueness of the Nash equilibrium as well as convergence to the unique

Nash equilibrium under best-response dynamics (Gabay and Moulin, 1980; Moulin,

1986). In networks, weak influences are studied by Parise and Ozdaglar (2019)

while both types of diagonal dominance are studied by Scutari et al. (2014). Since

in our model, network weights are allowed to be both negative and positive, weak

externalities is a separate condition from small network effects (Bramoullé et al.,

2014; Belhaj et al., 2014). Under small network effects, given an equilibrium

production profile, a tremor in a player’s production decision is dampened by

the network such that the system returns to the original equilibrium under best-

response dynamics. We show that small network effects in absolute value, that is,

the spectral radius of the absolute value of the weight matrix being less than one

is sufficient and necessary for rescalability into networks with weak influences and

those with weak externalities. Moreover, we show that this class of games is also

characterized by a potential structure. We thus fully characterize the class of net-

works for which uniqueness of equilibrium and global convergence of best-response

dynamics can be shown by either type of diagonal dominance. In addition, this

class includes the set of directed acyclic networks.

Overall, our results have a number of implications with respect to convergence

in directed network games. A negative finding is that, in networks with directed

‘net’ cycles and parasite-host interactions, the interpretation of the Nash equilib-

rium as an outcome of a series of decentralized improvements by the players is

questionable as the convergence of simple learning processes is not assured. We

complement this with a pair of positive results by identifying and characterizing

two interesting classes of networks where convergence is assured. Our two sets

of positive results uncover insights into the relationship between reciprocity of

network interactions, the spectral properties of the network, and the games’ po-

tential structure as well as generalize the powerful results achieved for the case of

reciprocal interactions.

Our paper is organized as follows: Section 2 presents our setting, introduc-

ing directed network games, best-response dynamics, and best-response potential
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games. Section 3 contains our characterization and convergence results for net-

works that can be rescaled into symmetric networks. Section 4 contains the same

sets of results for networks rescalable to games with weak influences or weak ex-

ternalities. Section 5 concludes.

2 The model

Let I = {1, . . . , n} be the set of players. For i ∈ I and upper bounds xi > 0

the set Xi = [0, xi] is called the action set of player i, X =
∏

i∈I Xi is called the

set of action profiles. We let xi ∈ Xi denote the action taken by player i while

x−i ∈
∏

j∈I\{i}Xj denotes the truncated action profile of all players except player

i, and x = (xi)i∈I denotes the action profile of all players.

The formal definition of directed network games used in this paper is as follows.

Definition 2.1. The tuple G = (I,X, (πi)i∈I) is called a directed network game

with payoff functions πi : X → R given by

πi(x) = fi

(∑
j∈I

wijxj

)
− cixi, (1)

where fi : R → R is twice differentiable, f ′i > 0, f ′′i < 0, wij ∈ R, wii = 1, and

ci > 0 for every i, j ∈ I.

Assumption 2.2. We assume that fi are given such that for every i ∈ I we have

ti ∈ (0, xi) such that f ′(ti) = ci.

The interpretation is the following. Each player produces a specialized good with

linear production technology, incurring costs ci for every unit of the good produced.

Players derive benefits from the consumption of their own goods and they are

affected by their opponents’ production decisions. Player i’s enjoyment of player

j’s good is represented by the weight wij ∈ R. Without loss of generality, we

normalize the interaction parameter of each player i with herself, wii, to 1. The

overall benefits of player i are given by the benefit function fi over the weighted

sum of her and her opponents’ goods. Crucially, we do not impose reciprocal

relations, meaning that wij 6= wji may hold, so the weight matrix (wij)i,j∈I = W

might not be symmetric.

Since the benefit functions fi are strictly concave, the sets Xi are compact,

and the cost parameters ci are positive, for every x−i there is a unique value of xi
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that maximizes πi(x). The target values ti are implicitly defined by f ′i(ti) = ci, i.e.

the value player i would produce if all others produce 0. We make the simplifying

assumption that every player is able to produce her target amount of the good.

Let t = (ti)i∈I denote the vector of targets.

Note that if wij > 0 and wji > 0, then the goods of players i and j are strategic

substitutes. If wij < 0 and wji < 0 then their goods are strategic complements.

If wij > 0 and wji < 0, then we say that players i and j share a parasitic link. If

wij = 0, then player i is not directly affected by player j’s production decision.

For player i ∈ I and x ∈ X, bi(x) = argmax xi∈Xi
πi(x) denotes player i’s

best-response function. It is easy to see that the best response functions are the

following:

bi(x) =


0 if ti −

∑
j∈I\{i}wijxj < 0,

ti −
∑

j∈I\{i}wijxj if ti −
∑

j∈I\{i}wijxj ∈ [0, xi],

xi if ti −
∑

j∈I\{i}wijxj > xi.

(2)

Let b̃i(x) = ti −
∑

j∈I\{i}wijxj denote player i’s unconstrained best response.

Let the set of Nash equilibria be denoted by X∗. It is also easy to see that every

directed network game has at least one Nash equilibrium, thus X∗ is non-empty.

Bramoullé et al. (2014)’s analogue result using Brouwer’s fixed-point theorem for

a positive and symmetric weight matrix is applicable in the directed network

case. While the functional form of the best response and the existence of Nash

equilibria follow along the same lines in both undirected and directed networks,

the convergence results of the undirected case do not generalize to the directed

case.

We now formally introduce the learning processes of our paper, the best-

response dynamic and two extensions.

Definition 2.3. The sequence of action profiles (xk)k∈N is a one-sided dynamic if

for every k ∈ N there exists an ik ∈ I such that xk−ik = xk+1
−ik . We say that players

update infinitely many times if for every i ∈ I the set {k ∈ N : ik = i} is infinite.

We say that players update regularly if there exists an K > 0 such that for every

i ∈ I and k ∈ N there exists k′ ∈ {k, . . . , k +K} with ik
′
= i.

Definition 2.4 (Best-response dynamics). The one-sided dynamic (xk)k∈N is a

• best-response dynamic (BRD), if we have xk+1
ik

= bik(xk).
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• best-response-approaching dynamic (BRAD) with approach parameter 0 ≤
β < 1, if |xk+1

ik
− bik(xk)| ≤ β|xk

ik
− bik(xk)| and if xk+1

ik
6= bik(xk), then

sgn(xk+1
ik
− bik(xk)) = sgn(xk

ik
− bik(xk)).

• best-response-centered dynamic (BRCD) with centering parameter 0 ≤ α <

1, if |xk+1
ik
− bik(xk)| ≤ α|xk

ik
− bik(xk)|,

for every k ∈ N.

In a one-sided dynamic exactly one player changes her action in every time period.

In a BRD, every revision takes the updating player to her best response, in a

BRAD, players move closer to their best responses without overshooting it, while in

a BRCD, players move closer to their best responses and are allowed to overshoot.

The approach and centering parameters of a BRAD and a BRCD, respectively,

indicate the maximum fraction to which the distances are allowed to decrease.

These processes allow payoff-maximizing players to make mistakes, their ability

of reaching the best-response is captured by the two parameters with lower values

indicating a higher level of accuracy. It is clear that every BRD is a BRAD and

every BRAD is a BRCD.

Players revising infinitely many times and regularly are mild technical restric-

tions that ensure that (1) a convergent dynamic will converge to a Nash equilibrium

as no player can get stuck playing a suboptimal action indefinitely by not having

the opportunity to revise, (2) we can iterate the best-responses of all players. It

is clear that the latter implies the former.

