N
N

N

HAL

open science

MRI field strength predicts Alzheimer’s disease: a case
example of bias in the ADNI data set

Elina Thibeau-Sutre, Baptiste Couvy-Duchesne, Didier Dormont, Olivier

Colliot, Ninon Burgos

» To cite this version:

Elina Thibeau-Sutre, Baptiste Couvy-Duchesne, Didier Dormont, Olivier Colliot, Ninon Burgos.
MRI field strength predicts Alzheimer’s disease:
set. ISBI 2022 - International Symposium on Biomedical Imaging, Mar 2022, Kolkata, India.

10.1109/1SBI152829.2022.9761504 . hal-03542213

HAL Id: hal-03542213
https://hal.science/hal-03542213

Submitted on 25 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

a case example of bias in the ADNI data


https://hal.science/hal-03542213
https://hal.archives-ouvertes.fr

MRI FIELD STRENGTH PREDICTS ALZHEIMER’S DISEASE:
A CASE EXAMPLE OF BIAS IN THE ADNI DATA SET

Elina Thibeau-Sutre'
Olivier Colliot"

Baptiste Couvy-Duchesne®?

Didier Dormont*?
Ninon Burgos!

ISorbonne Université, Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, AP-HP,
Hopital Pitié Salpétriere, Inria, Aramis project-team, Paris, France
2Institute for Molecular Biosciences, the University of Queensland, Brisbane, Australia
3 AP-HP, Hopital de la Pitié Salpétriere, Department of Neuroradiology, Paris, France

ABSTRACT

The Alzheimer’s Disease Neuroimaging Initiative (ADNI)
data set has been extensively used for the prediction of the
progression of prodromal patients to Alzheimer’s disease de-
mentia. However, the deep learning community is not always
aware of the biases that may contaminate neuroimaging data
sets, which may lead to flawed results. In this case example,
we demonstrated how ignoring the magnetic resonance (MR)
field strength can bias performance of deep learning predic-
tion when using MR images as input. Finally, we discussed
options to overcome this problem.

Index Terms— deep learning, neuroimaging, Alzheimer,
ADNI, bias

1. INTRODUCTION

Alzheimer’s disease (AD) is the most common form of de-
mentia worldwide: in 2016, it affected 43.8 millions people
[[L]. It causes a diversity of symptoms in patients, which sub-
stantially deteriorate their living conditions. One of the pro-
dromal symptom of AD is mild cognitive impairment (MCI),
although it is difficult to predict whether a patient with MCI
will develop AD. Understanding the risk of AD progression
would help clinicians organize more relevant clinical trials,
for example by selecting patients who are prone to convert
rapidly to AD.

This is one of the objectives of the Alzheimer’s Disease
Neuroimaging Initiative (ADNI), which is the most used
database for the study of AD. Indeed, many machine learn-
ing studies relied on this data set to differentiate MCI pa-
tients who will progress to dementia in a given time (pMCI),
from MCI patients who will stay stable during the same pe-
riod (sMCI) [2]. As deep learning methods have shown a
high performance potential for medical image analysis [3]],
particularly classification for computer-aided diagnosis and
prognosis, they became also used for this task.

ADNI is not a homogeneous cohort, being composed

of several waves/phases, ADNI-1, ADNI-GO, ADNI-2 and
ADNI-3, which used slightly different protocols. In particu-
lar, the 1.5 T magnetic resonance imaging (MRI) machines
were progressively phased out (replaced by 3 T MRI), and
recruitment targeted different MCI groups.

Moreover, several deep learning studies (including our
previous work) evaluating the evolution of MCI status mixed
the different cohorts of ADNI to create their population [4} 5}
6] or did not mention this issue and used ADNI as a homoge-
neous data set [[7, 8, 9 [10]. Here, we attempted to quantify
the bias that field strength could cause in deep learning stud-
ies, with two different experiments. First we trained a CNN
to predict the MRI field strength and showed it could signifi-
cantly predict SMCI vs pMCI. In a second part, we reused the
networks trained in our previous study [6] to show the exis-
tence of bias in some of our previously published results. The
main objective of this study is to raise awareness in the com-
munity about the necessity to identify and control for known
confounders, in order to report robust results.

