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Abstract. In recent years, the integration of connected devices in smart
homes has significantly increased, thanks to the advent of the Inter-
net of things (IoT). However, these IoT devices introduce new security
challenges, since any anomalous behavior has a serious impact on the
whole network. Network anomaly detection has always been of consid-
erable interest for every actor in the network landscape. In this paper,
we propose GRAnD, an algorithm for unsupervised anomaly detection.
Based on Variational Autoencorders and Normalizing Flows, GRAnD
learns from network traffic metadata, a normal profile representing the
expected nominal behavior of the network. Then, this model is optimized
to detect anomalies. Unlike existing anomaly detectors, our method is
robust to the hyperparameter selection, and outliers contaminating the
training data. Extensive experiments and sensitivity analyses on public
network traffic benchmark datasets demonstrate the effectiveness of our
approach in network anomaly detection.

Keywords: Unsupervised anomaly detection, robust autoencoders, dy-
namic outlier filtering. network traffic anomaly detection.

1 Introduction

Thanks to the recent advances in Internet of Things (IoT) technologies and the
steady growth of IT services, IoT devices have become ubiquitous in multiple
domains such as Smart Home, Healthcare, Industry 4.0. Although the IoT has
played a key role in the enablement of new services and the development of
new business value, there is a growing concern about the security of modern
networks. IoT devices have numerous technical limitations such as constrained
resources, battery failure, connectivity issues, and are vulnerable to diverse cyber
threats. Such failures have serious consequences on the Quality of Service (QoS).
Therefore, detecting abnormal events is of paramount importance to mitigate
risks, prevent system failures.
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Signature-based Intrusion Detection Systems (IDSs) are commonly used to
protect IoT devices from cyber threats. They detect network anomalies by com-
paring the traffic with known attack signatures. Although they are effective to
detect already known attacks, these systems are incapable of mitigating non-
malicious anomalies or novel attacks, e.g., zero-day attacks [1]. Unsupervised
anomaly detection has been a point of interest to mitigate these limitations and
develop reliable and secure networks.

Anomaly Detection (AD) is the task of detecting anomalous data points that
significantly deviate from expected normal samples [7]. The most common ap-
proaches for AD are based on One-Class Classification (OCC) [7]. OCC consists
in learning an accurate representation of the norm, relying only on nominal
data points. Once the normal data are well-modeled, the algorithm assigns an
abnormality score to each test sample. Finally, a threshold criterion separates
inliers and outliers. OCC efficacy depends on the availability of anomaly-free
training data, and performance may degrade significantly when this assumption
is violated. Unfortunately, this violation is likely to occur in real-world appli-
cations. For example, in network traffic monitoring, collected network packets
may comprise defective data sent by faulty sensors, damaged fiber connectors, or
caused by network congestion [12]. Finally, due to data volumes and potentially
unknown anomalies, manual labelling of training samples is not feasible.

In this paper, we propose GRAnD, an algorithm for Generative Robust
Anomaly Detection. We introduce a training strategy that alternates between
filtering outliers contaminating the training dataset and learning a robust repre-
sentation of the norm. Our training strategy involves little architectural changes
and can be integrated with Variational Autoencoders (VAEs) [11] and Normal-
izing Flows (NFs) [17]. Unlike recent robust generative methods, our approach
makes no assumption about the anomaly distribution, or about the fraction of
training outliers. Our method comprises three contributions :

– a robust rejection strategy that filters corrupted training samples, based on
Extreme Value Theory (EVT). This strategy separates the training data
into three disjoint subsets: an inlier subset containing training data deemed
nominal, an outlier subset that comprises the ”most anomalous” training
samples, and a third subset containing critical undetermined instances;

– a training strategy that leverages filtered anomalies to learn a representation
where inliers are well reconstructed and outliers are explicitly corrupted;

– an extensive validation on network traffic datasets, which demonstrates that
our approach outperforms some state-of-the-art robust methods and robust
to the hyperparameter selection.

