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Abstract: The hydrodynamic dispersion tensor (HDT) of a porous medium is a key parameter in
engineering and environmental sciences. Its knowledge allows for example, to accurately predict the
propagation of a pollution front induced by a surface (or subsurface) flow. This paper proposes a
new mathematical model based on inverse problem-solving techniques to identify the HDT (noted
=
D) of the studied porous medium. We then showed that in practice, this new model can be written
in the form of an integrated optimization algorithm (IOA). The IOA is based on the numerical
solution of the direct problem (which solves the convection–diffusion type transport equation) and
the optimization of the error function between the simulated concentration field and that observed
at the application site. The partial differential equations of the direct model were solved by high
resolution of (∆x = ∆y = 1 m) Lattice Boltzmann Method (LBM) whose computational code is
named HYDRODISP-LBM (HYDRO-DISpersion by LBM). As for the optimization step, we opted for
the CMA-ES (Covariance Matrix Adaptation-Evolution Strategy) algorithm. Our choice for these two
methods was motivated by their excellent performance proven in the abundant literature. The paper
describes in detail the operation of the coupling of the two computer codes forming the IOA that we
have named HYDRODISP-LBM/CMA-ES. Finally, the IOA was applied at the Beauvais experimental

site to identify the HDT
=
D. The geological analyzes of this site showed that the tensor identified by

the IOA is in perfect agreement with the characteristics of the geological formation of the site which
are connected with the mixing processes of the latter.

Keywords: groundwater; numerical modeling; lattice Boltzmann method; relaxation time; hydrody-
namics; isotropy; inverse problem; optimization; CMA-ES algorithm

1. Introduction

Groundwater that supplies phreatic aquifers is one of the most important freshwater
resources. However, one of the supposed dramatic consequences of global climate change
points to a scarcity in the “near” future of this resource across the world. It, therefore,
becomes urgent to take up this challenge and propose plans for the development, use,
and protection of groundwater in a healthy, sustainable, and responsible manner. Given
the importance and the interest of these developments, the development of these plans
must be based on a quality scientific approach. In other words, the management of water
resources must involve a good understanding of the complex physical phenomena involved
in the transformation cycle of groundwater. Among these phenomena, we evoke the mass
transport by advection–diffusion in porous media which is present in many sectors of socio-
economic activity in relation to flows. Examples include medicine (flow of fluid through
organs), geology (thermal rock, thermal energy management), environment (contamination
of the water table, radioactive waste), chemistry (catalytic reactors, filtration . . . ), petroleum
(production of natural gas, flow of petroleum), mechanics (nuclear reactors, insulation,
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combustion . . . ), and many others. The phenomena of dispersion can be of various origins.
We talk about mass diffusion which is due to the mixing processes between two miscible
fluids. This dispersion is estimated from the determination of the concentration fields of
a passive tracer traveling from its point of injection. If, in addition, these fields present
a gradient, we then see a new dispersion appear (even in the absence of flow). This is
called molecular diffusion. It should be noted that the timescales associated with molecular
diffusion are sufficiently large so that the latter can induce dispersion at the macroscopic
scale. Finally, comes turbulent diffusion as its name suggests characterizing the turbulent
flow in the porous media studied. It acts in the same way as molecular diffusion. Other
phenomena can also be at the origin of diffusion by mixing processes. Mention is made, for
example, of the mixture due to the various obstructions that a porous media may contain.
This type of mixing is then caused by the tortuosity of the porous media studied. Likewise,
the geometry of the porous media produces recirculation of the flow which in turn can
induce the dispersion process. Furthermore, the connectivity of the porous media is likely
to force the flow to borrow certain parts and not others of the media, thus creating a mixing
zone from which the diffusion phenomenon can result. Finally, comes the hydrodynamic
dispersion which is due to the existence of a speed gradient of the fluid phase. In a porous
media, this speed gradient is consequent on the non-slip condition at the level of the solid
wall of the pores. In summary, all these diffusion process types described above show that
the mixing process in porous media is very difficult to apprehend since it is the consequence
of the combination of a large number of phenomena of different time and space scales. This
difficulty thus makes the determination of the dispersion coefficient extremely difficult.

From the previous paragraphs, we also understand that the dispersion coefficient is
considered an important parameter in the knowledge of solute transport in the hydroge-
ological system. Therefore, its estimation with good precision is inevitable to guarantee
a fine and successful description of the studied porous media. As illustrated above, the
identification of the dispersion coefficient concerns most of the socio-economic sectors.