Bramoullé et al. (2014) and Bervoets and Faure (2019) consider the BRD

in continuous time. Parise and Ozdaglar (2019), in addition to the continuous-

time dynamic, also considers discrete-time BRD, both simultaneous and sequential

updating in a fixed order of players. Our BRD process is more general than

the latter as revision opportunities may arrive in any order. Bayer et al. (2019)

considers both the BRD and the BRCD as above.

Definition 2.5 (Cycles). A sequence (xk)k∈N has a cycle if there exist three time

periods, k < k′ < k′′ such that xk = xk
′′
, but xk 6= xk

′
.

In words, a process has a cycle if it non-trivially revisits an action profile in two

different time periods. The absence of best-response cycles is a necessary but

not sufficient condition of the convergence of best-response dynamics (Kukushkin,
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2015), which holds in networks with reciprocal interactions. The following two

examples show that directed ‘net’ cycle networks and parasitic links lead to cycling

and thus hinder any general convergence results.

Example 2.6 (Directed ‘net’ cycle network). Let w ≥ 0 be given. Consider a

three-player directed network game with I = {1, 2, 3}, Xi = [0, 1] for i ∈ I, and

weight matrix

W =

 1 w w + 1
w + 1 1 w
w w + 1 1

 ,

Let fi(x) = log(1 + x) and ci = 1/(1 + ti) for i ∈ I, so player i’s payoff is

πi(x) = log

(
1 +

∑
j∈I

wijxj

)
− 1

1 + ti
xi.

As f ′i(ti) = ci for all i, t is indeed the vector of targets. Fix t = (1, 1, 1)>. We call

W a directed ‘net’ cycle as it comprises two directed cycles of opposite directions,

one with weight w, and one with a larger weight, w + 1.

Consider the BRD with the initial action profile x = (1/(w + 1), 0, 0)>. Let

player 3 receive the first revision opportunity, followed by player 1. Then, player 3

will set her production to 1/(w + 1), while player 1 will set hers to 0. Production

shits in opposite direction of the ‘net’ cycle. Thus, if the next revision is made

by player 2, followed by player 1, production shifts again, this time to player 2.

Player 1 revising next followed by player 3 completes the cycle. Figure 1 shows

two revisions of the ‘pure’ directed cycle network, with w = 0.

1
1

0
2

0

3

1
1

0
2

1

3

0
1

0
2

1

3

Period 1 Period 2 Period 3

Figure 1: For w = 0, Example 2.6 produces a pure directed cycle network. Production
shifts in the opposite direction of the cycle under the BRD.
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Example 2.7 (Parasitism). Let I = {1, 2}, fi(x) = log(1 + x), ci = 1/(1 + ti) for

i ∈ I, t1, t2 = 1, and let

W =

(
1 −2

0.5 1

)
.

Under BRD, starting from the action profile x = (1, 0)>, if both players revise in

turns, the game has a best-response cycle of length four.

1
1

0
2

0.5

−2
1
1

.5

2

0.5

−2

Period 1: Self-sustaining host. Period 2: Activation of parasite.

2
1

.5

2

0.5

−2 2
1

0
2

0.5

−2

Period 3: Increased host activity. Period 4: Passive, free-riding parasite.

Figure 2: The best-response cycle of Example 2.7.

In this example, player 1 is called the host and player 2 is called the parasite. A

self-sustaining host is engaged by a parasite. The host responds by increasing her

activity to offset the parasite’s negative effects. The parasite’s benefits from the

host are large enough that it ceases production entirely and free-rides on the host.

The host is then able to return to the self-sustaining stage, completing the cycle.

The full process is shown in Figure 2. It is easy to see that the same cyclic pattern

of parasite-host interaction can be replicated by a broad range of parameters and

larger networks. Such cycles necessitate that the parasitic link is amplifying, i.e.

|w12w21| ≥ 1.

Examples 2.6 and 2.7 together indicate that directed cycles and parasitic re-

lations lead to the cycling of BRDs, and hence those of BRADs and BRCDs. In

such networks, convergence to the Nash equilibrium is not guaranteed.

We define one of the main concepts used in this paper, best-response potential

games.

Definition 2.8 (Voorneveld (2000)). A game G = (I,X, (πi)i∈I) is a best-response

potential game, if there exists a best-response potential function φ : X → R such
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that for every i ∈ I, and every x−i ∈ X−i it holds that

argmax
xi∈Xi

πi(x) = argmax
xi∈Xi

φ(x).

G is a best-response potential game if the best-response behavior of all players

can be characterized by a single real-valued function φ, called the best-response

potential. As per Voorneveld (2000)’s Theorem 3.1, for general classes of strategic

games a best-response potential if and only if the game admits no best-response

cycles, and a technical condition is met.1 This condition is empty for games with

countable action spaces, hence, the paper’s second main result, Theorem 3.2, shows

that a best-response potential exists if and only if the game has no best-response

cycles. Furthermore, if X is finite (as in a discretized setting à la Bayer et al.

(2021)), if there are no best-response cycles, then any BRD where the players

update regularly converges to a Nash equilibrium.

As we explore classes of networks with convergent best-response dynamics, we

thus also characterize them by their potential structure.

3 Transitive relative importance

As shown in the previous section, allowing for non-reciprocal interactions in net-

work games changes their convergence properties under BRDs. However, there

are interesting classes of directed network games where convergence to the game’s

Nash equilibrium can still be shown.

It is well known in the literature that convergence of BRDs in networks of

reciprocal interactions can be shown by exploiting the game’s potential structure.

The main intuition this is that in the case wij = wji for all i, j, the function

x>t− 1

2
x>Wx

is a best-response potential. Every player’s update will weakly increase the value

of the best-response potential, which is bounded as the function is continuous

and the action space is compact. Assuming that there is a finite amount of Nash

equilibria, regular updating ensures that, in time, every player will be close to her

1The condition requires that the tuple (X∼,≺) be properly ordered, where ≺ is the binary
relation defined as follows: x ≺ y if there exists a BRD from x to y, ∼ is the equivalence relation
x ∼ y if x ≺ y and y ≺ x; and X∼ is the set of equivalence classes on X generated by ∼.
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current best-response. This means that the process will converge to an isolated

peak of the potential value landscape, corresponding to a Nash equilibrium.

In section VI, Bramoullé et al. (2014) raises the idea that, by an appropriate

rescaling of the action space, this method may be extended for some class of

directed networks as well. In this section we identify and characterize the class of

directed networks for which this can be done.

Take a vector a ∈ Rn, called a scaling vector, such that a > 0, i.e., for every

i ∈ I we have ai > 0 and let yi = aixi and yi = aixi. Furthermore, let Yi = [0, yi]

and Y =
∏

i∈I Yi. It is clear that any BRD, BRAD, or BRCD in the game with

strategy space X is a BRD, BRAD, or BRCD, respectively, in the game with Y

with the same approach or centering parameters in the cases of BRAD and BRCD.

Similarly, the convergence properties of the processes in the game with strategy

space Y are identical to those with X.

The unconstrained best-response function of player i in the rescaled game is

given by

tiai −
∑

j∈I\{i}

wij
ai
aj
yj.

Let wijai/aj = vij and let V = (vij)i,j∈I denote the matrix of rescaled weights.