2 Related Work

AD is an active research field that has always been a point of interest in different
applications such as network intrusion detection, fraud detection, fault diagnosis,
and predictive maintenance. Four families of approaches were proposed: proba-
bilistic, neighbor, domain and reconstruction-based methods [7]. Statistical and
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probabilistic-based methods typically model the inlier distribution by learning the
parameters of a parametric function. Samples that have low likelihood under this
model are considered anomalies. This category includes Gaussian mixture models
[22], and kernel density estimators [8]. Neighbor-based methods, a.k.a. proximity-
based methods, assume that outliers are far from their nearest neighbors, while
inliers are close to each other. Well-known proximity-based method include Lo-
cal Outlier Factor (LOF) [6] and Angle-Based Outlier Detection (ABOD) [13].
Domain-based methods estimate a boundary that separates the inlier domain
from the rest. Anomalies are samples outside this inlier boundary. One-class
SVM (OC-SVM) [19] and Support Vector Data Description (SVDD) [21] are
two popular domain-based algorithms. Reconstruction-based anomaly detection
assumes that, unlike outliers, inliers can be projected into a low-dimensional
subspace. The reconstruction error represents a score of data abnormality, as
the reconstruction errors of anomalies are higher than inliers. Particularly, Au-
toEncoders (AEs) have been trained to map nominal input data into a compact
latent space, to learn a non-linear representation of the nominal class [7]. Be-
sides, generative models have been profusely proposed for anomaly detection
[4]. Furthermore, numerous studies explored Generative Adversarial Networks
(GANs) [7] for AD.

The above methods have been applied to detect network traffic anomaly de-
tection [9]. Although they show good results when trained with anomaly-free
data, their performance drastically decreases when the training data is contam-
inated with outliers. In a real-world environment, there is no guarantee that
the collected training data are entirely clean. Atypical abnormal traffic may
be hidden in the collected data, due to adversarial attacks, or packet collisions.
Consequently, it is advocated to develop robust unsupervised anomaly detectors,
insensitive to training contaminants [18].

Zhou and Paffenroth [23] proposed Robust Deep Autoencoders (RDAs) to
filter sparse corrupted samples from the input data matrix. Robust Subspace Re-
covery (RSR) [15] is another line of work in robust anomaly detection. RSR as-
sumes that inliers can be projected into a linear low-dimensional subspace, while
outliers are not well modeled in this subspace. Lai et al. [14] introduced Robust
Subspace Recovery AutoEncoder (RSRAE), where they integrated an RSR-layer
in a classical autoencoder. Regarding robust generative autoencoders, Akrami
et al. [3] proposed a Robust VAE (RVAE). Their approach uses the robust β-
divergence instead of the standard Kullback-Leibler (KL) divergence. Minimizing
the β-divergence involves reweighting each sample likelihood gradient with its
probability density.

Recently, Kotani et al. [12] used RDA for network flow intrusion detection.
Although these approaches proved to reduce the number of false positives on
real-world traffic datasets, they involve an explicit regularization, defined by one
or many critical hyperparameters. Prior knowledge about the outlier ratio and
additional assumptions either on the inlier, the outlier class, or both, are re-
quired to select the optimal hyperparameters. Generally, such hyperparameters
are empirically tuned with a dedicated validation subset containing manually
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ground-truth-labeled data. In the context of anomaly detection, labeled outliers
are too scarce to form a balanced validation subset. Also, in most situations,
the ratio of training outliers is not known. Therefore, hyperparameter selec-
tion is prone to misspecification. However, the methods above-mentioned are all
sensitive to their hyperparameters, since slightly changing them can drastically
degrade their anomaly detection performances.

In contrast, our approach does not make any assumptions about outlier distri-
bution. We propose a robust training strategy that jointly performs two tasks.
This strategy filters training outliers using EVT. Then, training outliers are
leveraged to infer a better representation that can be generalized to unseen
anomalies. This strategy can be incorporated with VAEs and NFs, and involves
minimal architectural changes.

