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Introduction

Expectation-Maximization (EM) [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF][START_REF] Mclachlan | The EM Algorithm And Extensions[END_REF] and Minorization-Maximization (MM) algorithms [START_REF] Lange | MM Optimization Algorithms[END_REF] are important classes of optimization procedures that allow for the construction of estimation routines for many data analytic models, including many finite mixture models. The benefit of such algorithms comes from the use of computationally simple surrogates in place of difficult optimization objectives.

Driven by high volume of data and streamed nature of data acquisition, there has been a rapid development of online and mini-batch algorithms that can be used to estimate models without requiring data to be accessed all at once. Online and mini-batch versions of EM algorithms can be constructed via the classic Stochastic Approximation framework (see, e.g., [START_REF] Borkar | Stochastic Approximation: A Dynamical Systems Viewpoint[END_REF][START_REF] Kushner | Stochastic Approximation and Recursive Algorithms and Applications[END_REF]) and examples of such algorithms include those of [START_REF] Cappé | On-line expectation-maximization algorithm for latent data models[END_REF][START_REF] Fort | Fast incremental expectation maximization for finite-sum optimization: nonasymptotic convergence[END_REF][START_REF] Fort | A stochastic path-integrated differential estimator expectation maximization algorithm[END_REF][START_REF] Karimi | Non-asymptotic analysis of biased stochastic approximation scheme[END_REF][START_REF] Karimi | On the global convergence of (fast) incremental expectation maximization methods[END_REF][START_REF] Kuhn | Properties of the stochastic approximation EM alpgorithm with mini-batch sampling[END_REF][START_REF] Nguyen | Mini-batch learning of exponential family finite mixture models[END_REF]. Via numerical assessments, many of the algorithms above have been demonstrated to be effective in mixture model estimation problems. Online and mini-batch versions of MM algorithms on the other hand have largely been constructed following convex optimizations methods (see, e.g., [START_REF] Hazan | Introduction to Online Convex Optimization[END_REF][START_REF] Lan | First-order and Stochastic Optimization Methods for Machine Learning[END_REF][START_REF] Shalev-Shwartz | Online learning and online convex optimization[END_REF]) and examples of such algorithms include those of [START_REF] Cui | Modern Nonconvex nondifferentiable optimization[END_REF][START_REF] Mairal | Stochastic majorization-minimization algorithm for large-scale optimization[END_REF][START_REF] Mokhtari | High-dimensional nonconvex stochastic optimization by doubly stochastic successive convex approximation[END_REF][START_REF] Razaviyayn | A stochastic successive minimization method for nonsmooth nonconvex optimization with applications to transceiver design in wireless communication networks[END_REF].

In this work, we provide a stochastic approximation construction of an online MM algorithm using the framework of [START_REF] Cappé | On-line expectation-maximization algorithm for latent data models[END_REF]. The main advantage of our approach is that we do not make convexity assumptions and instead replace them with oracle assumptions regarding the surrogates. Compared to the online EM algorithm of [START_REF] Cappé | On-line expectation-maximization algorithm for latent data models[END_REF] that this work is based upon, the Online MM algorithm extends the approach to allow for surrogate functions that do not require latent variable stochastic representations, which is especially useful for constructing estimation algorithms for mixture of experts (MoE) models (see, e.g. [START_REF] Nguyen | Laplace mixture of linear experts[END_REF]). We demonstrate the Online MM algorithm via an application to the MoE-related logistic regression problem and compare it to competing methods.

Notations. By convention, vectors are column vectors. For a matrix 𝐴, 𝐴 ⊤ denotes its transpose. The Euclidean scalar product is denoted by ⟨𝑎, 𝑏⟩. For a continuously differentiable function 𝜃 ↦ → ℎ(𝜃) (resp. twice continuously differentiable), ∇ 𝜃 ℎ (or simply ∇ when there is no confusion) is its gradient (resp. ∇ 2 𝜃 𝜃 is its Hessian).