Our goal in this section is to characterize the class of networks that are rescalable

into a symmetric network, i.e., the set of networks W for which there exists a

vector a > 0 such that for every i, j ∈ I we have

ai
aj
wij = vij = vji =

aj
ai
wji. (3)

Note that rescaling a network means that we conjugate its weight matrix by the

diagonal matrix of scaling weights. That is, consider S = diag(a1, . . . , an). Then,

we have V = SWS−1. We continue to talk about rescalability instead of conjugate

matrices as S being a diagonal matrix is crucial for our results, as it will be

apparent in Theorem 3.4. A similar notion appears in Golub and Jackson (2012)

who rely on this special case of matrix similarity to symmetric matrices.

We now define transitive relative importance of links.

Definition 3.1. We say that the weight matrix W shows transitive relative im-

portance if for every 3 ≤ m ≤ n and for all pairwise distinct i1, i2, . . . , im ∈ I we

have

wi1i2wi2i3 . . . wim−1imwimi1 = wi1imwimim−1 . . . wi3i2wi2i1 .
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For simplicity we write that W is transitive if it satisfies Definition 3.1. Notice

that if W is symmetric, then it is also transitive. Also notice that if for every

i, j ∈ I it holds that wij 6= 0, then wijwjkwki = wikwkjwji for every pairwise

distinct i, j, k ∈ I implies transitivity.

The interpretation is as follows: for wij, wji 6= 0 define the value rij = wij/wji

as player i’s relative importance on the link between i and j. It is clear that, if

well-defined, the matrix R = (rij)i,j∈I is symmetrically reciprocal. In this case the

transitivity property reduces to having

rijrjk = rik, (4)

for every i, j, k ∈ I. Thus, qualitatively, if the link {i, j} is more important to i

than to j and if the link {j, k} is more important to j than to k, then the link

{i, k} must be more important to i than to k.

Remark 3.2. Transitivity as defined in Definition 3.1 is identical as Kolmogorov’s

characterization of reversible Markov chains with the exception that network

weights are allowed to be negative. If R is defined, then transitivity of W means

that R is a consistent pairwise comparison matrix of an Analytic Hierarchical Pro-

cess (Saaty, 1988). Here, the literature seems to use the terms consistent (Bozóki

et al., 2010) and transitive (Farkas et al., 1999) interchangeably when describing

the symmetrically reciprocal comparison matrix R. We use transitivity of W to

indicate the intuition imposed on links.

The final definition we require is that of sign-symmetry.

Definition 3.3. We say that the weight matrix W is sign-symmetric if for every

{i, j} ⊆ I we have sgn(wij) = sgn(wji).

Sign-symmetry of networks rules out one-way interactions and parasitic interac-

tions between players.

We are ready to present the main result of this section.

Theorem 3.4. The following statements are equivalent:

1. the network W is rescalable into a symmetric matrix,

2. the network W is transitive and sign-symmetric,
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3. there exists a game G on W that has a quadratic best-response potential

function,

4. every game G on W has a quadratic best-response potential function.

The proof is shown in the appendix.

Theorem 3.4 shows that transitivity of a network combined with sign-symmetry

is equivalent to it being rescalable into a symmetric network. Additionally, no

other network has a quadratic potential function, which shows that this property

cannot be exploited further. Our result thus gives a full characterization for which

types of directed networks satisfy the requirements put forward in Bramoullé et al.

(2014) section VI.

Theorem 3.4 combined with Bayer et al. (2019)’s Theorem 5.3 give rise to the

following corollary.

Corollary 3.5. Let W be a transitive and sign-symmetric network and let t be

given such that |X∗| <∞. Then, every BRD and BRCD in which players update

regularly converges to a Nash equilibrium.

For a fixed symmetric network, since the number of Nash equilibria is finite for

almost every target vector (Bayer et al., 2019), Corollary 3.5 also applies to every

network and almost every target vector, thus convergence is generically established

for this class.

4 Weak influences and weak externalities

In this section we characterize another class of networks with convergent dynamics.

A key concept in describing this class is the players’ influence and the externalities

they produce. A player i’s decisions are influenced by her opponents through her

incoming weights, measured by their total magnitude:
∑

j∈I\{i} |wij|. Similarly, a

player i’s external effects on her opponents is measured by the total magnitude of

her outgoing weights:
∑

j∈I\{i} |wji|. In this section we consider cases where such

influences/externalities are smaller than the players’ own weight with themselves,

wii = 1. As a motivating example, consider a parametric version of Example 2.6’s

‘pure’ directed cycle network.
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k xk1 xk2 xk3 ik
∑

j∈I wikjxj bik(xik)

0 1 0 0 3 0 1
1 1 0 1 1 δ 1− δ
2 1− δ 0 1 2 δ − δ2 1− δ + δ2

3 1− δ 1− δ + δ2 1 3 δ − δ2 + δ3 1− δ + δ2 − δ3

Table 1: The best-response dynamic of Example 4.1.

Example 4.1 (Directed cycle with weights). Consider the weight matrix

W =

1 0 δ
δ 1 0
0 δ 1

 ,

with δ ∈ (0, 1). Let fi(x) = log(1+x), ci = 1/(1+ti) and fix ti = 1 for i ∈ {1, 2, 3}
as previously. The best-response functions are b1(x) = 1 − δx3, b2(x) = 1 − δx1,
b3(x) = 1−δx2. The only Nash equilibrium is x∗ = (1/(1+δ), 1/(1+δ), 1/(1+δ))>.

In Table 1 we that show the sequence of action profiles in the BRD where play-

ers receive revision opportunities in the same, repeating order (3, 1, 2), starting,

from the action profile (1, 0, 0)>. In this order of revisions, the player holding the

revision opportunity in period k will revise to
∑k

`=0(−δ)` = (1− (−δ)k+1)/(1 + δ).

Playing on in this order will produce no cycles, and lead to convergence to the

Nash equilibrium.

Example 4.1 suggests that if influences or externalities are even marginally

weaker than the players’ own weight, best-response cycles disappear and we get

convergence to a unique Nash equilibrium. As we will show in this section, this

turns out to be a general property. We first introduce these games formally.

Definition 4.2. A network W has

• weak influences if for every i ∈ I it holds that
∑

j∈I\{i} |wij| < 1,

• weak externalities if for every i ∈ I it holds that
∑

j∈I\{i} |wji| < 1.

Networks with weak influences are characterized by row diagonally dominant

weight matrices, while those with weak externalities have column diagonally domi-

nant weight matrices. An equivalent characterization of these two classes in terms

of matrix norms is as follows: A network W ∈ Rn×n has

• weak influences if ‖W − In‖∞ < 1,
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• weak externalities if ‖W − In‖1 < 1,

where In denotes the n × n identity matrix. Games with weak influences satisfy

Assumption 2b of Parise and Ozdaglar (2019), while both classes are covered by

Scutari et al. (2014)’s Proposition 7.

It turns out that both classes of games have a unique Nash equilibrium and

every BRD and BRAD converges to it. The main intuition for this is that the

iterated BRD is contracting. Once again we can make use of rescaling: any network

which is rescalable into one of the two classes inherits the uniqueness of the Nash

equilibrium as well as the convergence properties. As before, for a ∈ Rn, a > 0,

define V = (vij)i,j∈I as vij = wijai/aj. We show that the two classes are rescalable

into each other. Furthermore, a network is rescalable to either class if and only if

the spectral radius of |W | − In is less than one, where |W | = (|wij|)i,j∈I . Finally,

these classes are also characterized by a best-response structure.