3 Background

3.1 Generative AEs

We consider the task of unsupervised AD under the standard variational in-
ference setting. Generative models aim to find the optimal parameters θ that
maximize the likelihood pθ(x) = Ep(z)[pθ(x|z)], where z is the model latent
variable and p(z) is a predefined prior. However, this likelihood is intractable
because of the marginalization over the latent variable z. Variational inference
aims to approximate the posterior probability p(z|x) with a parametric distri-
bution qφ(z|x), parameterized by φ. Regardless of the choice of this distribution,
we can reformulate the log-likelihood as follows:

log pθ(x) ≥ Eq[log pθ(x|z)]− DKL[qφ(z|x)||p(z)] = −F(x), (1)

where qφ(z|x) is the approximate posterior distribution for the latent variables,
and F is the negative free energy, a.k.a., the evidence lower bound (ELBO). This
energy comprises two terms. The first term is the reconstruction error, and the
second one represents the KL divergence between the approximate distribution
and the prior distribution. A common choice of the approximate distribution
family is the multivariate Gaussian distribution with a diagonal covariance ma-
trix. Recently, NFs have been used to provide a richer parametric family of
approximate posterior to capture complex structures of the latent space. NFs
transform an initial simple density function to a more sophisticated one, by
applying a sequence of invertible transformations.

3.2 EVT

The objective of EVT is to quantify the probability of occurrence of extreme
values in a distribution function. Recently, EVT has been applied to detect
anomalies in many applications including network traffic data streams [20]. The
Peaks-Over-Threshold (POT) is a typical approach used to model the extreme
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values of samples that exceed a specific high threshold. This approach is a result
of the Picakands-Balkema-de-Han theorem of EVT [5].

Let (X1, X2, . . . , Xn) be n independent and identically distributed (iid) ran-
dom variables. Let Fu be their conditional excess distribution function, i.e.,
Fu(x) = P (X − u > x|X > u), where u is a high threshold. The POT method
models the extreme values that exceed the threshold u, using the Generalized
Pareto Distribution (GPD) parametrized by two parameters, ξ and σ:

Fu(x)→ 1−Gξ,σ(x), as u→∞ where

{
Gξ,σ(x) = 1− (1 + ξx

σ )−
1
ξ , if ξ 6= 0

Gξ,σ(x) = 1− e− xσ , if ξ = 0.
(2)

In practice, the two parameters of the GPD are empirically estimated by fitting
the GPD to the data. The maximum likelihood estimation is typically used to
find these optimal parameters ξ̃ and σ̃ . Once the extreme values are modeled
with the optimal GPD, Gξ̃,σ̃, we can identify rare extreme samples that have very
low probability [20]. Given a small probability q, we can compute the threshold
tq such that, P (X > tq) < q.

P (X − u > tq|X > u) = F̃u(tq) ∼ 1−Gξ̃,σ̃(tq). (3)

If ξ 6= 0, tq ' u+
ξ̃

σ̃
((
nq

N
)
ξ̃
− 1), (4)

where n is the total number of observations, and N is the number of Xi exceeding
the threshold u, Xi > u. A key question arises as to how to choose the threshold
u. Siffer et al. [20] state that ”the value of u is not paramount except that it
must be high enough.” In practice, u is generally selected as a high empirical
quantile of the data, e.g., 90% quantile.

4 Contributions

This paper focuses on unsupervised anomaly detection where the unlabeled
training data may contain both inliers and outliers, with an imbalanced class
distribution. We assume that the majority of the training instances are nomi-
nal, along with a small ratio of “contaminants”, i.e. outliers. The ratio of these
contaminants, which we call γp, is not known in advance. In the following, we in-
troduce GRAnD, an algorithm for Generative Robust Anomaly Detection. Our
contribution alternates between filtering training outliers and learns a robust
distribution of the norm. In the following, we will first explain the rejection
strategy that isolates training contaminants. Then, we will detail the objective
function to optimize.

4.1 Robust Rejection Strategy

The objective of this rejection strategy is to separate nominal training data
points from anomalies. The main idea consists in setting a relevant threshold
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to segment the reconstruction scores assigned to training samples, in order to
reject outliers having extreme scores.

We hypothesize that, early in the training phase, contaminants have larger
free energy (cf. Equation 1), compared to inliers. Consequently, we propose to
isolate these extreme values by thresholding the energy with the POT approach,
described in Section 3.2. The POT approach requires the selection of two pa-
rameters: the initial threshold u, and the risk parameter q. In our experiments,
we define u as follows :

u = Q3(F) + α ∗ IQR(F) (5)

where F is the free energy of the training instances, Q3 is the third quartile,
and IQR is the Inter-Quartile Range, which is defined as the difference between
the third and the first quartiles. α controls the scale of the decision rule. In all
our experiments, we fixed α = 1.5 and q = 0.001. In Section 5.5, we study the
sensitivity of our contribution with respect to α and q.