Indeed, the identification of the diffusion has been studied for industrial activities,
such as the technical aspect of battery systems [1] and especially on sulfuric acid. Likewise,
analytical experiments have made it possible to determine the dispersion coefficients by
implementing scanning fluorescence correlation spectroscopy, in particular for molecules
in solution [2]. In terms of transport in environmental media, Monteith and Unsworth [3]
identified the dispersion coefficient for mass and heat transfer (water vapor and CO2
transfer). In atmospheric engineering, Schnelle [4] carried out experiments to determine
the dispersion coefficient of the study media with the aim of performing simulations for the
prediction of accidental atmospheric pollution. In hydrogeology, the use of passive tracers,
particularly in understanding the transfer of solutes, provides relevant information on
hydrodynamic groundwater resources and to complete hydro–dispersive systems. In fact,
passive tracers provide more detailed information on the dispersion coefficients, but the
measurement campaigns require serious preparation on the fields and analysis protocols.
The success will depend on the duration of the campaign, the choice of tracers, and the
mass injected into the hydrogeological systems [5]. But with the spectacular progress of
computing powers, the identification of the dispersion coefficient can be processed by nu-
merical modeling which constitutes a reliable and inexpensive alternative to identification
by experimentation. So this problem has been formulated as an optimization problem
subject to constraints. Indeed, as specified above, the use of numerical simulations becomes
essential for estimating mass transfer in groundwater. These models (called direct model)
require the data of a set of parameters (called input), such as diffusivity, source/sink terms,
and boundary and initial conditions. However, in practice, we only have a limited amount
of these data to carry out reliable simulations to characterize the studied hydrogeological
system. To remedy this difficulty, we resort to inverse modeling. Parameter identification
occurs in many engineering disciplines: oceanography, meteorology, medicine, mechanical,
and thermal industry, environment, hydrogeology, and many more.
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Inverse models are used to identify the input parameters of the direct model by
incorporating in-situ or laboratory observations. Of course, solving the inverse problems
(IP) may also encounter difficulties related to the quality of the in-situ measurements
that will be incorporated into the model. Indeed, the uncertainties (noise) attached to the
measurements are at the origin of the unstable solutions thus rendering the IP ill-posed.
In addition to unstable solutions, it is well known that inverse problems also suffer from
the non-uniqueness of the solution. It is then necessary to find a precise mathematical
framework to apply the methods of solving inverse problems. It means choosing the right
approximation spaces and adopting the right regularization methods. It is for these reasons
that the IP have been extensively studied both on theoretical and applied aspects [6–11].
In addition, several research works have been published in the field of hydrogeology and,
in particular, for the determination of the transmissivity and/or dispersion coefficients
necessary for the study of the propagation of accidental pollution. Obviously, we cannot
list all of the work on IP, but we can cite some relevant references on the subject. These are
the excellent book of Sun [12], the review of Zhou [13,14].

The aim of this paper is the application of the inverse problem techniques solution
in hydrogeology and more particularly for the identification of the isotropic HDT of the
experimental site “Beauvais LaSalle (North of France)”. Indeed, this identification will be
based on the numerical solution of the inverse problem. This step will be accomplished
by the direct problem (DP) solution by LBM, followed by a step of numerical optimiza-
tion based on a metaheuristic algorithm called CMA-ES. For the direct model, we solve
the anisotropic advection diffusion type transport equation. Several methods of solving
this type of equation based on classical discretization methods (finite differences, finite
elements, finite volumes) have been proposed in the literature. In recent years, we have
seen the proposal of several algorithms for solving ADE by LBM and its variants [15–19].
These investigations have shown that LBM provides excellent results in terms of precision,
efficiency, and applicability (highly parallelizable in a natural way). As far as we are
concerned to solve the ADE constituting the direct problem, our choice fell on the use of
the LBM because of its high simplicity of implementation and its easy parallelization. Thus,
the final objective of this paper is the presentation of an integrated optimization algorithm
for the identification of an anisotropic HDT (noted HYDRODISP-LBM/CMA-ES). This
algorithm combines a hydro–dispersive calculation code by LBM (HYDRODISP-LBM) and
an optimization code by the metaheuristic method CMA-ES.

This paper is organized as follows. Section 1 is an introduction presenting the state of
the art on the numerical solution of ADE and its interest in the various engineering sciences.
The second section presents the different mathematical tools that lead to the integrated
optimization code HYDRODISP-LBM/ CMA-ES. Section 3 is devoted to the application
of the HYDRODISP-LBM/CMA-ES algorithm to the realistic case of the Beauvais LaSalle
site to identify the anisotropic HDT characterizing this site in the North of France. Fi-
nally, Section 4 discusses the results obtained, presents a general conclusion of the paper,
and proposes some perspectives for possible improvements of the proposed integrated
optimization algorithm HYDRODISP-LBM/CMA-ES.

2. Mathematical Formulation of the Model
2.1. Governing Equations

The mixing processes by dispersion in a media (also porous) denoted by Ω character-

ized by a HDT
=
D and crossed by a flow of velocity

→
v are governed by a scalar equation of

the convection-diffusion type formulated by:

∂C
∂t

+∇.(
→
v C) = ∇.(

=
D∇C) + SC (1)

where C is the diffused concentration, t is the time,∇. and∇ are respectively the divergence
and the gradient operators and SC is the term source or sink term. It should be noted that
the velocity field

→
v denotes the velocity of the fluid flow carrying the concentration C
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through the studied porous medium. This velocity was calculated beforehand by the
numerical solution of Darcy’s law by the LBM method implemented in the computer code
of HYSFLO-LBM [20]. As specified in the introductory section, here, we are interested in

the isotropic HDT, therefore in the 2D modeling, the tensor
=
D will be of the form:

=
D =

(
Dij
)

1 ≤ i ≤ 2
1 ≤ j ≤ 2

= Dδij with δij =

{
1 i f i = j
0 i f i 6= j

(2)

To maintain isotropy, the diffusion coefficient D must be taken in the directions of the
flow direction, by considering the following expression of the D :

D(x, y) = Dm + KT(x, y)‖→v ‖ (3)

where Dm is the molecular diffusion, KT is the transversal diffusivity and is the ‖→v ‖ modu-
lus of the flow velocity. It should also be noted that the coefficient D is dependent on space
and time through the parameters KT (transversal dispersivity) and ‖→v ‖. Therefore, the
identification of D is equivalent to identifying KT (variable in space). Thus, the optimization
algorithm implemented for this study is based on the identification of the coefficient D
deduced from the Expression (3). Equation (1) expresses the partial differential equation
(PDE) to be solved to estimate the concentration C. This PDE is not complete without
the specification of the boundary and initial conditions. By introducing these conditions
on an arbitrary domain Ω

(
Ω ⊂ Rd

)
of the boundary ∂Ω, such as ∂Ω = ΓD ∪ ΓN and

ΓD ∩ ΓN = ∅, the complete mathematical model is given by:

(DP) =


∂C
∂t +∇.(

→
v C) = ∇.(

=
D∇C) + SC in Ω

C = CD on ΓD
→
n .(
→
v C−

=
D∇C) = CN on ΓN

(4)

where CD is a known function for imposing the Dirichlet condition ΓD, CN is also a known
function for imposing the Neuman condition on the domain boundary ΓN and the vector
→
n denotes the normalized normal vector to ΓN oriented towards the outside of the domain.