The online MM algorithm

Consider the optimization problem arg max

𝜃 ∈T E [ 𝑓 (𝜃; 𝑋)] , (1) 
where T is a measurable open subset of R 𝑝 , X is a topological space endowed with its Borel sigma-field, 𝑓 : T × X → R is a measurable function and 𝑋 is a X-valued random variable on the probability space (Ω, F , P). In this paper, we are interested in the setting when the expectation E [ 𝑓 (𝜃; 𝑋)] has no closed form, and the optimization problem is solved by an MM-based algorithm. Following the terminology of [START_REF] Lange | MM Optimization Algorithms[END_REF], we say that 𝑔 : T×X×T, (𝜃, 𝑥, 𝜏) ↦ → 𝑔 (𝜃, 𝑥; 𝜏) is a minorizer of 𝑓 , if for any 𝜏 ∈ T and for any (𝜃, 𝑥) ∈ T × X, it holds that 𝑓 (𝜃; 𝑥) -𝑓 (𝜏; 𝑥) ≥ 𝑔(𝜃, 𝑥; 𝜏) -𝑔(𝜏, 𝑥; 𝜏).
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In our work, we consider the case when the minorizer function 𝑔 has the following structure:

A1 The minorizer surrogate 𝑔 is of the form:

𝑔 (𝜃, 𝑥; 𝜏) = -𝜓 (𝜃) + S(𝜏; 𝑥), 𝜙(𝜃) ,

where 𝜓 : T → R, 𝜙 : T → R 𝑑 and S : T × X → R 𝑑 are measurable functions.

In addition, 𝜙 and 𝜓 are continuously differentiable on T.

We also make the following assumptions:

A2 There exists a measurable open and convex set S ⊆ R 𝑑 such that for any 𝑠 ∈ S, 𝛾 ∈ [0, 1) and any (𝜏, 𝑥) ∈ T × X:

𝑠 + 𝛾 S(𝜏; 𝑥) -𝑠 ∈ S.

A3

The expectation E[ S(𝜃; 𝑋)] exists, is in S, and is finite whatever 𝜃 ∈ T but it may have no closed form. Online independent oracles {𝑋 𝑛 , 𝑛 ≥ 0}, the same distribution as 𝑋, are available. A4 For any 𝑠 ∈ S, there exists a unique root to 𝜃 ↦ → -∇𝜓(𝜃) + ∇𝜙(𝜃) ⊤ 𝑠, which is the unique maximum on T of the function 𝜃 ↦ → -𝜓(𝜃) + ⟨𝑠, 𝜙(𝜃)⟩. This root is denoted by θ (𝑠).

Seen as a function of 𝜃, 𝑔(•, 𝑥; 𝜏) is the sum of two functions: -𝜓 and a linear combination of the components of 𝜙 = (𝜙 1 , . . . , 𝜙 𝑑 ). Assumption A1 implies that the minorizer surrogate is in a functional space spanned by these (𝑑 + 1) functions. By (2) and A1-A3, it follows that

E [ 𝑓 (𝜃; 𝑋)] -E [ 𝑓 (𝜏; 𝑋)] ≥ 𝜓(𝜏) -𝜓(𝜃) + E S(𝜏; 𝑋) , 𝜙(𝜃) -𝜙(𝜏) , (4) 
thus providing a minorizer function for the objective function

𝜃 ↦ → E [ 𝑓 (𝜃; 𝑋)].
By A4, the usual MM algorithm would define iteratively the sequence 𝜃 𝑛+1 = θ E S(𝜃 𝑛 ; 𝑋) . Since the expectation may not have closed form but infinite datasets are available (see A3), we propose a novel Online MM algorithm. It defines the sequence {𝑠 𝑛 , 𝑛 ≥ 0} as follows: given positive step sizes {𝛾 𝑛+1 , 𝑛 ≥ 1} in (0, 1) and an initial value 𝑠 0 ∈ S, set for 𝑛 ≥ 0:

𝑠 𝑛+1 = 𝑠 𝑛 + 𝛾 𝑛+1 S θ (𝑠 𝑛 ); 𝑋 𝑛+1 -𝑠 𝑛 . (5) 
The update mechanism ( 5) is a Stochastic Approximation iteration, which defines an S-valued sequence (see A2). It consists of the construction of a sequence of minorizer functions through the definition of their parameter 𝑠 𝑛 in the functional space spanned by -𝜓, 𝜙 1 , . . . , 𝜙 𝑑 . If our algorithm (5) converges, any limiting point 𝑠 ★ satisfies E S( θ (𝑠 ★ ); 𝑋) = 𝑠 ★ . Hence, our algorithm is designed to approximate the intractable expectation, evaluated at θ (𝑠 ★ ), where 𝑠 ★ satisfies a fixed point equation. The following lemma establishes the relation between the limiting points of (5) and the optimization problem (1) at hand. Namely, it implies that any limiting value 𝑠 ★ provides a stationary point 𝜃 ★ := θ (𝑠 ★ ) of the objective function E [ 𝑓 (𝜃; 𝑋)] (i.e., 𝜃 ★ is a root of the derivative of the objective function). The proof follows the technique of [START_REF] Cappé | On-line expectation-maximization algorithm for latent data models[END_REF]. Set

h(𝑠) := E S θ (𝑠) ; 𝑋 -𝑠, Γ := {𝑠 ∈ S : h(𝑠) = 0}.
Lemma 1 Assume that 𝜃 ↦ → E [ 𝑓 (𝜃; 𝑋)] is continuously differentiable on T and denote by L the set of its stationary points.