2. MATERIALS

We included all recruitment phases of ADNI: ADNI-I,
ADNI-GO, ADNI-2 and ADNI-3 (data released before Jan-
uary 26, 2021). Some participants may be followed across
several phases, then they are not independent. Two diagnosis
groups were considered:

* pMCI: sessions of subjects who were diagnosed as MCI,
and progressed to AD during the 36 months following the
current visit;

* sMCI: sessions of subjects who were diagnosed as MCI,
and neither progress nor regress to AD during the 36
months following the current visit.

Table E] summarizes the demographics, clinical scores, MRI
field strength and distribution in ADNI cohorts of the par-
ticipants. We observe in this table that there is a difference
between sMCI and pMCI field strength distributions. The p-
value computed with a chi-square test between the classifica-



ADNI cohorts
Label | Subjects Sessions Age % Female @~ MMSE % 1.5T 1 GO 2 3
sMCI 266 1105  72.4(7.3) 40.0% 27917 331% | 8 61 114 3
pMCI 328 918 744(7.1)  414%  267(1.9) 61.6% | 193 11 111 13

Table 1: Summary of participant demographics, mini-mental state examination (MMSE) score, field strength and number of
sessions of ADNI cohorts at baseline. Values are presented as mean (standard deviation).

tion label and the field strength is significant (8.6 x 10712).
Then an algorithm learning the sSMCI vs pMCI classification
task may take advantage of the field strength distribution.

3. METHODS

3.1. Field strength classification task
3.1.1. MRI preprocessing

We used the N4ITK method [11] for bias field correction.
Then, T1-weighted MR images were linearly registered [12]
to the MNI space (ICBM 2009c nonlinear symmetric tem-
plate) and cropped to remove all rows and columns contain-
ing background voxels only. Finally we rescaled intensity be-
tween 0 and 1. All data management and preprocessing was
carried out using the Clinica software (github.com/aramis-
lab/clinica) [I13].

3.1.2. Data split

We considered all the ADNI phases (ADNI1, GO, 2 and 3),
which we split into training/validation and test sets. Our test
set consisted of 100 subjects chosen to be a representative
subset (according to age, sex and field strength distributions)
of each diagnostic class. We used the rest of the ADNI data
set as training/validation set. We trained the models using the
training/validation data set. Training and validation sets were
generated with a 5-fold cross-validation stratified according
to the field strength value (to ensure that the field strength
distribution is equivalent in all folds), which resulted in one
fold (20%) of the data for validation and the rest for train-
ing. As we used longitudinal data, all splits were performed
at the participant level to ensure no data leakage between the
training, validation or test sets.

3.1.3. CNN architecture & training - .5 Tvs 3 T

We trained the network to differentiate 1.5 T from 3 T MRI
by optimizing the cross-entropy loss during ten epochs. We
used the same architecture as in [[6]]. This CNN consists of five
convolutional blocks and three fully-connected layers. Each
convolutional block is sequentially made of one convolutional
layer, one batch normalization layer, one ReLU and one max
pooling layer.

The final model was the one that obtained the highest vali-
dation balanced accuracy during training. The balanced accu-
racy of the model was evaluated at the end of each epoch. Net-
work training and inference was performed with ClinicaDL
(github.com/aramis-lab/clinicaDL/) [14].

3.1.4. Evaluation procedure

After training to differentiate 1.5 T from 3 T MRI, the net-
work was applied to two binary classification tasks: 1.5 T
vs 3 T and sMCI vs pMCIL. We present in Section [4.1] the
mean balanced accuracy of the models applied to the test
set, followed by the five mean balanced accuracies of each
model obtained on a fold of the 5-fold cross-validation be-
tween squared brackets.