For a given HDT
=
D, the mathematical Model (4) describes the spatio-temporal evolu-

tion of a concentration field C transported by the advection and diffusion processes. In this
case, we agree to say that we solve the direct problem (DP). Conversely, if the concentration
C is known at a few points in the Ω (from the measured values, for example), the Model (4)

allows, in this case, determining the HDT
=
D. In this case, we talk about the solution of the

inverse problem noted (IP).
It is well known that the numerical resolution of the inverse problem supposes certain

conditions of regularity. In this context, Ciarlet [21] studied this problem from a math-
ematical point of view and proposed certain conditions which ensure the existence and
uniqueness of the problem formulated by the system of Equation (4). The reader interested
in the mathematical analysis aspect of the inverse problem will find rich information in
Ramm’s [22] and Kirsch’s [23] books. Other authors are also interested in solving the
inverse problem and have shown that in hydrogeology, this problem is poorly posed. To
obtain physical solutions a step of regularization is necessary before starting the numerical
resolution. In practice, this step consists of, among other things, modifying the objec-
tive function so that the optimization phase tends towards a physical solution (existence,
uniqueness, and stability). We come back to this part in the section which describes the
DP/optimization coupling.
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2.2. Lattice Boltzmann Method

The numerical resolution of the transport by the advection–diffusion equation (ADE)
constitutes a major stake in environmental engineering. Classical discretization methods,
such as the finite differences method (FDM), the finite elements method (FEM), and the finite
volumes method (FVM), have been and are still widely used to solve this type of equation.
However, for two decades now, LBM has started to establish itself as a serious alternative
to the classic methods (FDM, FEM, FVM). LBM’s mathematical formalism is based on
the kinetic theory of gases. Unlike the concept of continuous media, LBM considers the
medium as a discrete space of particles in perpetual reaction with each other. LBM is also
based on the principles of statistical physics since it is interested in a distribution function
(DF) of the velocities f rather than the average velocity of the representative elementary
volume (REV) on which are based the equations of the mechanics of continuous media.
Therefore, LBM solves the Boltzmann equation (BE) that governs the advection of f in the
presence of a source term. This equation which describes the macroscopic behavior of the
fluid via the DF f (

→
x ,
→
c , t) is expressed by the following equation [24,25]:

∂ f
∂t

+
→
c .∇ f = Ω( f ) (5)

where the function f is the probability that at the time t a particle is at position
→
x with

velocity
→
c . Ω is an operator that models collisions between particles. We can understand

that LBM solves the scalar Equation (5) for the DF f instead of the ADE Equation (4) for
the concentration C. To deduce the macroscopic variable C, we go through the calculation
of different orders of the DF moments. For example, if we use LBM for Navier–Stokes,
the density variable is deduced from the DF moment of order zero, the fluid velocity is
deduced from the DF moment of order one, and finally the kinetic energy is deduced from
the DF moment of order two, and so on.

The simplest collision operator is undoubtedly proposed by Bhatnagar–Gross–Krook
(BGK) [26]. However, several authors have shown that this operator may prove insufficient
to correctly cover the macroscopic variables from the resolution by BE. In this paper, we
have used the BGK collision operator which is largely sufficient to cover the macroscopic
variables when solving the ADE by LBM. This operator is written by:

Ω( f ) = − 1
τ
( f − f (eq)) (6)

where τ is the relaxation time, f (eq) is the thermodynamic equilibrium distribution function
(EDF). All the basic books that introduce the LBM describe the entire approximation
steps to obtain an analytical form of this function. Zouhri et al. [20] proposed a synthetic
presentation of the expression of f (eq).

2.3. Solution of the ADE by LBM

Like any PDE, the resolution of the BE (5) begins with a discretization of the variables
of the equation (here it is the space

→
x and speed

→
c ). In 2D spatial discretization, we use a

Cartesian computing grid of size ∆x. For the speeds, the discretization indicates that at a
point (i, j) of the lattice, a speed is allowed to take a predefined number of directions. Thus
in 2D, if we choose a discretization of 9 directions, one speaks about the ”D2Q9 lattice”.
Figure 1 shows the layout of this type of lattice.

This configuration indicates that after a collision the particle at the point (i, j) can only
move in one of the nine directions (staying at the point (i, j) is considered as a direction
of velocity

→
c 0). For the space discretization, several schemes have been proposed for this

PDE type, but LBM uses a particular characteristic scheme. In fact, characteristic schemes
are always accompanied by an interpolation step to estimate the speed when the endpoint
of the characteristic does not exactly coincide with a node of the lattice. LBM then chooses
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a time step so as to avoid this interpolation. With this particularity, the LBM algorithm
consists of two stages: the collision and the propagation (called also streaming). These two
stages make LBM highly parallelizable.
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The discretization of BE must reproduce the collision and propagation stages as well as
possible. After the collision, begins the propagation at which a fictitious particle is allowed to
orient itself in the lattice only towards one of the 8 direct neighbors with a predefined speed
c = ∆x/∆t. Thus, the discretization of the propagation step (streaming) is expressed by:

fi(
→
x +

→
c i∆t, t + ∆t) = f ∗i (

→
x , t) f or i = 0, . . . , 8 (7)

where f ∗i is the value of fi before the streaming and the 9 speeds are given explicitly by the
expressions below

→
c i =


(0, 0) i = 0

c
(

cos (i−1)π
2 , sin (i−1)π

2

)
i = 1, 2, 3, 4

√
2c
(

cos (2i−9)π
4 , sin (2i−9)π

4

)
i = 5, 6, 7, 8

(8)