Recall that the spectral radius ρ(M) of a square matrix M ∈ Cn×n is the largest

absolute value of its eigenvalues, i.e.,

ρ(M) = max{|λ| : λ ∈ C is an eigenvalue of M}.

The next result characterizes rescalability to these classes.

Theorem 4.3. The following statements are equivalent for W .

1. There exists a scaling vector a ∈ Rn, a > 0 such that the rescaled network V

has weak externalities.

2. There exists a scaling vector a′ ∈ Rn, a > 0 such that the rescaled matrix V

has weak influences.

3. limk→∞(|W | − In)k = 0.

4. ρ(|W | − In) < 1.

5. There exists a vector a ∈ Rn, a > 0 such that

φ′(x) = −
∑
i∈I

ai|xi − b̃i(x)|

is a best-response potential function of every game played on W .
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The fact that a diagonally dominant W satisfies points 3 and 4 of Theorem

4.3, as well as the equivalence of 3 and 4 are well-known in linear algebra. Our

characterization adds the notion of rescalability, as well the existence of a best-

response potential function for all games played on W . Berman and Plemmons

(1994) prove the equivalence of points 1 to 4 of this theorem for matrices with

negative off-diagonal elements in Theorem 2.3 while we prove it in the general

case. We highlight the difference between Section 3’s similar result, Theorem 3.4.

In the present case there may some be games played on a network W that is not

rescalable to weak influences/externalities, yet admits the potential φ′(x).

Proposition 4.4. If ρ(|W | − In) < 1, then every game played on the network W

has a unique Nash equilibrium.

By Ui (2016), every positive definite W has a unique equilibrium. If W is sym-

metric, then the condition ρ(|W | − In) < 1 implies positive definiteness, but for

an asymmetric W neither condition is implied by the other.

Proposition 4.4 follows from the fact that such networks are rescalable to diago-

nally dominant matrices (Theorem 4.3), allowing us to use Moulin (1986), Chapter

6, Theorems 2 and 3. As a result, games played on such networks are dominance

solvable Moulin (1984), that is, iterated elimination of dominated strategies leads

to a unique solution. Thus, they have a unique Nash equilibrium and convergent

BRD. We now show a stronger convergence property: the convergence of BRAD.

Theorem 4.5. If ρ(|W | − In) < 1, then in every game played on network W ,

every BRAD (and hence every BRD) in which players revise infinitely many times

converges to the unique Nash equilibrium.

The proofs of Theorems 4.3, 4.5 and Proposition 4.4 are found in the appendix.

Theorem 4.5 is related to Theorem 4 of Moulin (1986), Chapter 6, which shows

local stability of equilibria with respect to BRD for which the Jacobian’s spectral

radius is less than one. Our condition is global due to the linear best response

functions of the network environment hence we have global convergence. Another

related result is Theorem 4.1 of Gabay and Moulin (1980) that shows convergence

of BRAD where revisions arrive in a fixed order for diagonally dominant Jacobians.

Our result is more general in directed network games as we cover a wider class of

networks and in that revision opportunities may arrive in any order.
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As demonstrated by Example 2.6, a spectral radius equal to 1 leads to best-

response cycles, hence these results are tight. Additionally, notice that the BRCD

may lead to cycles in this gameclass. For instance, the BRD shown in Example

2.6 is a BRCD in Example 4.1 for δ = 0.9.

We end this section with two remarks. First, it is easy to show that every

network that is rescalable to one with weak externalities lacks any amplifying

links, i.e. for all i, j, |wijwji| < 1 must hold. To show this, just suppose that

|wijwji| ≥ 1. Then, for any rescaling parameters ai, aj we have

|vijvji| = |
ai
aj
wij

aj
ai
wji| ≥ 1,

hence one of vij or vji is at least 1 in absolute value, and thus the rescaled net-

work V cannot be one of weak externalities. Thus, Definition 4.2 rules out the

best-response cycles along parasitic links shown in Example 2.7 as these rely on

amplifying links.

As our second remark we mention a special class of networks that are contained

in this class are directed acyclic networks (DANs). W is a DAN if it is lower- or

upper triangular (possibly after a suitable relabeling of the players). If W is

a DAN, every eigenvector of W − In is 0, hence all statements in this section

hold for this class. DANs describe a hierarchy of players in which externalities

flow downstream, e.g. a supply chain, pollution along a river, military chains of

command, or a trophic network with apex predators on the highest level and prey

animals on lower levels.

5 Conclusion

In this paper we analyze directed network games, a generalization of the private

provision of public goods games model to include possibly non-reciprocal rela-

tionships. These cover one-way interactions, unequal interactions, and parasitism.

While weighted networks and simple graphs are very useful frameworks, more

nuanced models of social and economic networks should include non-reciprocal

interactions.

While best-response dynamics on games played on symmetric networks are

known to converge to a Nash equilibrium due to the games’ potential structure,

this is not true in general for networks with asymmetric weight matrices. In this
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paper we show that both one-way interactions and parasitic interactions can create

best-response cycles. This questions the interpretation of the Nash equilibrium as

the result of individual improvements by the players. Together with other known

problems of the Nash equilibrium both conceptual and behavioral, equilibrium

analysis of such games may be of questionable value in settings with possibly

non-reciprocal interactions.

There are classes of asymmetric networks, however, where the predictive power

of the Nash equilibrium is retained. In this paper we highlight two such classes;

those that can be rescaled into symmetric networks and those that are rescalable

to networks with weak influences or weak externalities. We characterize the former

type by transitive relative importance of players and sign-symmetry of the weight

matrix. Additionally, this class captures all networks with quadratic best-response

potential functions, indicating that other network types with convergence require

different approaches to identify.

The latter class captures individualistic social networks as well as situations

where the economic externalities have been internalized. We show that these types

are equivalent with respect to rescaling and any network with a spectral radius less

than one is rescalable to either. Such games are best-response potential games,

have a unique Nash equilibrium, and all BRDs and BRADs converge to it. A

necessary condition for a network to be rescalable to one with weak externalities

is the absence of amplifying links.

Our results unlock a number of insights into network games. The most appar-

ent general result is a negative one: the convergence properties of games played

on symmetric networks do not generalize well for the asymmetric case. For di-

rected (‘net’) cycles and parasitic interactions best-response cycles may appear,

thus identifying convergent classes of networks that include any of these types of

interactions are likely to require different methodologies than the best-response

potentials, rescaling, and spectral properties used in this paper.

Our positive contribution consists of the full exploration of the idea of rescala-

bility into symmetric matrices as well as the identification of weak influences/exter-

nalities as networks with convergent dynamics and the full characterization of the

latter class. We thus broaden the set of sufficient conditions that guarantee conver-

gence in network games. Finding broader sets of sufficient conditions necessitates

finding additional classes of best-response potentials that characterize them, while
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identifying the set of all networks with convergent best-response dynamics neces-

sitates a sufficient and necessary condition for the existence of a best-response

potential function. This is a highly interesting problem left for future research.

Our results constitute two important steps in this direction: Section 3 identifies all

classes of networks with quadratic potential functions. As the best-response func-

tions are linear, this is a key step. Section 4 identifies a different, non-polynomial

class of potential games.

A Appendix

Proofs for Section 3

Theorem 3.4

It is clear that statement 4 implies statement 3. We show the remaining three

implications.

Proof of 1 ⇒ 4. Suppose that the matrix W can be rescaled into a symmetric

matrix (vij)i,j∈I with the vector a ∈ Rn, a > 0, i.e., we have vij = wijai/aj. Let

G be any game on W . We now show that the following quadratic function is a

best-response potential of the game.

