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An online Minorization–Maximization
algorithm

Hien Duy Nguyen, Florence Forbes, Gersende Fort, and Olivier Cappé

Abstract Modern statistical and machine learning settings often involve high data
volume and data streaming, which require the development of online estimation
algorithms. The online Expectation–Maximization (EM) algorithm extends the pop-
ular EM algorithm to this setting, via a stochastic approximation approach. We show
that an online version of theMinorization–Maximization (MM) algorithm, which in-
cludes the online EM algorithm as a special case, can also be constructed in a similar
manner. We demonstrate our approach via an application to the logistic regression
problem and compare it to existing methods.

Keywords: Expectation–Maximization,Minorization–Maximization, parameter es-
timation, online algorithms, Stochastic Approximation

1 Introduction

Expectation–Maximization (EM) [6, 17] and Minorization–Maximization (MM)
algorithms [15] are important classes of optimization procedures that allow for
the construction of estimation routines for many data analytic models, including
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many finite mixture models. The benefit of such algorithms comes from the use of
computationally simple surrogates in place of difficult optimization objectives.
Driven by high volume of data and streamed nature of data acquisition, there

has been a rapid development of online and mini-batch algorithms that can be used
to estimate models without requiring data to be accessed all at once. Online and
mini-batch versions of EM algorithms can be constructed via the classic Stochastic
Approximation framework (see, e.g., [2, 13]) and examples of such algorithms
include those of [3, 7, 8, 10, 11, 12, 19]. Via numerical assessments, many of the
algorithms above have been demonstrated to be effective inmixturemodel estimation
problems. Online and mini-batch versions of MM algorithms on the other hand
have largely been constructed following convex optimizations methods (see, e.g.,
[9, 14, 23]) and examples of such algorithms include those of [4, 16, 18, 22].
In this work, we provide a stochastic approximation construction of an online

MM algorithm using the framework of [3]. The main advantage of our approach is
that we do not make convexity assumptions and instead replace them with oracle
assumptions regarding the surrogates. Compared to the online EM algorithm of [3]
that this work is based upon, the Online MM algorithm extends the approach to allow
for surrogate functions that do not require latent variable stochastic representations,
which is especially useful for constructing estimation algorithms for mixture of
experts (MoE) models (see, e.g. [20]). We demonstrate the Online MM algorithm
via an application to the MoE-related logistic regression problem and compare it to
competing methods.

Notations.By convention, vectors are column vectors. For amatrix 𝐴, 𝐴⊤ denotes
its transpose. The Euclidean scalar product is denoted by ⟨𝑎, 𝑏⟩. For a continuously
differentiable function 𝜃 ↦→ ℎ(𝜃) (resp. twice continuously differentiable), ∇𝜃ℎ (or
simply ∇ when there is no confusion) is its gradient (resp. ∇2

𝜃 𝜃
is its Hessian).

2 The online MM algorithm

Consider the optimization problem

arg max
𝜃 ∈T

E [ 𝑓 (𝜃; 𝑋)] , (1)

where T is a measurable open subset of R𝑝 , X is a topological space endowed
with its Borel sigma-field, 𝑓 : T × X → R is a measurable function and 𝑋 is a
X-valued random variable on the probability space (Ω, F , P). In this paper, we are
interested in the setting when the expectation E [ 𝑓 (𝜃; 𝑋)] has no closed form, and
the optimization problem is solved by an MM-based algorithm.
Following the terminology of [15], we say that 𝑔 : T×X×T, (𝜃, 𝑥, 𝜏) ↦→ 𝑔 (𝜃, 𝑥; 𝜏)

is a minorizer of 𝑓 , if for any 𝜏 ∈ T and for any (𝜃, 𝑥) ∈ T × X, it holds that

𝑓 (𝜃; 𝑥) − 𝑓 (𝜏; 𝑥) ≥ 𝑔(𝜃, 𝑥; 𝜏) − 𝑔(𝜏, 𝑥; 𝜏). (2)
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In our work, we consider the case when the minorizer function 𝑔 has the following
structure:

A1 The minorizer surrogate 𝑔 is of the form:

𝑔 (𝜃, 𝑥; 𝜏) = −𝜓 (𝜃) +
〈
𝑆(𝜏; 𝑥), 𝜙(𝜃)

〉
, (3)

where 𝜓 : T → R, 𝜙 : T → R𝑑 and 𝑆 : T × X → R𝑑 are measurable functions.
In addition, 𝜙 and 𝜓 are continuously differentiable on T.