At the end of the propagation, the particles settle in the lattice to interact with the
other particles (this is the collision) and start again in other directions and at other speeds
according to diffusion rules. Thus, the discretization of the collision step is expressed by:

f ∗i (
→
x , t) = fi(

→
x , t)− ∆t

τ
( fi(

→
x , t)− f (eq)

i (
→
x , t)) f or i = 0, . . . , 8 (9)

Finally, by combining expressions (8) and (9), we find the most popular form of
discretization of BE used for fluid flow simulations based on the LBM.

fi(
→
x +

→
c i∆t, t + ∆t)− fi(

→
x , t) = −∆t

τ
( fi(

→
x , t)− f (eq)

i (
→
x , t)) f or i = 0, . . . , 8 (10)

To complete the solution of BE, the algorithm of LBM needs to specify the ED f (eq)

and the relaxation time τ. It should be noted that the f (eq) is defined as the integral of the
Maxwell–Boltzmann distribution over the entire velocity space. As the exact calculation of
such an integral is difficult, it is customary to approach it numerically using high-order
quadrature formulas. Thus, the approximation of f (eq) used for LBM is estimated by the
Gauss–Hermite quadrature formula which is found to have excellent accuracy.
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It is quite clear that the expression of f (eq) depends on the type of the PDE to be solved.
Indeed, any PDE is formulated for a specific physical phenomenon. This phenomenon
is a combination of several other phenomena of different physical magnitudes. On the
other hand, we remind that the f (eq) expression was derived from a Taylor expansion

of the Maxwell–Boltzmann distribution in the neighborhood of ‖
→
v ‖
cs

< 1, where cs is the
isothermal sound velocity (for details of derivation, see [27]). One deduces that it is the
order of this development which allows expressing the analytical expression of f (eq). This
expression must cover and represent all orders of the physical quantities included in the
phenomenon that we wish to model. For example, to solve the Navier–Stokes PDEs, we
have to perform the two-order Taylor expansion to obtain a f (eq) which will correctly
reproduce the velocities and the pressure of the studied flow. On the other hand, to solve
ADE by LBM, a Taylor development of order 1 is sufficient to find the expression of f (eq)

which will reproduce the phenomena of advection and diffusion. As mentioned above, in
this paper, we used the LBM D2Q9 model to solve Equation (4). In this case, the ED f (eq) is
given by:

f (eq)
i = ωiC(1 +

→
c i.
→
v

c2
s

) f or i = 0, . . . , 8 (11)

where cs = 1/
√

3 and ( ωi)0≤i≤8 are the weight coefficients resulting from the Gauss–
Hermite type quadrature formula which was adopted to approximate the calculation of the
integral. These coefficients are given by:

ω0 =
4
9

ω1,2,3,4 =
1
9

ω5,6,7,8 =
1

36
(12)

Details on how to compute the weighting coefficients ωi can be found in Succi [25].
As mentioned previously, the relaxation time τ must be also specified. In fact, the multi-

scale Chapman–Enskog Expansion allows proposing a constraint linking the dispersion
coefficient D and the relaxation time τ. Therefore, during the execution of the LBM
algorithm, this parameter will be calculated explicitly from the D coefficient by:

D =
∆x2

3∆t
(

1
λ
− 1

2
) (13)

λ is the dimensionless relaxation time (λ = ∆t/τ).
At this stage, we have defined all parameters necessary for the execution of the D2Q9

LBM algorithm which can be summarized in the following two steps:

collision : fi(x, y, t + ∆t) = (1− λ) fi(x, y, t) + λ f (eq)
i (x, y, t) i = 0, . . . , 8 (14a)

streaming : fi(x + ∆x, y + ∆y, t + ∆t) = fi(x, y, t + ∆t) i = 0, . . . , 8 (14b)

It should be noted that the different types of boundary conditions are imposed on
the unknown C of the PDE (4). However, the LBM method solves the PDE (5) of un-
known the DF f . It is then necessary to transform the boundary conditions relating to
C variables to new ones which will be imposed on the DF f . In [28,29] one can find var-
ious transformations which make it possible to impose the various types of boundary
conditions (Dirichlet, Neuman, Robin, etc.). To finish this subsection, we give the LBM
algorithm which was implemented to solve the PDE (4) to build the computation code
HYDRODISP-LBM (Algorithm 1).
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Algorithm 1: The pseudo-code of LBM

set numerical parameters (ωi, cs, D(orKT),
→
v , . . .)

initialization
initialize C0 by the measured values

Compute f (eq)
k associated to C0 from (Equation (11))

loop: t + ∆t
compute λxy from (Equation (13))

compute f (eq)
k from (Equation (11))

collision from (Equation (14a))
streaming from (Equation (14b)) (after 14a and 14b we have ( fk)0≤k≤8)
set boundary condition
compute C = ∑8

k=0 fk
test ‖C− C0‖/‖C0‖ < tol exit
set C0 ← C

go to the next time step

One can remark that the velocity field
→
v is a datum for the DP algorithm. This velocity

field can come from any numerical model solving the Darcy’s equation in the concerned
study area. For the application presented in this paper, we used the HYSFLO-LBM model
already presented in a published paper in this journal [20].

2.4. CMA-ES Algorithm

For the optimization step that constitutes the numerical resolution of an inverse
problem, we have chosen to adopt a method in the category of metaheuristic algorithms. It
is more precisely the evolution strategy algorithm commonly called CMA-ES (Covariance
Matrix Adaptation–Evolution Strategy) [30] (Hanssen, 2016). This choice was motivated by
several reasons, namely that this algorithm is very well adapted to the cases of objective
functions which are not known in an explicit way (this is our case in this study, since the
values of our objective functions are calculated by the resolution of the direct problem).
Based on stochastic processes, CMA-ES is particularly suited to the optimization of non-
convex functions whose values are noisy. This algorithm is even recommended for poorly
conditioned problems. Contrary to the algorithms with a gradient that converges towards
the local optimums, CMA-ES ensures a convergence towards the global optimum. Finally,
this algorithm is qualified as robust since it has been used successfully in various disciplines
of engineering and environmental sciences.