φQ(x) =
∑
i∈I

a2ixiti −
1

2

∑
i∈I

∑
j∈I

xixjaiajvij.

For every i ∈ I, the partial derivative is as follows:

∂φQ

∂xi
(x) = a2i ti −

∑
j∈I

xjajaivij

= a2i ti −
∑
j∈I

xja
2
iwij

= a2i

(
ti −

∑
j∈I

xjwij

)
= a2i · (b̃i(x)− xi)

We used that vij = vji and that ajaivij = wija
2
i .

Also, we have

∂2φQ

∂x2i
(x) = −a2iwii = −a2i < 0.
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Therefore, if bi(x) = b̃i(x), then φQ(x) is maximal when b̃i(x) = bi(x) = xi. If

b̃i(x) < 0 for some x−i, then the derivative of φQ with respect to xi is uniformly

negative on [0, xi], so the maximum is achieved when xi = 0. On the other hand,

when xi < b̃i(x), then the derivative of φQ with respect to xi is positive on [0, xi],

and hence it takes its maximum in xi.

Therefore, for a fixed x−i vector the function φQ is maximal when player i is

in her best response, so φQ is a best-response potential function. �

Proof of 3 ⇒ 2. Suppose that there exists a quadratic best-response potential

function, φQ, for a game G on W . We show that the matrix W is sign sym-

metric and transitive.

Let the potential function be given as follows.

φQ(x) =
∑
i∈I

pixi −
1

2

∑
i∈I

qiix
2
i −

∑
i,j∈I,i>j

qijxixj,

where pi ∈ R for every i ∈ I and qij ∈ R for every i, j ∈ I, i ≥ j. For j > i, we

set qij = qji for convenience. With this notation, the partial derivative of φQ is:

∂φQ

∂xi
(x) = pi − qiixi −

∑
j∈I\{i}

qijxj. (5)

The function φQ is a best-response potential of the weighted network game G,

so for every x ∈ X and for every i ∈ I, the partial derivative of φQ is zero exactly

when player i is in her best response. Note that we have 0 < ti < xi for every

i ∈ I, this means that ti = bi(0) = b̃i(0) ∈ (0, xi) for every i ∈ I. Therefore,

there exists a neighborhood of 0 where each player’s unconstrained best response

is equal to her best response. Let ε > 0 be so that for every x ∈ [0, ε]n and for all

i ∈ I we have bi(x) = b̃i(x). For a fixed i, the functions ∂φQ

∂xi
(x) and b̃i(x)− xi are

both linear in x and they have the same zero set when x ∈ [0, ε]n. Hence, they

must be equal up to a constant factor: there exists di 6= 0 such that we have

ti −
∑
j∈I

wijxj = b̃i(x)− xi = di
∂φQ

∂xi
(x) = di

pi − ∑
j∈I\{i}

qijxj − qiixi

 (6)

Additionally, as we are maximizing φQ, the second derivative of φQ with respect

to xi has to be negative, so qii > 0 for every i ∈ I. From (6), we get the following
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for every i, j ∈ I.

ti = di · pi

wii = 1 = di · qii

wij = di · qij (7)

Since qii > 0, we must have di > 0 as well for all i ∈ I.

The first two equations give no constraints for W . We have to show that if (7)

holds for all i, j ∈ I, that implies the transitivity and the sign-symmetry of the

weight matrix W .

Since the di’s are positive and qij = qji, we have

sgn(wij) = sgn(diqij) = sgn(qij) = sgn(qji) = sgn(djqji) = sgn(wji),

so the matrix W is sign-symmetric.

Now let 3 ≤ s ≤ n, then for all i1, i2, ..., is ∈ I pairwise distinct, we have

wi1i2wi2i3 . . . wis−1iswisi1 = (di1qi1i2)(di2qi2i3) . . . (dis−1qis−1is)(disqisi1)

= (di1di2 . . . dis)(qi1i2qi2i3 . . . qis−1isqisi1)

= (di1di2 . . . dis)(qi2i1qi3i2 . . . qisis−1qi1is)

= (di2qi2i1)(di3qi3i2) . . . (disqisis−1)(di1qi1is)

= wi2i1wi3i2 . . . wisis−1wi1is

using wij = diqij for every i, j ∈ I. Therefore, the matrix W is transitive. �

Proof of 2 ⇒ 1. Suppose that the matrix W is transitive and sign-symmetric. We

would like to find a scaling vector a ∈ Rn, a > 0, such that the rescaled matrix is

symmetric, i.e., for every pair i, j ∈ I we have wijai/aj = wjiaj/ai.

First, let us assume that the graph of W is connected, so there exists a path

between any two players. If the graph is not connected, we follow the described

algorithm for every connected component of the graph separately in order to define

the vector a.

We start by ordering the players in the following way. Choose player 1 arbi-

trarily. Let the neighbors of player 1 be 2, . . . , n1. Players n1 + 1, . . . , n2 are those

neighbors of 2 that are not neighbors of 1, and so on: players nk+1, nk+2, . . . , nk+1

are those neighbors of player k + 1 that are not neighbors of players 1, 2, . . . , k.
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(If there are no such players, then we have nk = nk+1.) Due to the sign-symmetry

of W , if two players are neighbors, there is a directed edge between them in both

directions. Hence, since W is connected, there exists a directed path from player

1 to every player, so after at most n steps we reach all players.

Let a1 = 1. We define all aj’s for j ≥ 2 recursively in the following way.

Suppose we have already defined a1, a2, ..., aj−1, and ni−1 < j ≤ ni, so player j is

a neighbor of i but not of players 1, ..., i− 1. In other words, i is the neighbor of

j with the smallest index. Clearly i < j, so ai is already defined. Also, we have

wji 6= 0 6= wij, since i and j are neighbors. Let

aj = ai

√
|wij|√
|wji|

. (8)

Now we show that with this scaling vector a, for any k, ` ∈ I we have vk` = v`k.

Take any k, ` ∈ I. If k = `, then wk` = vk` = v`k = w`k = 1, so we can assume that

k 6= `. Let i1 ∈ I be so that k is a neighbor of i1, but not of players 1, . . . , i1 − 1,

so ni1−1 < k ≤ ni1 . Similarly, let j1 ∈ I be so that nj1−1 < ` ≤ nj1 . For every

m ∈ N, we define im and jm recursively:

im+1 = min{i ∈ I : wimi 6= 0},

jm+1 = min{j ∈ I : wjmj 6= 0}.

Both sequences are decreasing, and they both stabilize when they reach 1. Let

r, s ∈ N be minimal so that ir = js. Note that this is going to happen, the latest

when they are both equal to 1, and also note that from this point on, the two

sequences coincide. Therefore, we have k > i1 > · · · > ir and ` > j1 > · · · > js,

and the numbers k, i1, . . . , ir−1, `, j1, . . . , js are distinct.

We can calculate ak as follows.

ak = ai1

√
|wi1k|√
|wki1 |

= ai2

√
|wi2i1|√
|wi1i2|

√
|wi1k|√
|wki1|

...

= air

√
|wirir−1|√
|wir−1ir |

. . .

