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Abstract. A generalization of Lüroth’s
theorem expresses that every tran-
scendence degree 1 subfield of the
rational function field is a simple ex-
tension. In this note we show that a
classical proof of this theorem also
holds to prove this generalization.
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Résumé. Une généralisation du théo-
rème de Lüroth affirme que tout sous-
corps de degré de transcendance 1
d’un corps de fractions rationnelles
est une extension simple. Dans cette
note, nous montrons qu’une preuve
classique permet également de prou-
ver cette généralisation.
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Introduction

Lüroth’s theorem ([2]) plays an important role in the theory of ratio-
nal curves. A generalization of this theorem to transcendence degree 1
subfields of rational functions field was proven by Igusa in [1]. A purely
field theoretic proof of this generalization was given by Samuel in [6]. In
this note we give a simple and constructive proof of this result, based on
a classical proof [7, 10.2 p.218].
Let k be a field and k(x) be the rational functions field in n variables
x1, . . . , xn. Let K be a field extension of k that is a subfield of k(x). To
the subfield K we associate the prime ideal ∆(K) which consists of all
polynomials of K[y1, . . . , yn] that vanish for y1 = x1, . . . , yn = xn. When
the subfield K has transcendence degree 1 over k, the associated ideal is
principal. The idea of our proof relies on a simple relation between co-
efficients of a generator of the associated ideal ∆(K) and a generator of
the subfield K. When K is finitely generated, we can compute a rational
fraction v in k(x) such that K = k(v). For this, we use some methods
developped by the first author in [3] to get a generator of ∆(K) by com-
puting a Gröbner basis or a characteristic set.

Main result

Let k be a field and x1, . . . , xn, y1, . . . , yn be 2n indeterminates over k.
We use the notations x for x1, . . . , xn and y for y1, . . . , yn. If K is a field
extension of k in k(x) we define the ideal ∆(K) to be the prime ideal of
all polynomials in K[y] that vanish for y1 = x1, . . . , yn = xn.

∆(K) = {P ∈ K[y] : P(x1, . . . , xn) = 0}.

Lemma 1. — Let K be a field extension of k in k(x) with transcendence degree 1
over k.

i) The ideal ∆(K) is principal in K[y].
ii) If K1 ⊂ K2 and ∆(Ki) = Ki[y]G, for i = 1, 2, then K1 = K2.
iii) ∆(K) = ∆̃(K) := (p(y)− p(x)/q(x)q(y)|p/q ∈ K).
iv) The ideal ∆̂(K) := k[x]∆(K) ∩ k[x, y] is a radical ideal, which is equal

to (q(x)p(y)− p(x)q(y)|p/q ∈ K).
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v) Let G be such that ∆(K) = (G), with G = ∑d
j=0 pj(x)/qj(x)yj and

GCD(pj, qj) = 1, for 0 ≤ j ≤ d. Let Q := PPCM(qj | 0 ≤ j ≤ d), then
Ĝ := QG is such that G(y, x) = −G(x, y) and degx Ĝ = degy Ĝ = d.

Proof. — i) In the unique factorization domain K[y], the prime ideal
∆(K) has codimension 1. Hence, it is principal.

ii) Assume that K1 ̸= K2. There exists p(x)/q(x) ∈ K2 a reduced
fraction, with p(x)/q(x) /∈ K1. The set {1, p(x)/q(x)} may be completed
to form a basis {e1 = 1, e2 = p/q, . . . , es} of K2 as a K1-vector space. Then,
e is also a basis of K2[y] = K2K1[y] as a K1[y]-module and Ge is a basis
of ∆(K2) = K2∆(K1) as a K1[y]-module. So, p(y) − p(x)/q(x)q(y) ∈
∆(K2) is equal to p(y)e1 − q(y)e2, which implies that G divides p and q,
a contradiction.

iii) We remark that ∆̃(K) does not define any prime component con-
taining polynomials k[y], so that ∆̃(K) : k[y] = ∆̃(K). The inclusion ⊃
is immediate. Let P ∈ ∆(K) with P(x, y) = ∑s

j=0 pj(x)/qj(x)yj. We have
P(x, x) = 0 and by symmetry P(y, y) = 0, so P = P(x, y) − P(y, y) =
∑s

j=0(pj(x)/qj(x) − pj(y)/qj(y))yj. So, throwing away denominators in
k[y], ∏s

j=1 qi(y)P ∈ ∆̃(K), so that P ∈ ∆̃(K) : k[y] = ∆̃(K), hence the
result.

iv) The ideal ∆(K) is prime, so that k(x)∆(K) and ∆̂(K) are radical.
We remark that ∆̂(K) does not define any prime component contain-
ing polynomials k[x] or in k[y], so that ∆̂(K) : (k[x]k[y]) = ∆̂(K). The
inclusion ⊃ is immediate. Using the generators p(y) − p(x)/q(x)q(y),
p/q ∈ K, a finite set of fractions Σ is enough by Noetherianity, so that
∏p/q∈Σ q(x)δ(K) ⊂ (p(y)− p(x)/q(x)q(y)|p/q ∈ K), which provides the
reverse inclusion, using the previous remark.

v) By construction, Ĝ is a generator of ∆̂(K). All the generators of
∆̂(K) in iv) being antisymmetric, Ĝ is antysymmetric, which also implies
that degx Ĝ = degy Ĝ = d.

Theorem 2. — Let K be a field extension of k in k(x) with transcendence
degree 1 over k. Then, there exists v in k(x) such that K = k(v).
Proof. — By lem. 1 i), the prime ideal ∆(K) of K[y] is principal. Let G
be a monic polynomial such that ∆(K) = (G) in K[y]. Let c0(x), . . . , cr(x)
be the coefficients of F as a polynomial in K[y]. Since x1, . . . , xn are tran-
scendental over k there must be a coefficient v := ci that lies in K\k.
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Write v = f (x)
g(x) where f and g are relatively prime in k[x]. By lem. 1 v),

max(degx f , degx g) ≤ d := degx G. As g(x) f (y)− f (x)g(y) is a multiple
of Ĝ, max(degx f , degx g) = d. Let D := f (y) − vg(y). As D ∈ ∆(K),
the remainder of the Euclidean division of G by D is also in ∆(K) and
of degree less than the degree of G. It must then be 0. Therefore D is a
generator of ∆(k(v)) and of ∆(K), with k(v) ⊂ K, and by lem. 1 ii), we
need have ∆(K) = ∆(k(v)) and K = k(v).

The following result, given by the first author in [3, prop. 4 p. 35] and
[4, th. 1] in a differential setting that includes the algebraic case, permits
to compute a basis for the ideal ∆(K).

Proposition 3. — Let K = k( f1, . . . , fr) where the fi =
Pi
Qi

are elements of
k(x). Let u be a new indeterminate and consider the ideal

J =

(
P1(y)− f1Q1(y), . . . , Pr(y)− frQr(y), u

(
r

∏
i=1

Qi(y)− 1

))

in K[y, u]. Then

∆(K) = J ∩K[y].

Conclusion

A generalization of Lüroth’s theorem to differential algebra has been
proven by J. Ritt in [5]. One can use the theory of characteristic sets to
compute a generator of a finitely generated differential subfield of the
differential field F⟨y⟩ where F is an ordinary differential field and y is
a differential indeterminate. In a forthcoming work we will show that
Lüroth’s theorem can be generalized to one differential transcendence
degree subfields of the differential field F⟨y1, . . . , yn⟩.
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