We also make the following assumptions:

A2 There exists a measurable open and convex set S ⊆ R𝑑 such that for any 𝑠 ∈ S,
𝛾 ∈ [0, 1) and any (𝜏, 𝑥) ∈ T × X:

𝑠 + 𝛾
{
𝑆(𝜏; 𝑥) − 𝑠

}
∈ S.

A3 The expectation E[𝑆(𝜃; 𝑋)] exists, is in S, and is finite whatever 𝜃 ∈ T but it
may have no closed form. Online independent oracles {𝑋𝑛, 𝑛 ≥ 0}, with the same
distribution as 𝑋 , are available.

A4 For any 𝑠 ∈ S, there exists a unique root to 𝜃 ↦→ −∇𝜓(𝜃) + ∇𝜙(𝜃)⊤𝑠, which
is the unique maximum on T of the function 𝜃 ↦→ −𝜓(𝜃) + ⟨𝑠, 𝜙(𝜃)⟩. This root is
denoted by 𝜃 (𝑠).

Seen as a function of 𝜃, 𝑔(·, 𝑥; 𝜏) is the sum of two functions: −𝜓 and a linear
combination of the components of 𝜙 = (𝜙1, . . . , 𝜙𝑑). Assumption A1 implies that
the minorizer surrogate is in a functional space spanned by these (𝑑 + 1) functions.
By (2) and A1–A3, it follows that

E [ 𝑓 (𝜃; 𝑋)] − E [ 𝑓 (𝜏; 𝑋)] ≥ 𝜓(𝜏) − 𝜓(𝜃) +
〈
E
[
𝑆(𝜏; 𝑋)

]
, 𝜙(𝜃) − 𝜙(𝜏)

〉
, (4)

thus providing a minorizer function for the objective function 𝜃 ↦→ E [ 𝑓 (𝜃; 𝑋)].
By A4, the usual MM algorithm would define iteratively the sequence 𝜃𝑛+1 =

𝜃
(
E
[
𝑆(𝜃𝑛; 𝑋)

] )
. Since the expectationmay not have closed form but infinite datasets

are available (see A3), we propose a novel Online MM algorithm. It defines the
sequence {𝑠𝑛, 𝑛 ≥ 0} as follows: given positive step sizes {𝛾𝑛+1, 𝑛 ≥ 1} in (0, 1) and
an initial value 𝑠0 ∈ S, set for 𝑛 ≥ 0:

𝑠𝑛+1 = 𝑠𝑛 + 𝛾𝑛+1
{
𝑆
(
𝜃 (𝑠𝑛); 𝑋𝑛+1

)
− 𝑠𝑛

}
. (5)

The update mechanism (5) is a Stochastic Approximation iteration, which defines
an S-valued sequence (see A2). It consists of the construction of a sequence of
minorizer functions through the definition of their parameter 𝑠𝑛 in the functional
space spanned by −𝜓, 𝜙1, . . . , 𝜙𝑑 .
If our algorithm (5) converges, any limiting point 𝑠★ satisfies E

[
𝑆(𝜃 (𝑠★); 𝑋)

]
=

𝑠★. Hence, our algorithm is designed to approximate the intractable expectation,
evaluated at 𝜃 (𝑠★), where 𝑠★ satisfies a fixed point equation. The following lemma
establishes the relation between the limiting points of (5) and the optimization prob-
lem (1) at hand. Namely, it implies that any limiting value 𝑠★ provides a stationary
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point 𝜃★ := 𝜃 (𝑠★) of the objective function E [ 𝑓 (𝜃; 𝑋)] (i.e., 𝜃★ is a root of the
derivative of the objective function). The proof follows the technique of [3]. Set

h(𝑠) := E
[
𝑆
(
𝜃 (𝑠) ; 𝑋

) ]
− 𝑠, Γ := {𝑠 ∈ S : h(𝑠) = 0}.

Lemma 1 Assume that 𝜃 ↦→ E [ 𝑓 (𝜃; 𝑋)] is continuously differentiable on T and
denote by L the set of its stationary points. If 𝑠★ ∈ Γ, then 𝜃 (𝑠★) ∈ L. Conversely,
if 𝜃★ ∈ L, then 𝑠★ := E

[
𝑆 (𝜃★; 𝑋)

]
∈ Γ.