√
|wi2i1|√
|wi1i2|

√
|wi1k|√
|wki1|

= air

∣∣∣∣wirir−1 . . . wi2i1wi1k
wir−1ir . . . wi1i2wki1

∣∣∣∣ 12 .
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Similarly, we have

a` = ajs

∣∣∣∣wjsjs−1 . . . wj2j1wj1`
wjs−1js . . . wj1j2w`j1

∣∣∣∣ 12 .
Now we can compute vk` using that ir = js.

vk` =
ak
a`
wk` = ak(a`)

−1wk`

=

(
air

∣∣∣∣wirir−1 . . . wi2i1wi1k
wir−1ir . . . wi1i2wki1

∣∣∣∣ 12
)(

ajs

∣∣∣∣wjsjs−1 . . . wj2j1wj1`
wjs−1js . . . wj1j2w`j1

∣∣∣∣ 12
)−1

wk`

=

∣∣∣∣(wirir−1 . . . wi2i1wi1k)(wjs−1js . . . wj1j2w`j1)

(wir−1ir . . . wi1i2wki1)(wjsjs−1 . . . wj2j1wj1`)

∣∣∣∣ 12 wk`
=

∣∣∣∣wi1kwi2i1 . . . wirir−1wjs−1js . . . wj1j2w`j1
wki1wi1i2 . . . wir−1irwjsjs−1 . . . wj2j1wj1`

∣∣∣∣ 12 ∣∣∣∣wk`w`k

∣∣∣∣ 12 · sgn(wk`)
√
|wk`w`k|

=

∣∣∣∣wi1kwi2i1 . . . wjsir−1wjs−1js . . . wj1j2w`j1wk`
wki1wi1i2 . . . wir−1jswjsjs−1 . . . wj2j1wj1`w`k

∣∣∣∣ 12 sgn(wk`)
√
|wk`w`k|

By the transitivity assumption for k, i1, . . . ir−1, js, . . . j1, ` ∈ I, we have

wki1wi1i2 . . . wir−1jswjsjs−1 . . . wj1`w`k = wi1kwi2i1 . . . wjsir−1wjs−1js . . . w`j1wk`,

and hence vk` = sgn(wk`)
√
|wk`w`k|. Similarly, we have v`k = sgn(w`k)

√
|w`kwk`|.

Since W is sign-symmetric, these two numbers are equal, so vk` = v`k for all

k, ` ∈ I.

Finally, we show that the statement holds even if the graph of W is not con-

nected. In this case we order the players in each component and define the ai’s for

the components separately as described in the beginning of the proof. Now take

any i, j ∈ I. If i and j are the same connected component, we have already shown

that vij = vji. If they are in different components, we know that wij = wji = 0,

therefore vij = 0 = vji. This concludes the proof. �

Proofs for Section 4

Let us introduce some notations and terminology that will be used in the proofs

of this section.

Recall that a matrix norm ‖·‖ : Cm×n → R+ is an induced norm if it is induced

by vector norms on Cm and Cn, i.e., there exist norms ‖ · ‖Cm : Cm → R+ and

‖ · ‖Cn : Cn → R+ such that for M ∈ Cm×n we have

‖M‖ = sup{‖Mx‖Cm : x ∈ Cn, ‖x‖Cn = 1}.
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This definition implies that we have

‖Mx‖Cm ≤ ‖M‖ · ‖x‖Cn (9)

for every M ∈ Cm×n and x ∈ Cn.

We will use a variation of the ∞-norm: the weighted maximum norm. Fix a

weight vector u ∈ Rn, u > 0. For x ∈ Cn, let

‖x‖u∞ = max{|xi|/ui : 1 ≤ i ≤ n}.

The induced matrix norm is the following: for M = (mij) ∈ Cn×n, we have

‖M‖u∞ = sup{‖Mx‖u∞ : ‖x‖u∞ = 1} = max

{
1

ui

n∑
j=1

uj|mij| : 1 ≤ i ≤ n

}
. (10)

For a vector u ∈ Rn, u > 0, let u−1 ∈ Rn denote the vector with entries u−1i . Let

Du = diag(u1, u2, . . . , un) ∈ Rn×n, by (10), we have

‖M‖u∞ = ‖D−1u MDu‖∞.

If W is a network and a ∈ Rn, a > 0 is a scaling vector, then for the rescaled

matrix V we have vij = wijai/aj. Equivalently, V = DaWD−1a . Therefore, we

have

‖W‖a−1

∞ = ‖D−1a−1WDa−1‖∞ = ‖DaWD−1a ‖∞ = ‖V ‖∞. (11)

For a matrix M = (mij)1≤i,j≤n ∈ Cn×n, we will denote by |M | ∈ Rn×n
+ the matrix

(|mij|)1≤i,j≤n.

We will use the following statement.

Proposition A.1 (Perron-Frobenius Theorem). Let M ∈ Rn×n
+ . Then, there

exists a vector z ≥ 0, z 6= 0 such that Mz = ρ(M)z.

Furthermore, for any ε > 0 there exists a vector u > 0 such that ρ(M) <

‖M‖u∞ < ρ(M) + ε.

For a proof see Chapter 2, Proposition 6.6 of Bertsekas and Tsitsiklis (1989).

Theorem 4.3

Let us start by proving the equivalence of 2, 3, and 4:
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Proof of 4 ⇒ 2. Assume that ρ(|W | − In) < 1. Then, by Proposition A.1 for 0 <

ε < 1−ρ(|W |−In), there exists a vector u ∈ Rn, u > 0 such that ‖|W |−In‖u∞ < 1.

Let us use u−1 = a as a scaling vector, i.e., let vij = wijai/aj. Then, we have

1 > ‖|W | − In‖u∞ = ‖|W | − In‖a
−1

∞ = ‖|V | − In‖∞ = ‖V − In‖∞,

so the matrix V is row diagonally dominant. In other words, V has weak influences.

�

Proof of 2 ⇒ 3. Let a ∈ Rn, a > 0 be a scaling vector so that the rescaled matrix

V has weak influences, i.e., V is a row diagonally dominant matrix. Therefore,

‖|V | − In‖∞ = ‖V − In‖∞ < 1, so by (11), we have

‖|W | − In‖a
−1

∞ = ‖W − In‖a
−1

∞ = ‖V − In‖∞ = ‖|V | − In‖∞ < 1.

For any induced matrix norm ‖ · ‖, we have ‖MN‖ ≤ ‖M‖‖N‖ for any matrices

M , N . Therefore, ‖Mk‖ ≤ ‖M‖k for any k ∈ N and any matrix M . Hence,

lim
k→∞
‖(|W | − In)k‖a−1

∞ ≤ lim
k→∞

(
‖|W | − In‖a

−1

∞

)k
= 0,

since ‖|W | − In‖a
−1

∞ < 1. The norm of (|W | − In)k converges to 0, this is only

possible if the matrices converge to the 0 matrix, so we have limk→∞(|W |− In)k =

0. �

Proof of 3 ⇒ 4. Assume that the limit is 0. Let λ be any eigenvalue of |W | − In,

and z 6= 0 the corresponding eigenvector. Note that z is also an eigenvector of

(|W | − In)k with eigenvalue λk. We have

0 =
(

lim
k→∞

(|W | − In)k
)
z = lim

k→∞
(|W | − In)kz = lim

k→∞
λkz =

(
lim
k→∞

λk
)
z.