As mentioned previously, CMA-ES is an evolutionary strategy type algorithm with
a functioning similar to that of genetic algorithms. That is to say, this algorithm acts on
a population of individuals in four stages: initialization, selection, recombination, and
mutation. During its execution, the CMA-ES algorithm connects the 4 steps to produce
“the best individuals” for the next iteration (also called generation). If we denote by µ the
number of individuals (also called parents) in the population, at each generation, CMA-ES
operates on these α individuals (also called children) to produce β “best individual” (β ≤ α)
among the α individuals. This particular CMA-ES algorithm is then called CMA-ES (α, β).

Mutation is arguably the main step in the CMA-ES algorithm. The parameters
of this step (called strategy parameters) direct this algorithm for the covariance ma-
trix transformations and their adaptation according to the generated population. Strat-
egy parameters are automatically adapted (without user intervention) based on infor-
mation from the previous generation [31,32]. This advantage makes the CMA-ES algo-
rithm more and more attractive for the most complex optimization problems. In order
not to overload the presentation, we will not give here more details on CMA-ES, but
the interested reader will consult our previous work [20,33,34]. To finish this subsec-
tion, we give the flowchart of the operation of the CMA-ES algorithm (Algorithm 2).
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Algorithm 2: The pseudo-code of CMA-ES (α, β)

set numerical parameters (d, α)

initialization σ, m,
=
C . . . , with (m)1≤i≤α ∈ Rd

generation: g + 1
selection→ X, β, m . . . , with (X)1≤i≤α ∈ Rd

mutation→ X = m + σN (
→
0 ,

=
C)

evaluation→ F(X)
test exit ‖ → F(X)‖ tol exit

adaptation→ σ,
=
C

go to the next generation

where d is the size of the optimization variable, α is the size of the population. Hansen [35]

suggests α = 4 + 3 ln(d), σ is a real positive parameter,
=
C is the covariance matrix (symmet-

ric and positive definite). (X)1≤i≤α ∈ Rd is the individual’s population, β is the number of
the “best individual” according to the fitness value (i.e., F

(
(X)1≤i≤α

)
), F is the objective

function, m is the weighted average of (X)1≤i≤β vectors on these β individuals, N (
→
0 ,

=
C)

denotes a vector of independent normal random numbers with zero mean and covariance

matrix
=
C. Finally, we remind that σ and

=
C are the strategy parameters that the algorithm

CMA-ES self-adapts during each generation.

2.5. The Integrated Optimization Algorithm (HYDRODISP-LBM/CMA-ES)

For transport phenomena in porous media by advection–diffusion mixing processes,

the HDT
=
D is a main parameter for the hydro–dispersive groundwater modeling. It is,

therefore, necessary to know this tensor with high accuracy in order to obtain correct results:
for example, for a groundwater front pollution propagation. However, this tensor is an
intrinsic parameter of the studied porous medium and it is generally unknown. Several
techniques have been proposed for its determination and they are essentially experimental.

In fact, to determine the tensor
=
D experimentally, a passive tracer is injected at a point

in the domain (called a well), and we follow during the time its movement by taking
concentrations of the tracer at another point distant from the injection point. By using
the basic statistical tools applied to the restored curve, we can then deduce the dispersion
coefficient of the studied porous media. However, this technique requires prior knowledge
of the direction of flow which will guide the choice of sampling point, but generally, this
information is difficult to obtain without going through the hydrodynamic study of the
study area. In addition, this method has also been proven ineffective when the medium is
characterized by anisotropy.

In this paper, we propose to identify the HDT
=
D of a porous medium in a numerical

way. Indeed, to identify
=
D, we formulated the problem from a mathematical point of

view as a solution to an inverse problem with constraints. In another way, if one has
the measurements of concentrations in the field denoted by Cobs, this problem is then

equivalent to finding the tensor
=
D which minimizes the difference between the observed

concentrations and those computed by solving the DP that we denote Ccomp. In this case
the IP that must be resolved can be formulated by:

(IP) =



Minimize F(
=
D),

=
D ∈ AD

subject to

(DP) =


∂C
∂t +∇.(

→
v C) = ∇.(

=
D∇C) + SC in Ω

C = CD on ΓD
→
n .(
→
v C−

=
D∇C) = CN on ΓN

(15)
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where F is the objective function defined by F(
=
D) = ‖Cobs − Ccomp(

=
D)‖ and AD is the

admissible set values of
=
D.

The inverse problem (15) is the formulation of the integrated optimization algorithm
(IOA) which will be implemented to build the HYDRODISP-LBM/CMA-ES computation
code. It is an iterative algorithm that couples the step of solving the DP and the step of
optimization by CMA-ES. At convergence, this algorithm provides the HDT that we wish

to identify
=
Dopt such that:

=
Dopt = min︸︷︷︸

=
D∈AD

‖Cobs − Ccomp(
=
D)‖ (16)

Obviously and like any numerical method, the numerical resolution of the IP is also
confronted with certain difficulties, such as the stability, the uniqueness of the solution, and
the convergence of the optimization algorithms, and, in particular, if it is the methods with
gradients which have been adopted. All these difficulties have been massively studied by
various researchers around the world from both a mathematical and numerical point of
view. Several techniques have been proposed to circumvent these difficulties. In order to
not repeat all of these techniques here, the interested reader will find a summary in the
Reference [20], but for more information, the reader may also consult the reference books
on inverse problem topics. Par example [7,12,36–39].