3.2. Quantifying bias in previously published results

In a previous article [6], we trained networks to differentiate
AD patients from cognitively normal (CN) participants and
sMCI from pMCI patients on the baseline sessions of the first
three phases of ADNI (ADNI-1, GO and 2), using MRI pre-
processed with the procedure described in section We
used different types of inputs by extracting sub-parts of the
MRI:
* image corresponds to the whole 3D MRI (this is the input
that was used in the previous section of this study),
« patch corresponds to 36 patches of size 50 voxels with
no overlapping covering the whole MRI,
* roi corresponds to two rectangular prisms encompassing
the left and right hippocampi.

We then used the following method: the balanced accu-
racy was evaluated separately for 1.5 T and 3 T images on
the test set. If these balanced accuracies are both lower than
the original one (on the whole test set) then results are bi-
ased towards the field strength. To evaluate the difference
between the balanced accuracy on the whole test or only one
field strength, we performed a paired t-test on the two series of
five folds for each experiment. If the differences in balanced
accuracy between the 1.5 T set and the whole set, and the
3 T set and the whole test are significant, and if the balanced
accuracies of the 1.5 T and 3 T sets are similar, then we can
conclude that the network partly learned the field strength. We
considered that the difference between two series was signif-
icant if the t-test comparing them resulted in a p-value lower
than 0.05.
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4. RESULTS

p-values
\ Input \ 15T 3T all [€))] 2) 3)
0.80[0.79, 0.84[0.79, 0.820.79,
image | 0.87,0.80, 0.82,0.84, 0.84,0.82, 0.21 0.21 0.21
0.75,0.81]  0.86,0.90]  0.80, 0.85]
0.86[0.85,  0.91[0.89, 0.89[0.86,
roi 0.86,0.88, 091,091, 0.88,090, | <0.01 <0.01 <0.01
0.88,0.86] 0.94,0.92] 0.91,0.89]
0.78 [0.76,  0.86[0.89, 0.81[0.82,
patch | 0.76,0.82, 0.86,0.86, 0.81,0.84, | <0.01 <0.01 <0.01
0.78,0.76]  0.83,0.83]  0.80,0.79]

Table 2: Comparison of balanced accuracies for the AD vs
CN task with deep learning methods obtained on 1.5 T, 3 T
and the combination of the two (all). P-values correspond to
the following paired t-tests: (1) 1.5 T vs all, (2) 3 T vs all, (3)
1.5Tvs3T.

p-values

[ Input | 15T 3T all (1) (2) 3)
0.63[0.61, 0.60[0.63, 0.68 [0.68,

image | 0.73,0.49, 0.62,0.51, 0.71,0.64, 0.16 < 0.01 0.27
0.69,0.66]  0.66,0.60]  0.73,0.67]
0.70[0.67,  0.70[0.74,  0.74[0.75,

roi 0.70,0.68,  0.64,0.74,  0.72,0.76, 0.02 0.03 0.82
0.72,0.72]1  0.70,0.70]  0.74,0.75]
0.56 [0.50, 0.58[0.68, 0.68[0.71,

patch | 0.51,0.60, 0.50,0.54, 0.64,0.64, 0.01 < 0.01 0.64
0.59,0.60]1 0.61,0.58] 0.71,0.69]

Table 3: Comparison of balanced accuracies of deep learning
methods for the sMCI vs pMCI task obtained on 1.5 T, 3 T
and the combination of the two (all). P-values correspond to
the following paired t-tests: (1) 1.5 T vs all, (2) 3 T vs all, (3)
1.5Tvs3T.