If 𝑠 ★ ∈ Γ, then θ (𝑠 ★ ) ∈ L. Conversely, if 𝜃 ★ ∈ L, then 𝑠 ★ := E S (𝜃 ★ ; 𝑋) ∈ Γ. Proof A4 implies that -∇𝜓( θ (𝑠)) + ∇𝜙( θ (𝑠)) ⊤ 𝑠 = 0, 𝑠 ∈ S. (6) 
Use ( 2) and A1, and apply the expectation w.r.t. 𝑋 (under A3). This yields (4), which is available for any 𝜃, 𝜏 ∈ T. This inequality provides a minorizer function for 𝜃 ↦ → E [ 𝑓 (𝜃; 𝑋)]: the difference is nonnegative and minimal (i.e. equal to zero) at 𝜃 = 𝜏. Under the assumptions and A1, this yields

∇E [ 𝑓 (•; 𝑋)] | 𝜃=𝜏 + ∇𝜓(𝜏) -∇𝜙(𝜏) ⊤ E S(𝜏; 𝑋) = 0. ( 7 
)
Let 𝑠 ★ ∈ Γ and apply [START_REF] Fort | Fast incremental expectation maximization for finite-sum optimization: nonasymptotic convergence[END_REF] with 𝜏 ← θ (𝑠 ★ ). It then follows that

∇E [ 𝑓 (•; 𝑋)] | 𝜃= θ (𝑠 ★ ) + ∇𝜓( θ (𝑠 ★ )) -∇𝜙( θ (𝑠 ★ )) ⊤ 𝑠 ★ = 0,
which implies θ (𝑠 ★ ) ∈ L by [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF]. Conversely, if 𝜃 ★ ∈ L, then by ( 7), we have By applying the results of [START_REF] Delyon | Convergence of a stochastic approximation version of the EM algorithm[END_REF] regarding the asymptotic convergence of Stochastic Approximation algorithms, additional regularity assumptions on 𝜙, 𝜓, θ imply that the algorithm (5) possesses a continuously differentiable Lyapunov function 𝑉 defined on S and given by 𝑉 : 𝑠 ↦ → E 𝑓 ( θ (𝑠); 𝑋) , satisfying ⟨∇𝑉 (𝑠), h(𝑠)⟩ ≤ 0, where the inequality is strict outside the set Γ (see [START_REF] Cappé | On-line expectation-maximization algorithm for latent data models[END_REF]Prop. 2]). In addition to Lemma 1, assumptions on the distribution of 𝑋 and on the stability of the sequence {𝑠 𝑛 , 𝑛 ≥ 0} are provided in [5, Thm. 2 and Lem. 1], which, combined with the usual conditions on the step sizes: 𝑛 𝛾 𝑛 = +∞ and 𝑛 𝛾 2 𝑛 < ∞, yields the almost-sure convergence of the sequence {𝑠 𝑛 , 𝑛 ≥ 0} to the set Γ, and the almost-sure convergence of the sequence { θ (𝑠 𝑛 ), 𝑛 ≥ 0} to the set L of the stationary points of the objective function 𝜃 ↦ → E [ 𝑓 (𝜃; 𝑋)]. Due to the limited space, the exact statement of these convergence results for our Online MM framework is omitted.

∇𝜓(𝜃 ★ ) -∇𝜙(𝜃 ★ ) ⊤ E S(𝜃 ★ ; 𝑋) = 0,

Example application

As an example, we consider the logistic regression problem, where we solve ( 1 With

S := {(𝑠 1 , vec (𝑆 2 )) : 𝑠 1 ∈ R 𝑝 and 𝑆 2 ∈ R 𝑝× 𝑝 is symmetric positive definite} , it follows that θ (𝑠) := -(2𝑆 2 ) -1 𝑠 1 . Online MM. Let 𝑠 𝑛 = 𝑠 1,𝑛 , 𝑆 2,𝑛 ∈ S. The corresponding Online MM recursion is then 𝑠 1,𝑛+1 = 𝑠 1,𝑛 + 𝛾 𝑛+1 𝑌 𝑛+1 -𝜆 θ (𝑠 𝑛 ) ⊤ 𝑊 𝑛+1 𝑊 𝑛+1 + 1 4 𝑊 𝑛+1 𝑊 ⊤ 𝑛+1 θ (𝑠 𝑛 ) -𝑠 1,𝑛 (8) 
𝑆 2,𝑛+1 = 𝑆 2,𝑛 + 𝛾 𝑛+1 -

1 8 𝑊 𝑛+1 𝑊 ⊤ 𝑛+1 -𝑆 2,𝑛 , (9) 
where {(𝑌 𝑛+1 , 𝑊 𝑛+1 ), 𝑛 ≥ 0} are i.i.d. pairs with the same distribution as 𝑋 = (𝑌 , 𝑊).