Since z 6= 0, we must have limk→∞ λ
k = 0, hence |λ| < 1. This is true for any

eigenvalue, so ρ(|W | − In) < 1. �

Hence, conditions 2, 3, and 4 are equivalent. Now notice that for any matrix

M , we have limk→∞M
k = 0 if and only if limk→∞(M>)k = 0. Therefore, we have

the following equivalences: the network W can be rescaled into a row diagonally

dominant matrix ⇔ limk→∞(|W | − In)k = 0 ⇔ limk→∞((|W | − In)>)k = 0 ⇔ W>

can be rescaled into a row diagonally dominant matrix ⇔ W can be rescaled into

a column diagonally dominant matrix.
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Column diagonal dominance means exactly that the network has weak exter-

nalities, so we proved the equivalence of 1 with the other three statements. Finally,

we add 5. The direction 1 ⇒ 5 will need two lemmas.

Lemma A.2. If the network W can be rescaled into a network with weak ex-

ternalities using the vector a ∈ Rn, a > 0, then for every j ∈ I, we have∑
i∈I\{j} ai|wij| < aj.

Proof. Take a vector a ∈ Rn, a > 0 such that the rescaled network V is with weak

externalities. By definition, this means that for every j ∈ I, we have∑
i∈I\{j}

|vij| < |vjj| = 1

∑
i∈I\{j}

ai
aj
|wij| < |wjj| = 1

∑
i∈I\{j}

ai|wij| < aj.

�

Lemma A.3. Let i, j ∈ I and let (xk)k∈N be a best-response dynamic. If player i’s

action changes by ∆, player j’s unconstrained best response changes by |∆ · wji|,
i.e., we have |b̃j(xk)− b̃j(xk+1)| = |wji| · |xki − xk+1

i | for any k ∈ N.

Proof. By (2), the unconstrained best response function of player j is b̃j(x) =

tj −
∑

i∈I\{j}wjixi. Therefore, if player i’s action changes by ∆, j’s unconstrained

best response changes by |∆ · wji|. �

Proof of 1 ⇒ 5. Suppose that W can be rescaled into a network with weak exter-

nalities using the scaling vector a ∈ Rn, a > 0. We will show that for the same

vector a the function

φ′(x) = −
∑
i∈I

ai|xi − b̃i(x)|

is a best-response potential function.

Let i ∈ I and fix x ∈ X. We need to prove that only bi(x) maximizes φ′(·, x−i).
Assume that we have x1i ∈ argmax xi∈Xi

φ′(xi, x−i). Let x1 = (x1i , x−i) and i1 = i.

Then x2 = (bi(x
1), x−i) = (x2j)j∈I . We have that φ′(x1) ≥ φ′(x2) since x1i ∈
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argmax xi∈Xi
φ′(xi, x

1
−i). Therefore, we have

0 ≥ φ′(x2)− φ′(x1)

= −

 ∑
j∈I\{i}

aj|x2j − b̃j(x2)|

−(−∑
j∈I

aj|x1j − b̃j(x1)|

)

= ai|x1i − bi(x1)|+
∑

j∈I\{i}

aj

(
|x1j − b̃j(x1)| − |x1j − b̃j(x2)|

)
≥ ai|x1i − bi(x1)| −

∑
j∈I\{i}

aj|b̃j(x1)− b̃j(x2)|

= ai|x1i − bi(x1)| −
∑

j∈I\{i}

aj|wji||x1i − x2i | by Lemma A.3

=

ai − ∑
j∈I\{i}

aj|wji|

 |x1i − bi(x1)|
≥ 0 by Lemma A.2.

Hence, we must have equality everywhere. Since ai−
∑

j∈I\{i} aj|wji| > 0, equality

holds in the last line if and only if |x1i − bi(x1)| = 0, i.e., iff x1i = bi(x
1) = bi(x).

Thus, we have argmax xi∈Xi
φ′(xi, x−i) = {bi(x)}, so φ′ is a best-response potential

function. �

Proof of 5 ⇒ 1. Let a ∈ Rn, a > 0 be such that

φ′(x) = −
∑
i∈I

ai|xi − b̃i(x)|

is a best-response potential function for every game played on W . We show that

W is rescalable to a network with weak externalities using the scaling vector a.

Suppose for contradiction that there exists k ∈ I such that the kth column

of the rescaled matrix does not satisfy the diagonally dominant property, i.e., we

have ∑
i 6=k

ai
ak
|wik| > 1. (12)

Let tk > 0 and for every i 6= k choose ti as follows:

• if wik > 0, then let ti < wiktk,

• if wik ≤ 0, then ti can be arbitrary.

Let us define the action profile x ∈ Rn as follows. xj = 0 for all j 6= k and

xk = max

(
{ ti
wik

: i ∈ I \ {k}, wik > 0} ∪ {0}
)
.
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Note that we have xk < tk by the choice of t.

We will show that if we are in action profile x and it is player k’s turn, the

value of φ′ decreases as player k moves to her best response. Let x̂ denote the

next step, i.e., x̂i = 0 for i 6= k and x̂k = tk. We have

φ′(x)− φ′(x̂) = −
∑
i∈I

ai|xi − b̃i(x)|+
∑
i∈I

ai|x̂i − b̃i(x̂)|

= −
∑
i 6=k

ai|b̃i(x)| − ak|xk − tk|+
∑
i 6=k

ai|b̃i(x̂)|+ ak|x̂k − b̃k(x̂)|

= −
∑
i 6=k

ai|ti − wikxk| − ak|xk − tk|+
∑
i 6=k

ai|ti − wiktk| − ak|tk − tk|

=
∑
i 6=k

ai (|ti − wiktk| − |ti − wikxk|)− ak(tk − xk)

=
∑
i 6=k,
wik≤0

ai(wikxk − wiktk)−
∑
i 6=k,
wik>0

ai(wiktk − wikxk)− ak(tk − xk),

since for wik > 0, both ti − wiktk and ti − wikxk are non-positive by the choice of

t and x. Hence, we have

φ′(x)− φ′(x̂) =
∑
i 6=k

ai|wik|(tk − xk)− ak(tk − xk)

= (tk − xk)

(∑
i 6=k

ai|wik| − ak

)
≥ 0,

since tk − xk > 0 and
∑

i 6=k ai|wik| > ak by (12). Therefore, φ′ decreases as player

k moves to her best response, and hence it cannot be a best-response potential,

which is a contradiction. This finishes the proof of the statement. �

Proposition 4.4

Lemma A.4. Recall that b : X → X denotes the best response mapping. For any

vector u ∈ Rn, u > 0 and for all x, x′ ∈ X, we have

‖b(x)− b(x′)‖u∞ ≤ ‖W − In‖u∞‖x− x′‖u∞.

Proof. First, consider the unconstrained best responses b̃(x) and b̃(x′). We have

‖b̃(x)− b̃(x′)‖u∞ = ‖(t− (W − In)x)− (t− (W − In)x′)‖u∞
= ‖(W − In)(x′ − x)‖u∞
≤ ‖W − In‖u∞‖x− x′‖u∞ by (9).
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Notice that for every i ∈ I, we have |bi(x) − bi(x
′)| ≤ |b̃i(x) − b̃i(x

′)|. Indeed,

without loss of generality, we can assume that b̃i(x) ≤ b̃i(x
′) and we can verify the

inequality in all cases:

• If b̃i(x) ≤ b̃i(x
′) ≤ 0, then bi(x) = bi(x

′) = 0, so |bi(x) − bi(x
′)| = 0 ≤

|b̃i(x)− b̃i(x′)|.
• If xi ≤ b̃i(x) ≤ b̃i(x

′), then bi(x) = bi(x
′) = xi, so |bi(x) − bi(x

′)| = 0 ≤
|b̃i(x)− b̃i(x′)|.
• If b̃i(x) ≤ 0 ≤ b̃i(x

′) or if b̃i(x) ≤ xi ≤ b̃i(x
′), then b̃i(x) ≤ bi(x) ≤ bi(x

′) ≤
b̃i(x

′), and hence |bi(x)− bi(x′)| ≤ |b̃i(x)− b̃i(x′)|.
• If 0 ≤ b̃i(x) ≤ b̃i(x

′) ≤ xi, then bi(x) = b̃i(x) and bi(x
′) = b̃i(x

′), so |bi(x)−
bi(x

′)| = |b̃i(x)− b̃i(x′)|.
Therefore, we have

‖bi(x)− bi(x′)‖u∞ =
∑
i∈I

|bi(x)− bi(x′)|/ui

≤
∑
i∈I

|b̃i(x)− b̃i(x′)|/ui

= ‖b̃(x)− b̃(x′)‖u∞
≤ ‖W − In‖u∞‖x− x′‖u∞.