It should be noted that in hydrogeology, if one has the measurements of the hydraulic

potential ϕ, the problem of identifying the transmissivity tensor
=
T (Darcy’s equation) is

formulated in a similar way to problem (15) [20]. It is considered as an ill-posed problem in
the sense of Hadamard [40]. Consequently, the various techniques of numerical solution of this

IP do not ensure the uniqueness of the solution (denoted
=
Topt). To overcome this difficulty, it

is then necessary to make additional hypotheses called a regularization strategy [39,41,42]. In
practice, the most used regularization method for this type of problem consists in introducing

a priori information on the tensor
=
T (for example, all kinds of measurements of

=
T available

on the study domain). This strategy is called the Tikhonov regularization method [43] which
consists of modifying the objective function G of the IP to become:

G(
=
T) = ‖ϕobs − ϕcomp(

=
T)‖+ ‖λ

=
T−

=
T∗‖ (17)

where
=
T∗ is the tensor containing a priori information (values of measurements), and

λ is the non-negative regularization parameter. In the book of Vogel [7], one can find
the different choices of the regularization parameter λ that can significantly improve the
efficiency (in the sense of convergence) of the IOA formulated by (15). All the choices for
this parameter have been made in order to preserve the consistency with the inaccuracy of
the input data of the problem. Finally, let us note that in the absence of a priori information,

the tensor
=
T∗ must be taken equal to zero.

As far as we are concerned, for the identification of the HDT
=
D, we do not have the a

priori information
=
D∗. On the other hand, the fact of writing

=
D in a precise form according

to the flow velocity via expression (3) is then equivalent to a priori information. Therefore,

in our case, we do not need to specify the value of the tensor
=
D∗. In addition, and for more

regularity, during the optimization step of the IOA, we will use the objective function F
modified by the Tikhonov regularization method, such as

F(
=
D) = ‖Cobs − Ccomp(

=
D)‖+ µ‖

=
D‖ (18)

where µ is non-negative regularization parameter.
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To finish this section, we describe the successive operations of the computer code
HYDRODISP-LBM/CMA-ES implemented for the IOA. The code starts with an initial

HDT
=
D
(0)

that the CMA-ES algorithm also uses as the tensor value at generation g = 0 .

CMA-ES performs the selection and mutation steps to provide a new HDT
=
D. With this

tensor, it is the computer code HYDRODISP-LBM of the direct problem in (15) which runs

in turn to provide the value of the concentration Ccomp(
=
D). At this stage of the IOA, the

objective function F is constructed according to expression (18), then CMA-ES proceeds
to the evaluation step (fitness) in order to be able to test the convergence. If the converge

is obtained, CMA-ES returns the optimal HDT
=
Dopt. Otherwise, CMA-ES goes to the step

of adapting the strategy parameters (σ,
=
C) to propose the new generation (g + 1). Thus,

if necessary, these steps will be repeated until the convergence of the IOA towards the

optimal value
=
Dopt. Algorithm 3 summarizes the different steps of the IOA implemented

by the HYDRODISP-LBM/CMA-ES computer code in this study to solve numerically the
IP formulated by (15).

Algorithm 3: The pseudo-code of HYDRODISP-LBM/CMA-ES

set the observations values vector Cobs
generation: g

initialization
=
D
(g)

generation: g + 1

selection from
=
D
(g)

+ mutation→
=
D
(g+1)

solve the (DP) by HYDRODISP-LBM→ Ccomp(
=
D
(g+1)

)
construct the objective function according (18)

evaluation→ F(
=
D
(g+1)

)

test if ‖F(
=
D
(g+1)

)‖ < tol then convergence to the
=
Dopt and exit

adaptation σ(g+1),
=
C
(g+1)

go to the next generation

3. Realistic Case: The Experimental Hydrogeological Site of Beauvais
(Unconfined Aquifer)

Hydrogeological models on chalk aquifers (North of France) are rare and focus espe-
cially on hydrodynamics approaches. The knowledge of the groundwater flow and the
geometrical of geological formations in the Oise department (northern part of France) led us
to build the first model by using the Algorithm which is based on LBM/CMA-ES combina-
tion and thus making it possible to propose a water resources management and forecasting
plan [20]. This model constitutes a fundamental basis and an opportunity to develop a
new numerical methodology in order to determine the distribution of the isotropic HDT
in the cretaceous formation which constitutes the principal aquifer in the north of France.
The chalk lithological levels which are presented in the hydrodynamics simulations [20]
represent the groundwater chalk aquifer in the Hydrogeological Experimental Site of Beau-
vais (HESB) and where the distribution of the hydraulic conductivity and transmissivity
are deduced from the geophysics, pumping tests, and numerical processes. In order to
complete the anterior study, it was necessary to develop the hydro–dispersive numerical
model for identifying the isotropic dispersion coefficients which are unknown in chalk
aquifers and based on hydro–chemical measurement campaigns carried out on this site.

The HESB located at (49◦ 27′ 35.72′ ′ N, 2◦ 04′ 5.51′ ′ E) was set up in 2015 and it has ben-
efited from the support of the Ministry of Higher Education and Research, Haut-de-France
region, the European Regional Development Fund (FEDER), and the Institut Polytechnique
UniLaSalle Beauvais. The HESB is equipped with twenty wells with 110 m of depth. Mea-
surements of water levels, temperature, and electrical conductivity are provided by the
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CTD DIVERs type sensor with automatic acquisition which was developed by Schlum-
berger water Service [44]. Hydro–chemical analysis of water samples is carried out in the
Institut Polytechnique UniLaSalle by using the techniques of Dionex High Performance
Ion Chromatography especially anions and cations analyses (Na+, K+, Ca+, Mg2+, HCO−3 ,
Cl−, NO3−, PO2−

4 and SO2−
4 ). Finally, in order not to overload the content of this paper, we

have given here only a brief description of the studied domain, omitting to describe the
geological formation of the site. However, the reader interested in this aspect of the paper
can find rich information on HESB in our previous paper [20].