4.1. Field strength classification task

To assess whether there is a risk that a network learns the
field strength instead of the diagnosis status, we trained
CNNss to detect the field strength, i.e. 1.5 T vs 3 T, using the
T1-weighted MR images of sMCI and pMCI patients from
ADNI

The CNN perfectly learns to differentiate field strengths
in our population by obtaining a balanced accuracy of 0.98
[0.98, 0.96, 0.98, 0.98, 0.98]. Moreover, the direct application
of the networks to the sMCI vs pMClI led to a balanced accu-
racy higher than chance 0.65 [0.65, 0.65, 0.65, 0.64, 0.66]
and of similar value as the ones that could be obtained by net-
works trained on sSMCI vs pMCI (0.68 when using the whole
image as input, see Table [3). Then we checked whether our
previously published results were contaminated by this bias.

4.2. Quantifying bias in published results

We evaluated the presence of bias in our previous work [6].
Results are displayed in Tables [2] and [3] The original value
always lies between the values obtained for 1.5 T and 3 T
for AD vs CN, and we cannot conclude to the learning of the
field strength by the network with the p-values (though we
note that for roi and patch the results are much better on 3 T
images than 1.5 T images).

This is not the case for sMCI vs pMCI. Indeed, each time
the 1.5 T and 3 T results are not significantly different, but
they are both significantly different from the original values
(except for image where only the 3 T series is significantly
different from the original values). Then we observe a signif-
icant drop in balanced accuracies of 1.5 T and 3 T compared
to the original one for patch CNN (12 and 10 percent points).
The image and roi CNNs are also affected by this bias, but
not to the same extent, with drops of 5 and 8 percent points
for image and drops of 4 percent points for rei. We guess
that the patch experiments are more affected than image or
roi ones as in some patches at the edge of the brain no infor-
mation relevant to the diagnosis can be found, then the only
useful information is the field strength.

5. CONCLUSION

This study started from the observation that the sMCI/pMCI
status was associated with MRI field strength because of a
recruitment bias in ADNI. We showed that CNNs could suc-
cessfully learn to differentiate 1.5 T from 3 T MRI, and that
a field strength predictor would achieve a 65% balanced ac-
curacy in ADNI. We further observed that sMCI/pMCI pre-
dictors would learn the data structure, leading to inflated pre-
diction accuracy. Our case example demonstrates how field
strength acts as a confounder on sMCI vs pMCI results. We
showed that previous results (including a previous publication
from our group) reported inflated prediction accuracy of the
sMCI vs pMCI task. This could partly explain the low gen-
eralizability of the prediction onto other test sets, such as the
Australian Imaging, Biomarkers and Lifestyle (AIBL).

Beyond this specific example, bias may be present in other
studies or data sets, and may cause an overestimation of the
performance of machine learning algorithms. In addition to
the MRI field strength, several other confounders have also
been flagged in the neuroimaging literature. They include age
of the participants, sex, site, MRI machine, body size (e.g.
height, weight) or head motion. Recently, a large scale exam-
ination has suggested many possible confounders of structural
MRI studies [[15]. Importantly, the presence and effect of the
putative confounding factor are dependent on each data set
and trait/disorder of interest, and in some cases several con-
founding factors can contribute to prediction bias.

To avoid this pitfall we can only recommend future stud-
ies to more systematically take into account putative con-



founders. Several approaches may be used, such as the post-
hoc ones we implemented here, which consists in evaluating
prediction accuracy in subsets of the sample, or evaluating
generalizability of the prediction into specific subsets of par-
ticipants (e.g. into 1.5 T images). Another approach consists
in controlling for known confounders when evaluating the
prediction accuracy. For example, one may use a general-
ized linear regression framework, with confounders fitted
as covariates. On the other hand, confounders may also be
dealt with during the training of algorithms. For example one
could over-sample or put more weight on rare samples (here
SMCI patients with 1.5 T images and pMCI patients with 3 T
images). Finally, even though it is tempting to use as much
data as possible, the most reliable solution could be to train
networks with images of the same field strength.
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