Parameter estimates can then be deduced by setting 𝜃 𝑛+1 := θ (𝑠 𝑛+1 ).

For comparison, we also consider two Stochastic Approximation schemes directly on 𝜃 in the parameter-space: a stochastic gradient (SG) algorithm and a Stochastic Newton Raphson (SNR) algorithm.

Stochastic gradient. SG requires the gradient of 𝑓 (𝜃; 𝑥) with respect to 𝜃: ∇ 𝑓 (𝜃; 𝑥) = {𝑦 -𝜆(𝜃 ⊤ 𝑤)} 𝑤, which leads to the recursion

θ𝑛+1 = θ𝑛 + 𝛾 𝑛+1 𝑌 𝑛+1 -𝜆( θ⊤ 𝑛 𝑊 𝑛+1 ) 𝑊 𝑛+1 . (10) 
Stochastic Newton-Raphson. In addition SNR requires the Hessian with respect to 𝜃, given by

∇ 2 𝜃 𝜃 𝑓 (𝜃; 𝑥) = -𝜆(𝜃 ⊤ 𝑤) {1 -𝜆(𝜃 ⊤ 𝑤)} 𝑤𝑤 ⊤ . The SNR recursion is then Â𝑛+1 = Â𝑛 + 𝛾 𝑛+1 ∇ 2 𝜃 𝜃 𝑓 ( θ𝑛 ; 𝑋 𝑛+1 ) -Â𝑛 (11) 
𝐺 𝑛+1 = -Â-1 𝑛+1 (12) θ𝑛+1 = θ𝑛 + 𝛾 𝑛+1 𝐺 𝑛+1 𝑌 𝑛+1 -𝜆( θ⊤ 𝑛 𝑊 𝑛+1 ) 𝑊 𝑛+1 . (13) 
Equation ( 12) assumes that Â𝑛+1 is invertible. In this logistic example, we can guarantee this by choosing Â0 to be invertible. Otherwise Â𝑛 is invertible after some 𝑛 sufficiently large, with probability one. Again in the logistic case, observe that, from the structure of ∇ 2 𝜃 𝜃 𝑓 and from the Woodbury matrix identity, Equations [START_REF] Karimi | On the global convergence of (fast) incremental expectation maximization methods[END_REF][START_REF] Kuhn | Properties of the stochastic approximation EM alpgorithm with mini-batch sampling[END_REF] can be replaced by

𝐺 𝑛+1 = 𝐺 𝑛 1 -𝛾 𝑛+1 - 𝛾 𝑛+1 1 -𝛾 𝑛+1 𝑎 𝑛+1 𝐺 𝑛 𝑊 𝑛+1 𝑊 ⊤ 𝑛+1 𝐺 𝑛 (1 -𝛾 𝑛+1 ) + 𝛾 𝑛+1 𝑎 𝑛+1 𝑊 ⊤ 𝑛+1 𝐺 𝑛 𝑊 𝑛+1
.

where

𝑎 𝑛+1 := 𝜆( θ⊤ 𝑛 𝑊 𝑛+1 ) 1 -𝜆( θ⊤ 𝑛 𝑊 𝑛+1
) , It appears that the Online MM recursion in the 𝑠-space defined by ( 8) and ( 9) is equivalent to the SNR recursion above (i.e., ( 11)-( 13)) when the Hessian ∇ 2 𝜃 𝜃 𝑓 (𝜃; 𝑥) is replaced by the lower bound -1 4 𝑤𝑤 ⊤ . This observation holds whenever 𝑔 is quadratic in (𝜃 -𝜏).