4. Discussion of the Modeling Results

Before starting the interpretation and discussion of the simulation results of the IOA,
we give a description of the conditions of these simulations. The IOA was applied to the
Beauvais site (North of France) which has been described in detail in our article published
in this journal [20]. It is an unconfined aquifer-type site with continuous instrumentation
since 2015. The site is rectangular in shape with a length of 133 m and a width of 123 m.
For a high spatial resolution, we adopted a computational grid of ∆x = ∆y = 1 m, that is
to say a computational lattice for the DP of 123 × 133. On this site, several sensors have
been deployed to measure the various parameters of the aquifer. Thus, we had 20 points of
measuring the concentration of different chemical substances. Among the ions analyzed,
we chose for our simulations in this paper to use the chloride ion (Cl−) concentration
as the tracer. From these 20 concentration values, we deducted the concentration fields
over the entire computational domain by Kriging type interpolation. Figure 2 shows the
concentration obtained; the interpolated concentration is denoted Cobs which was used
as the reference field necessary to the IOA for the construction of the objective function
F expression (18). Finally, we note that the numerical solution of the DP required the
knowledge of the values of the concentration on the four edges of the computational
domain. For all the simulations presented in this study, we imposed the DP Dirichlet type
boundary conditions. The values of the CD function were extracted from those of Cobs
on the four edges. Thus, if we denoted by ΓD the set of the four edges, then we have
CD = Cobs(ΓD ).

As specified previously, the direct problem-solving ADE require knowledge of the
velocity field

→
v necessary of for the advective transport phase of the chlorine concentration.

In fact, before proposing this paper which studies the hydro–dispersive aspect of HESB, we
presented a purely hydrodynamic study of this site [20]. Indeed, since we have 20 hydraulic
head measurement points (Figure 2), we then proposed a similar approach (IOA: HYSFLO-

LBM/CMA-ES) in order to identify the transmissivity tensor
=
T of the water table [20]. Once

the tensor
=
T was identified, by using Darcy’s law we were able to estimate the velocity field

of the studied site (Figure 3). This figure shows a complex structure of the underground
flow of the HESB but highlights several wells and sources in the field consistent with the
measurements of the hydraulic head taken on the HESB.

The IOA HYDRODISP-LBM/CMA-ES developed in this study was applied to the

HESB site to identify the HDT
=
D. As explained by algorithm 3, a simulation by IOA

begins with the first step by solving the DP by HYDRODISP-LBM, then performs the
optimization by the CMA-ES algorithm in the second step. The computational time of the
DP is insignificant (12 s on an Intel Xeon E5520 @ 2.27 GHz CPU with 32 GB of RAM). On
the other hand, it is the optimization stage that consumes the most computing time. In
fact, in the CMA-ES algorithm, the individual mutation stage explores all the elements of
the research space to hope to propose the “best” population of β individuals among the α
parents. The other steps of CMA-ES, such as selection, recombination, and adaptation, do
not consume much time compared to the mutation. For information, a complete simulation
until convergence by HYDRODISP-LBM/CMA-ES consumes a little more than 2 days in
calculation time for a tolerance ε = 10−4. Moreover, it is important to note that the CMA-ES
algorithm is based on stochastic processes for the research stage and consequently, the
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individuals of the populations proposed for each generation may be affected by certain
errors. To reduce the impact of the propagation of these errors in the final results of the
identified tensor, we carried out about fifteen successive simulations, and we considered
the optimal HDT

=
Dopt as the arithmetic mean of these fifteen simulations. Before starting

the interpretation of the modeling results, it is useful to define the numerical quantity
which helps us to quantify the errors. These are the absolute error (Ea) and the relative
error (Er) defined by:

Ea = ‖Cobs − Ccomp(
=
Dopt)‖ and Er =

‖Cobs − Ccomp(
=
Dopt)‖

‖Cobs‖
(19)

It is interesting to note that the application of the IOA to a site can meet the double
objectives: it allows both the calibration of the model of the DP (we speak about the
automatic calibration) and the identification of the HDT of the studied site. Figure 4a,b
respectively show the field of the measured Cl− concentration field and the simulated one

by the model HYDRODISP- LBM by considering the identified HDT
=
Dopt as data of the

DP. In a visual comparison of these two figures, one can conclude an excellent agreement
between these two fields of concentration. Moreover, to quantify the small remaining errors,
we must examine Figure 5a, b. From these two figures, we read that the relative error did
not exceed 4% while the absolute error hardly reached 1 mg/L.
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If we refer to Figure 2 which references the 20 measurement points, we observe that
the most important errors were located at the piezometric points Pz8 Pz12, Pz13 and at
the well point F4. In fact, this observation is not surprising, since, in our previous study
of the hydrodynamics of the same area [20], we showed that these parts of the site are
characterized by a complex geological and flow structure. These remarks are confirmed
if we examine in addition Figure 3, which presents the flow streamlines. This figure
shows that in the vicinity of these points, we observe the presence of a succession of
sources (divergent streamlines) and of wells (converging streamlines) which induces a
hydrodynamic difficulty to apprehend. Finally, if we admit the complexity of the geology
of the site and the errors made on the measurements (either by the accuracy of the deployed
sensors or by the difficulty of access to the measurement point), we can then conclude that
the proposed coupling in this work (HYDRODISP-LBM/CMA-ES provides an excellent
result for the calibration of models solved by the DP.