Proof A4 implies that

−∇𝜓(𝜃 (𝑠)) + ∇𝜙(𝜃 (𝑠))⊤𝑠 = 0, 𝑠 ∈ S. (6)

Use (2) and A1, and apply the expectation w.r.t. 𝑋 (under A3). This yields (4),
which is available for any 𝜃, 𝜏 ∈ T. This inequality provides a minorizer function for
𝜃 ↦→ E [ 𝑓 (𝜃; 𝑋)]: the difference is nonnegative and minimal (i.e. equal to zero) at
𝜃 = 𝜏. Under the assumptions and A1, this yields

∇E [ 𝑓 (·; 𝑋)] |𝜃=𝜏 + ∇𝜓(𝜏) − ∇𝜙(𝜏)⊤E
[
𝑆(𝜏; 𝑋)

]
= 0. (7)

Let 𝑠★ ∈ Γ and apply (7) with 𝜏 ← 𝜃 (𝑠★). It then follows that

∇E [ 𝑓 (·; 𝑋)] |𝜃=𝜃 (𝑠★) + ∇𝜓(𝜃 (𝑠★)) − ∇𝜙(𝜃 (𝑠★))
⊤𝑠★ = 0,

which implies 𝜃 (𝑠★) ∈ L by (6). Conversely, if 𝜃★ ∈ L, then by (7), we have

∇𝜓(𝜃★) − ∇𝜙(𝜃★)⊤E
[
𝑆(𝜃★; 𝑋)

]
= 0,

which, by A3 and A4, implies that 𝜃★ = 𝜃
(
E
[
𝑆(𝜃★; 𝑋)

] )
= 𝜃 (𝑠★). By definition of

𝑠★, this yields 𝑠★ = E
[
𝑆
(
𝜃 (𝑠★); 𝑋

) ]
; i.e. 𝑠★ ∈ Γ. □

By applying the results of [5] regarding the asymptotic convergence of Stochastic
Approximation algorithms, additional regularity assumptions on 𝜙, 𝜓, 𝜃 imply that
the algorithm (5) possesses a continuously differentiable Lyapunov function 𝑉 de-
fined on S and given by 𝑉 : 𝑠 ↦→ E

[
𝑓 (𝜃 (𝑠); 𝑋)

]
, satisfying ⟨∇𝑉 (𝑠), h(𝑠)⟩ ≤ 0,

where the inequality is strict outside the set Γ (see [3, Prop. 2]). In addition to
Lemma 1, assumptions on the distribution of 𝑋 and on the stability of the sequence
{𝑠𝑛, 𝑛 ≥ 0} are provided in [5, Thm. 2 and Lem. 1], which, combined with the usual
conditions on the step sizes:

∑
𝑛 𝛾𝑛 = +∞ and ∑𝑛 𝛾

2
𝑛 < ∞, yields the almost-sure

convergence of the sequence {𝑠𝑛, 𝑛 ≥ 0} to the set Γ, and the almost-sure conver-
gence of the sequence {𝜃 (𝑠𝑛), 𝑛 ≥ 0} to the set L of the stationary points of the
objective function 𝜃 ↦→ E [ 𝑓 (𝜃; 𝑋)]. Due to the limited space, the exact statement
of these convergence results for our Online MM framework is omitted.
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3 Example application

As an example, we consider the logistic regression problem, where we solve (1) with

𝑓 (𝜃; 𝑥) := 𝑦𝑤⊤𝜃 − log
{
1 + exp

(
𝑤⊤𝜃

)}
, 𝑥 := (𝑦, 𝑤),

where 𝑦 ∈ {0, 1}, 𝑤 ∈ R𝑝 , and 𝜃 ∈ T := R𝑝 . Here, we assume that 𝑋 = (𝑌,𝑊) is a
random variable such that E [ 𝑓 (𝜃; 𝑋)] exists for each 𝜃.
Denote by𝜆 the standard logistic function𝜆 (·) := exp {·} /(1+exp {·}). Following

[1], (2) and A1 are verified by taking

𝜓 (𝜃) := 0, 𝜙 (𝜃) :=
[

𝜃

vec (𝜃𝜃⊤)

]
, 𝑆 (𝜏; 𝑥) =

[
𝑠1 (𝜏; 𝑥)

vec
(
𝑆2 (𝜏; 𝑥)

) ]
where

𝑠1 (𝜏; 𝑥) :=
{
𝑦 − 𝜆

(
𝜏⊤𝑤

)}
𝑤 + 1

4
𝑤𝑤⊤𝜏, 𝑆2 (𝜏; 𝑥) = −1

8
𝑤𝑤⊤.