Using the POT parameters, we propose to split the input data into three
subsets X = L∪S∪U, as illustrated in Figure 1. The subset L contains nominal
training samples, having energy lower than the initial threshold u of the POT
method. S contains anomalous data points, with an energy higher than tq, com-
puted using Equation 4. U comprises the remaining critical samples, with an
energy higher than u and lower than tq. These sample energies are neither very
low to be considered nominal, nor high enough to be rejected as anomalies.

Energy F

Training
samples

u

tq

1 n
0

Fig. 1: Illustration of the rejection strat-
egy using the POT approach.

e
C
D

F

Energy F

u tq

0

1

u tq

Fig. 2: Empirical cumulative distribu-
tion function of U samples

4.2 Training Loss

The rejection strategy splits the training data into three subsets L, S, and U.
We train the autoencoder to jointly perform three tasks: (i) minimize L sam-
ple energy, (ii) badly reconstruct S samples by maximizing their energy, (iii)
maximize a weighted energy function of U instances, which takes into account
the probability of anomalous of these instances. The idea is to associate to each
critical instance in U a weight in [0, 1] that quantifies whether the instance is
anomalous or not.
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Let U = {X1, X2, . . . , Xn} contain a sequence of n iid instances. We firstly
sort these instances in increasing order according to their free-energies
(F(X1),F(X2), . . . ,F(Xn)). We use the empirical Cumulative Distribution Func-
tion (eCDF) to define the anomalousness weight of a Xi ∈ U.

P (Xi ∈ U is anomalous) = eCDFn(F(Xi)) =
1

n

n∑
j=1

1F(Xj)≤F(Xi) (6)

where 1 is the indicator function. As illustrated in Figure 2, U samples with
energy close to the threshold u have a small probability close to 0. Conversely,
samples with high scores, i.e., close to tq, have probabilities close to 1.

GRAnD Objective Function Given the three subsets of data L, S, and U,
respectively generated from the three distributions, DL, DS , and DU , GRAnD
optimizes the following objective function:

L(x) = Ex∼DL [FL(x)] + |m− Ex∼DS [FS(x)]|+ eCDFm(FU (x)) |m− Ex∼DU [FU (x)]| (7)

The objective function comprises three components:

– Ex∼DL [FL(x)] is the expectation of the free energy function of L samples,
defined in equation 1. This first component aims to minimize the energy of
L samples.

– Ex∼DS [FS(x)] is the expectation of the free energy function of S samples.
|.| is the absolute distance, and m ∈ R+ is a margin value. By maximizing
this energy, we train the autoencoder to badly reconstruct the potential
training contaminants. Since this energy function is positive and unbounded,
we propose to fix an upper bound m, to prevent it from diverging in the
training. In all our experiments, we fix m = 100.

– Ex∼DU [FU (x)] is the expectation of the free-energy function of U samples. We
weight the objective function of U instances according to their anomalousness
probability, computed with the eCDF function. These weights account for
the uncertainty of the classification of U instances.

5 Experiments

5.1 Dataset Description

NSL-KDD Dataset Firstly, we conduct experiments using the NSL-KDD
dataset [16], which is one of the most popular datasets used to evaluate network
Intrusion Detection Systems (IDSs). Two distinct subsets are provided: the train-
ing subset contains 125 973 records and the test subset has 22 544 records. Each
data point is represented by 41 features extracted from the network traffic, e.g.
the duration of the flow, the TCP flags; and labeled as normal or anomalous. 39
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types of network attacks are present in this dataset, ranging from Denial of Ser-
vices (DoS), to Probe attacks. To investigate algorithm sensitivity with respect
to the ratio of anomaly contamination, we vary the anomaly percentage con-
taminating the training data. We prepare four training subsets, containing 0%,
5%, 10%, and 15% of outliers. These anomalies are selected randomly from all
NSL-KDD anomalous training instances. Then, we rescale numerical features to
be in the range [0,1], using the min-max normalization method, and categorical
features are one-hot encoded.