Polyak averaging. In practice, for Online MM, SG, and SNR recursions, it is common to consider Polyak averaging [START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF], starting from some iteration 𝑛 0 , chosen such as to avoid the initial highly volatile estimates. Set θ 𝐴 𝑛 0 := 0, and for 𝑛 ≥ 𝑛 0 ,

θ 𝐴 𝑛+1 = θ 𝐴 𝑛 + 𝛼 𝑛-𝑛 0 +1 ( θ𝑛 -θ 𝐴 𝑛 ), (14) 
where 𝛼 𝑛 is usually set to 𝛼 𝑛 := 𝑛 -1 . Numerical illustration. We now demonstrate the performance of the Online MM algorithm for logistic regression -defined by ( 5) and the derivations above. To do so, a sequence {𝑋 𝑖 = (𝑌 𝑖 , 𝑊 𝑖 ) , 𝑖 ∈ {1, . . . , 𝑛 max }} of 𝑛 max = 10 5 i.i.d. replicates of 𝑋 = (𝑌 , 𝑊) is simulated: 𝑊 = (1, 𝑈), where 𝑈 ∼ N (0, 1) and [𝑌 |𝑊 = 𝑤] ∼ Ber 𝜆 𝜃 ⊤ 0 𝑤 , where 𝜃 0 = (3, -3). Online MM is run using the learning rate 𝛾 𝑛 = 𝑛 -0.6 , as suggested in [START_REF] Cappé | On-line expectation-maximization algorithm for latent data models[END_REF]. The algorithm is initialized with θ0 = (0, 0) and 𝑠 0 = Remark 2 Via the minorization approach of [START_REF] Bohning | Multinomial logistic regression algorithm[END_REF] (as used in Section 3) and the mixture representation from [START_REF] Nguyen | Mini-batch learning of exponential family finite mixture models[END_REF], we can construct an Online MM algorithm for MoE models, analogous to the MM algorithm of [START_REF] Nguyen | Laplace mixture of linear experts[END_REF]. We shall provide exposition on such an algorithm in future work.

  which, by A3 and A4, implies that 𝜃 ★ = θ E S(𝜃 ★ ; 𝑋) = θ (𝑠 ★ ). By definition of 𝑠 ★ , this yields 𝑠 ★ = E S θ (𝑠 ★ ); 𝑋 ; i.e. 𝑠 ★ ∈ Γ. □

  ) with 𝑓 (𝜃; 𝑥) := 𝑦𝑤 ⊤ 𝜃log 1 + exp 𝑤 ⊤ 𝜃 , 𝑥 := (𝑦, 𝑤), where 𝑦 ∈ {0, 1}, 𝑤 ∈ R 𝑝 , and 𝜃 ∈ T := R 𝑝 . Here, we assume that 𝑋 = (𝑌 , 𝑊) is a random variable such that E [ 𝑓 (𝜃; 𝑋)] exists for each 𝜃. Denote by 𝜆 the standard logistic function 𝜆 (•) := exp {•} /(1+exp {•}). Following [1], (2) and A1 are verified by taking 𝜓 (𝜃) := 0, 𝜙 (𝜃) := 𝜃 vec (𝜃𝜃 ⊤ ) , S (𝜏; 𝑥) = s1 (𝜏; 𝑥) vec S2 (𝜏; 𝑥) where s1 (𝜏; 𝑥) := 𝑦 -𝜆 𝜏 ⊤ 𝑤 𝑤 + 1 4 𝑤𝑤 ⊤ 𝜏, S2 (𝜏; 𝑥) = -

2 𝑖=1S

 2 θ0 ; 𝑋 𝑖 /2. For comparison, we also show, on Figure 1, the SG, SNR estimates and their Polyak averaged values in 𝜃-space. As is usually recommended with Stochastic Approximation, the first few volatile estimations are discarded. Similarly, for Polyak averaging, we set 𝑛 0 = 10 3 . As expected, we observe that the Online MM and the SNR recursions are very close but with the SNR showing more variability. Their comparison after Polyak averaging shows very close trajectories while the SG trajectory is clearly different and shows more bias. Final estimates [Polyak averaged estimates] of 𝜃 0 from the SG, SNR, and Online MM algorithms are respectively: (2.67, -2.66) [(2.51, -2.48)], (3.03, -3.03) [(2.99, -3.03)], and (3.01, -3.03) [(2.98, -3.02)], which we can compare to the batch maximum likelihood estimate (3.00, -3.05) (obtained via the glm function in R). Notice the remarkable closeness between the online MM and batch estimates.

Fig. 1 Remark 1

 11 Fig. 1 Logistic regression example: the first row shows Online MM (black), SG (blue), and SNR (red) recursions. The second row shows the respective Polyak averaging recursions. The estimates the first 𝜃 (first column) and the second (second column) components of 𝜃 are plotted started from 𝑛 = 10 3 for readability.
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