With S := {(𝑠1, vec (𝑆2)) : 𝑠1 ∈ R𝑝 and 𝑆2 ∈ R𝑝×𝑝 is symmetric positive definite} ,
it follows that 𝜃 (𝑠) := −(2𝑆2)−1𝑠1.

Online MM. Let 𝑠𝑛 =
(
𝑠1,𝑛, 𝑆2,𝑛

)
∈ S. The corresponding Online MM recursion

is then

𝑠1,𝑛+1 = 𝑠1,𝑛 + 𝛾𝑛+1
(
𝑌𝑛+1 − 𝜆

(
𝜃 (𝑠𝑛)⊤𝑊𝑛+1

)
𝑊𝑛+1 +

1
4
𝑊𝑛+1𝑊

⊤
𝑛+1𝜃 (𝑠𝑛) − 𝑠1,𝑛

)
(8)

𝑆2,𝑛+1 = 𝑆2,𝑛 + 𝛾𝑛+1
(
−1

8
𝑊𝑛+1𝑊

⊤
𝑛+1 − 𝑆2,𝑛

)
, (9)

where {(𝑌𝑛+1,𝑊𝑛+1), 𝑛 ≥ 0} are i.i.d. pairs with the same distribution as 𝑋 = (𝑌,𝑊).
Parameter estimates can then be deduced by setting 𝜃𝑛+1 := 𝜃 (𝑠𝑛+1).
For comparison, we also consider two Stochastic Approximation schemes directly

on 𝜃 in the parameter-space: a stochastic gradient (SG) algorithm and a Stochastic
Newton Raphson (SNR) algorithm.

Stochastic gradient. SG requires the gradient of 𝑓 (𝜃; 𝑥) with respect to 𝜃:
∇ 𝑓 (𝜃; 𝑥) = {𝑦 − 𝜆(𝜃⊤𝑤)} 𝑤, which leads to the recursion

𝜃𝑛+1 = 𝜃𝑛 + 𝛾𝑛+1
{
𝑌𝑛+1 − 𝜆(𝜃⊤𝑛𝑊𝑛+1)

}
𝑊𝑛+1. (10)

Stochastic Newton-Raphson. In addition SNR requires the Hessian with respect
to 𝜃, given by ∇2

𝜃 𝜃
𝑓 (𝜃; 𝑥) = −𝜆(𝜃⊤𝑤) {1 − 𝜆(𝜃⊤𝑤)} 𝑤𝑤⊤. The SNR recursion is then

�̂�𝑛+1 = �̂�𝑛 + 𝛾𝑛+1
{
∇2

𝜃 𝜃 𝑓 (𝜃𝑛; 𝑋𝑛+1) − �̂�𝑛

}
(11)

𝐺𝑛+1 = −�̂�−1
𝑛+1 (12)

𝜃𝑛+1 = 𝜃𝑛 + 𝛾𝑛+1𝐺𝑛+1
{
𝑌𝑛+1 − 𝜆(𝜃⊤𝑛𝑊𝑛+1)

}
𝑊𝑛+1 . (13)
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Equation (12) assumes that �̂�𝑛+1 is invertible. In this logistic example, we can
guarantee this by choosing �̂�0 to be invertible. Otherwise �̂�𝑛 is invertible after
some 𝑛 sufficiently large, with probability one. Again in the logistic case, observe
that, from the structure of ∇2

𝜃 𝜃
𝑓 and from the Woodbury matrix identity, Equations

(11–12) can be replaced by

𝐺𝑛+1 =
𝐺𝑛

1 − 𝛾𝑛+1
− 𝛾𝑛+1

1 − 𝛾𝑛+1
𝑎𝑛+1𝐺𝑛𝑊𝑛+1𝑊⊤𝑛+1𝐺𝑛{

(1 − 𝛾𝑛+1) + 𝛾𝑛+1𝑎𝑛+1𝑊⊤𝑛+1𝐺𝑛𝑊𝑛+1
} .