MedBIoT Dataset The MedBIoT dataset [10] is a recent public dataset that
contains the network traffic collected from a large network containing 83 real
and emulated IoT devices. These devices belong to four categories: switches,
light bulbs, locks, and fans. To generate malicious traffic, the authors executed
three prominent malware attacks: Mirai, Bashlite, Torii attacks, and labeled the
collected training data accordingly. In overall, 17 million network packets were
collected: 30% of this traffic is anomalous and the remaining 70% is benign.
61 flow-based features are extracted from the traffic, e.g., flow duration, number
and length of packets per flow. A detailed description of each extracted feature is
available in [2]. We randomly split the benign data into 60% for the training, 20%
for the validation, and 20% for testing. Similarly to NSL-KDD experiments, we
prepare four training datasets with different contamination ratios 0%, 5%, 10%,
and 15%. Finally, categorical features are encoded using Count Encoder and
numerical features are normalized using the Min-Max normalization method.

5.2 Competing Methods

We compare our approach, GRAnD, against unsupervised AD methods fre-
quently used in the literature: OCSVM with a Gaussian kernel, Isolation Forest
(IF), vanilla VAE, vanilla Planar Flow (vanilla PF), Deep Autoencoding Gaus-
sian Mixture Model (DAGMM) [24], and RVAE [3]. In line with prior works,
performances are assessed using the Area Under the Curve of the Receiver Op-
erating Characteristics (AUROC).

5.3 Training Parameter Settings

In all experiments, we use the standard Feedforward Neural Network (FNN)
architectures for all autoencoders. In NSL-KDD experiments, the autoencoders
are composed of a 3-layer MLP with 122-8-122 units. In MedBIoT experiments,
the autoencoders are a 5-layer MLP with 61-32-16-32-61 units. All latent layers
are followed by ReLU activation function. The last layer of the decoder is followed
by a sigmoid function. We use an adaptive learning rate: initially, we use a
learning rate of 0.001, which is divided by two if the training loss does not
decrease after 20 consecutive epochs. We stop the training when the learning
rate is lower than 10−6 or the number of epochs becomes higher than 500 epochs.
We use a batch size of 256 in all experiments. We initialize model parameters
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randomly. To limit the impact of random parameter initialization, we repeat
each experiment five times and average the results over these five runs.

Our approach comprises three specific hyperparameters: the rejection param-
eter α that controls the initial threshold u, the risk parameter q, and the margin
m. In all experiments, q is fixed to 0.001, α to 1.5, and m to 100. We conduct a
sensitivity analysis experiment in Section 5.5, to assess our approach robustness
regarding the hyperparameters. We use grid search to select competing meth-
ods optimal hyperparameters, which maximize their AUROC on the validation
subset. The experiments were run on a laptop equipped with a 12-core Intel
i7-9850H CPU clocked at 2.6GHz and with NVIDIA Quadro P2000 GPU.

5.4 Experimental Results and Discussion

NSL-KDD Experimental Results We show in Figure 3 the results of the
comparison between GRAnD and other competing methods on the NSL-KDD.
When the training data are contaminated with anomalies, our approach signif-
icantly outperforms competing methods. While the performance of competing
methods decreases with higher pollution ratios γp, our approach is more stable,
with an average AUROC around 94% and very little deviation, for the three con-
tamination ratios 5%, 10%, and 15%. These results mainly highlight the benefit
of the robust rejection strategy, where no prior knowledge about the outlier ratio
is required in advance.

When the training data are anomaly-free, GRAnD performance slightly de-
grades, with an AUROC of 92.6% with a standard deviation of 0.8%. This obser-
vation can be explained by the fact that GRAnD leverages training outliers to
learn a robust projection, where inliers are well reconstructed, while outliers are
poorly reconstructed. When training data do not contain anomalies, GRAnD-PF
and GRAnD-VAE performances are very similar to vanilla-PF and vanilla-VAE,
respectively. Despite this slight increase, GRAnD remains very competitive, with
around 6% points better AUROC than IF. Finally, for all contamination ratios,
GRAnD-PF slightly outperforms GRAnD-VAE.