As mentioned above, the application of the HYDRODISP-LBM/CMA-ES coupling
to the site also makes it possible to identify the HDT of the Cl−tracer. Figure 6 shows
the spatial distribution of the HDT. The analysis and the interpretation of the dispersion
map (Figure 6) revealed higher dispersion in especially in the central and the north sectors
of the HESB (about 5× 10−4 m2/s). In parallel, these sectors were characterized by the
spatial distribution of the dispersion coefficients which varied between 4× 10−5 m2/s and
1.5× 10−4 m2/s. This variation shows the complexity of the chalk formation and its hetero-
geneity according to the groundwater flow, hydrogeological characteristics (permeability
and transmissivity), porosity, and the presence of fractures. Figure 6 shows also that the
maximum dispersion was obtained at points Pz8 and Pz14. This remark is not surprising
since from a hydrodynamic point of view these two points behave like wells with maximum
velocity (Figure 2). In view of Expression (3) which linearly links the dispersion to the
velocity magnitude, we can then predict that the maximum dispersion will also be obtained
at these two points.
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tigation results for this site. Consequently, we have no means of verifying the orders of
magnitude of the values that we announce. Nevertheless, we believe that the approach

of the identification of the tensor
=
D is commendable. Of course, there are a number of

investigations [45–48] (most of them are experimental in the laboratory) that determine the
diffusion coefficient of chloride. However, not the transverse dispersivity which we are
interested in in this paper, and consequently, these works cannot inform us about the range
of expected values of the dispersivity KT . On the other hand, all these authors agree on
the fact that the determination of this coefficient is a difficult exercise to carry out since
it strongly depends on several parameters controlling the mixing processes in a given
medium. Indeed, these mixing processes result from the two different transport mecha-
nisms. The first is due to matrix diffusion and the second is governed by the transfer of
solutes by the permeable environment flux which is characterized by fractures. According
to [49], these solutes are transferred by the concentration gradient from the fluid parts
contained in the permeable support (fractures) to the non-fluid parts (matrix) (Figure 7b).
In the chalk environment (Figure 7a), the transport media required the first time for the
characterization of the petrophysical characteristics of the chalk formation. Indeed, the
use of the Scanning Electron Microscopy (SEM) (Figure 7c) analysis of the chalk samples
coming from outcrops which are located near to our site HESB allows defining the porosity
of the chalk. The carbonate matrix is characterized by a sedimentological wackstone texture.
The SEM (Figure 7d) method provided an intra-granular porosity that varied between 25
and 30% [50]. This porosity could be classified according to the degrees of fissuration and
to the vertical distribution allowing to deduce the primary and secondary porosity with
0.15–45% and 0.005–0.02, respectively [51]. The variation of diffusion coefficient could be
related to the relationship between geometrical properties of fractures and matrix [52]. This
complexity of the chalk aquifer and especially the variation of diffusion coefficients have
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been evaluated in the Negev Desert [47] as a function of the porosity, permeability, the
depth (Eocene section of the 285 m), and mineralogy characteristics of this formation. The
estimated diffusion coefficient of the Negev Desert is very low (orders of magnitude about
10−10 m2/s), but the most important results reveal that the diffusion coefficients of Eocene
chalk depend especially on the porosity.
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To assess the degree of importance of the heterogeneity of the dispersion tensor
=
D, we

performed a new simulation, but with a constant dispersion coefficient Dmean. This coefficient
was obtained by the spatial mean of the identified tensor

=
Dopt (Dmean = 1

mn ∑
0 ≤ i ≤ n
0 ≤ j ≤ m

=
Dopt(i, j)).

Figure 8 shows the concentration field obtained by adopting the constant dispensation coefficient
(in this study we find Dmean=1.18× 10−4 m2/s. By comparing it with the Figure 4b, which
was obtained by the heterogeneous tensor, we observe a quasi-perfect similarity except in the
vicinity of the point Pz8 and the point Pz13 where the isocontours were, this time, off-center
compared to the position of the source. This finding is not surprising since we mentioned
previously that these zones of the studied area are characterized by a complex geological
formation inducing a flow that is difficult to apprehend. In view of these results, we can
conclude that the heterogeneity of the dispersion tensor does not play an important role in the
dispersion of the tracers in this study area.
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5. Conclusion and Perspectives

In this paper, we presented a new IOA called HYDRODISP-LBM/CMA-ES in order
to perform the identification of the dispersion tensor problem. We reformulated this
problem into an inverse problem. The innovative aspect of the new code lies in the
introduction of LBM as a DP solver, but the association with a metaheuristic algorithm
for the optimization phase is also original. LBM implementation for the DP solution is
extremely fast in computing time. This grain of time allowed us to process simulations
in high spatial resolution (∆x = ∆y = 1m) and also to compensate for the exorbitant
calculation time required for the optimization step with a metaheuristic algorithm like CMA-
ES. As an example, we proposed an IOA which uses the Finite Element Method [33], Control
Volume Finite Element Method [34] for the DP solver and CMA-ES for the optimization
(a less fine spatial resolution that we deal with in this paper). To identify the transmissivity
tensor, we needed no less than 5 days of calculation. While the case treated here with a
high-resolution LBM required only 2 days of calculation.

HYDRODISP-LBM/CMA-ES was successfully applied to the real case of the HESB. It
gave excellent results in calibration mode. Likewise, the high spatial resolution that we
were able to adopt thanks to the high performance of LBM, allowed us to highlight the
heterogeneity of HDT. On the other hand, HYDRODISP-LBM/CMA-ES in identification
mode seems to give satisfactory results, but the lack of data on the hydro–dispersive aspect
of the site, did not allow us to criticize the approach. As perspectives, we are considering
new investigations to improve and gain in the robustness of the proposed IOA by carrying
out the following actions:
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1 Conduct new experiments on the study site on tracking a tracer to build a database
which we will use to validate the proposed IOA for identification mode.

2 Introduce anisotropy in LBM taking into account both longitudinal and transverse

dispersivity (KL, KT), which amounts to writing
=
D in the form Dij(x, y) = Dm +

KT‖
→
v ‖+ (KL − KT)vivj/‖

→
v ‖ to identify two parameters KL and KT .

3 Develop a strong coupling between hydrodynamics and dispersion. In fact, the IOA
proposed here assumes knowledge of the velocity field v. However, it is not generally
known, but calculated by solving Darcy’s equation. The strong coupling, we propose
consists of simultaneously solving Darcy’s equation and the ADE transport equation.

4 Implement a parallel version of LBM to reduce computing time.

6. Patents

There are no patents resulting from the work.
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