This concludes the proof of the lemma. �

Proof of Proposition 4.4. By Theorem 4.3, there exists a scaling vector a ∈ Rn,

a > 0 such that the rescaled matrix is row diagonally dominant, i.e., we have

‖W − In‖a
−1

∞ = ‖V − In‖∞ < 1.

Assume that x∗ and x∗∗ are two different Nash equilibria, i.e., we have b(x∗) =

x∗, b(x∗∗) = x∗∗ and x∗ 6= x∗∗. By the assumption that ‖W − In‖a
−1

∞ < 1 and by

Lemma A.4, we get

‖x∗ − x∗∗‖a−1

∞ = ‖b(x∗)− b(x∗∗)‖a−1

∞ ≤ ‖W − In‖a
−1

∞ ‖x∗ − x∗∗‖a
−1

∞ < ‖x∗ − x∗∗‖a−1

∞

which is a contradiction. Hence, there exists a unique Nash equilibrium. �

Theorem 4.5

Proof of Theorem 4.5. By Theorem 4.3, there exists a scaling vector a ∈ Rn, a > 0

such that the rescaled matrix is row diagonally dominant, i.e., we have ‖W −
In‖a

−1

∞ = ‖V − In‖∞ < 1. Let γ = ‖W − In‖a
−1

∞ , then 0 ≤ γ < 1.
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By Proposition 4.4, there is a unique Nash equilibrium, let us denote it by x∗.

Notice that a BRD is a BRAD with parameter 0, so it is enough to prove the

statement for BRAD’s. Consider any BRAD (xk)k∈N with approach parameter

0 ≤ β < 1.

By the definition of the weighted maximum norm, for every x, y ∈ X we have

ai|xi − yi| ≤ ‖x− y‖a
−1

∞ . (13)

Hence, for an arbitrary k ∈ N, we have

aik |bik(xk)− x∗ik | = aik |bik(xk)− bik(x∗)|

≤ ‖b(xk)− b(x∗)‖a−1

∞ by (13)

≤ ‖W − In‖a
−1

∞ ‖xk − x∗‖a
−1

∞ by Lemma A.4

= γ · ‖xk − x∗‖a−1

∞ . (14)

For the next claim, note that since γ + β − γβ = 1− (1− γ)(1− β), we have

0 ≤ γ + β − γβ < 1.

Claim A.5. For every k ∈ N, we have

aik |xk+1
ik
− x∗ik | ≤ (γ + β − γβ)‖xk − x∗‖a−1

∞ .

Proof. Let us use the notation D = a−1
ik
‖xk − x∗‖a−1

∞ ∈ R+. By (13), we have

|xik − x∗ik | ≤ a−1
ik
‖xk − x∗‖a−1

∞ = D, and hence xk
ik

is contained in the interval of

lenght 2D with midpoint x∗
ik

. By (14), bik(xk) is in the interval of length γ2D

centered at x∗
ik

.

For p, q ∈ R, let us use the notation [p, q] = [min{p, q}, max{p, q}] for the

interval between p and q.

From the definition of BRAD, we have xk+1
ik
∈ [bik(xk), (1− β)bik(xk) + βxk

ik
],

since this is the β-contracted image of [bik(xk), xk
ik

] towards bik(xk). This implies

that xk+1
ik

is contained in the β-contracted image of [x∗
ik
− D, x∗

ik
+ D] around

bik(xk), which is a point of [x∗
ik
− γD, x∗

ik
+ γD]. Hence, we get the worst upper

bound for xk+1
ik

if bik(xk) takes the maximal value in [x∗
ik
− γD, x∗

ik
+ γD], and

the worst lower bound if bik(xk) takes the minimal value in the interval. We can

compute these bounds: if bik(xk) = x∗
ik

+γD, then the contracted image of x∗
ik

+D

is

(1− β)(x∗ik + γD) + β(x∗ik +D) = x∗ik + (γ + β − γβ)D.
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Similarly, for bik(xk) = x∗
ik
− γD we get the lower bound

(1− β)(x∗ik − γD) + β(x∗ik −D) = x∗ik − (γ + β − γβ)D.

Therefore, xk+1
ik
∈ [x∗

ik
− (γ + β − γβ)D, x∗

ik
+ (γ + β − γβ)D], and hence

aik |xk+1
ik
− x∗ik | ≤ (γ + β − γβ)‖xk − x∗‖a−1

∞ ,

as desired. �

Claim A.6. For every m ∈ N there exists K(m) ∈ N such that for all k ≥ K(m)

we have

‖xk − x∗‖a−1

∞ ≤ (γ + β − γβ)m‖x0 − x∗‖a−1

∞ .

Proof. We prove the statement by induction on m. For m = 0, it clearly holds

with K(0) = 0. Assume that K(m− 1) exists, and we would like to find K(m).

Take an arbitrary k ≥ K(m−1) and let player i be the one who moves at time

k. Then, we have

ai|xk+1
i − x∗i | ≤ (γ + β − γβ)‖xk − x∗‖a−1

∞ by Claim A.5

≤ (γ + β − γβ)(γ + β − γβ)m−1‖x0 − x∗‖a−1

∞ by ind. hypothesis

= (γ + β − γβ)m‖x0 − x∗‖a−1

∞ .

Therefore, we can see that ai|x`i − x∗i | ≤ γm‖x0 − x∗‖a−1

∞ for all ` > k, since it is

true after every move of player i, and it remains true in all other players’ turns

because that does not change the action of player i.

For every i ∈ I, let ki be the first time player i moves after K(m− 1). Let

K(m) = max{ki : i ∈ I}+ 1.

By time K(m), every player moved at least once since K(m−1), so for every i ∈ I
and all k ≥ K(m), we have ai|xki − x∗i | ≤ (γ + β − γβ)m‖x0 − x∗‖a−1

∞ . Therefore,

we also have

‖xk − x∗‖a−1

∞ = max{ai|xki − x∗i | : i ∈ I} ≤ (γ + β − γβ)m‖x0 − x∗‖a−1

∞ .

This proves the statement for every m ∈ N. �
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Now we can show the convergence of the BRAD (xk)k∈N to the Nash equilib-

rium x∗. Take any ε > 0, then there exists m ∈ N such that (γ + β − γβ)m‖x0 −
x∗‖a−1

∞ < ε, since γ + β − γβ < 1. Therefore, if k ≥ K(m) from Claim A.6, then

we have

‖xk − x∗‖a−1

∞ ≤ (γ + β − γβ)m‖x0 − x∗‖a−1

∞ < ε.

Hence, (xk)k∈N converges to the Nash equilibrium x∗. �
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