MedBIoT Experimental Results We present the MedBIoT results in Figure
4. As mentioned previously, we train an anomaly detector for each device type.
We obtain similar results for the four device types. Due to space constraints,
we report the most representative results in Figure 4. For the four device types,
and for all contamination ratios, GRAnD-PF, GRAnD-VAE, and RVAE outper-
form other anomaly detectors, with an AUROC of 99.9 ± 0.1%. In particular,
we highlight the robustness of our contribution compared to vanilla-VAE and
vanilla-PF. While the latter performances are considerably impacted when the
contamination ratio is higher than 10%, GRAnD yields stable results. For ex-
ample, for γp = 10%, GRAnD-PF and GRAnD-VAE exceed vanilla-VAE and
vanilla-PF AUROCs by 19% and 23%, on average. Consequently, the robustness
of GRAnD for IoT network traffic anomaly detection is validated on this dataset.
Although GRAnD and RVAE yield close results, we will show in the next section
that, unlike RVAE, GRAnD is robust to the hyperparameter selection.
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Fig. 3: NSL-KDD experimental results: comparison of AD methods based on
average AUROCs and deviations over five runs for multiple contamination ratios.
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Fig. 4: The MedBIoT experimental results, for the the device categories fan and
lock. We report the avgerage AUROC with the standard variation over five runs.

5.5 Sensitivity Analysis

As mentioned in numerous works in the anomaly detection community, it is ad-
vocated to develop robust anomaly detectors that do not depend on user-defined
parameters. The sensitivity to hyperparameters is problematic in unsupervised
AD, since outlier labels are scarce, and the selection of the optimal hyperparam-
eters is not guaranteed. We conduct further experiments to assess the sensitivity
of our approach regarding its hyperparameters. We train different models with
distinct hyperparameters to study the variation of the performance on the same
test subset. Due to space constraints, we report in Figure 5 the results of the
sensibility analysis of RVAE and GRAnD-PF on the MedBIoT dataset, with
γp = 10%.

In Figure 5a, we show RVAE performance for different β ∈ {0.0001, 0.001, 0.01,
0.1, 1}. Since GRAnD is defined using three hyperparameters, m, q, and α, we
run three experiments, where we only vary one hyperparameter and we keep the
remaining ones fixed. Figure 5a shows that RVAE is sensitive to the hyperpa-
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rameter β. For all device types, RVAE AUROC drastically decreases, when β
changes. In contrast, GRAnD-PF performance is not impacted by the variation
of its hyperparameters, and the AUROC is stable around 99.8± 0.1%.

0.
00

01

0.
00

1

0.
01 0.
1

1.
0

Beta

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AU
RO

C

fan
light
switch
lock

(a) RVAE sensitivity analysis

1.
0

1.
5

2.
0

alpha

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

AU
RO

C

fan
light
switch
lock

(b) GRAnD PF sensitivity analysis ac-
cording to α

0.
00

01

0.
00

1

0.
01 0.
1

Risk parameter q

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

AU
RO

C

fan
light
switch
lock

(c) GRAnD PF sensitivity analysis ac-
cording to q

10 50 10
0

10
00

m

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000
AU

RO
C

fan
light
switch
lock

(d) GRAnD PF sensitivity analysis ac-
cording to m

Fig. 5: The sensitivity analysis of RVAE and GRAnD PF on MedBIoT dataset.
We report the average AUROC with the standard variation over five runs.

6 Conclusion and Future Work

In this paper, we proposed GRAnD, a robust generative method for unsuper-
vised anomaly detection. Our approach uses Extreme Value Theory to filter out
outliers contaminating the data, and learns a robust representation, where in-
liers can be accurately reconstructed, while outlier reconstructions are corrupted.
Extensive experiments were conducted on benchmark datasets, and showed that
our approach outperforms classical anomaly detection methods, all the while
showing an outstanding robustness to hyperparameter selection. In the future,
we will extend GRAnD to detect anomalies in time-series and sequential data.
We will adapt our rejection strategy to detect contextual and collective sequen-
tial anomalies. Finally, since our contribution involves a minimal change to the
underlying model architecture, future studies could fruitfully explore other gen-
erative models, such as adversarial autoencoders and GANs.
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