where 𝑎𝑛+1 := 𝜆(𝜃⊤𝑛𝑊𝑛+1)
{
1 − 𝜆(𝜃⊤𝑛𝑊𝑛+1)

}
,

It appears that the Online MM recursion in the 𝑠-space defined by (8) and (9) is
equivalent to the SNR recursion above (i.e., (11)–(13)) when the Hessian ∇2

𝜃 𝜃
𝑓 (𝜃; 𝑥)

is replaced by the lower bound − 1
4𝑤𝑤

⊤. This observation holds whenever 𝑔 is
quadratic in (𝜃 − 𝜏).

Polyak averaging. In practice, for Online MM, SG, and SNR recursions, it is
common to consider Polyak averaging [21], starting from some iteration 𝑛0, chosen
such as to avoid the initial highly volatile estimates. Set 𝜃𝐴𝑛0 := 0, and for 𝑛 ≥ 𝑛0,

𝜃𝐴𝑛+1 = 𝜃𝐴𝑛 + 𝛼𝑛−𝑛0+1 (𝜃𝑛 − 𝜃𝐴𝑛 ), (14)

where 𝛼𝑛 is usually set to 𝛼𝑛 := 𝑛−1.
Numerical illustration. We now demonstrate the performance of the Online

MM algorithm for logistic regression – defined by (5) and the derivations above. To
do so, a sequence {𝑋𝑖 = (𝑌𝑖 ,𝑊𝑖) , 𝑖 ∈ {1, . . . , 𝑛max}} of 𝑛max = 105 i.i.d. replicates
of 𝑋 = (𝑌,𝑊) is simulated: 𝑊 = (1,𝑈), where 𝑈 ∼ N (0, 1) and [𝑌 |𝑊 = 𝑤] ∼
Ber

(
𝜆
(
𝜃⊤0 𝑤

) )
, where 𝜃0 = (3,−3). Online MM is run using the learning rate 𝛾𝑛 =

𝑛−0.6, as suggested in [3]. The algorithm is initialized with 𝜃0 = (0, 0) and 𝑠0 =∑2
𝑖=1 𝑆

(
𝜃0; 𝑋𝑖

)
/2.

For comparison, we also show, on Figure 1, the SG, SNR estimates and their
Polyak averaged values in 𝜃-space. As is usually recommended with Stochastic Ap-
proximation, the first few volatile estimations are discarded. Similarly, for Polyak
averaging, we set 𝑛0 = 103. As expected, we observe that the Online MM and the
SNR recursions are very close but with the SNR showing more variability. Their com-
parison after Polyak averaging shows very close trajectories while the SG trajectory
is clearly different and shows more bias. Final estimates [Polyak averaged estimates]
of 𝜃0 from the SG, SNR, and Online MM algorithms are respectively: (2.67,−2.66)
[(2.51,−2.48)], (3.03,−3.03) [(2.99,−3.03)], and (3.01,−3.03) [(2.98,−3.02)],
which we can compare to the batch maximum likelihood estimate (3.00,−3.05)
(obtained via the glm function in R). Notice the remarkable closeness between the
online MM and batch estimates.
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Fig. 1 Logistic regression example: the first row shows Online MM (black), SG (blue), and SNR
(red) recursions. The second row shows the respective Polyak averaging recursions. The estimates
of the first 𝜃 (first column) and the second (second column) components of 𝜃 are plotted started
from 𝑛 = 103 for readability.

4 Final remarks

Remark 1 For a parametric statistical model indexed by 𝜃, let 𝑓 (𝜃; 𝑥) be the
log-density of a random variable 𝑋 with stochastic representation 𝑓 (𝜃; 𝑥) =

log
∫
Y
𝑝𝜃 (𝑥, 𝑦) 𝜇(d𝑦), where 𝑝𝜃 (𝑥, 𝑦) is the joint density of (𝑋,𝑌 ) with respect

to the positive measure 𝜇 for some latent variable 𝑌 ∈ Y. Then, via [15, Sec. 4.2],
we recover the Online EM algorithm by using the minorizer function 𝑔:

𝑔 (𝜃, 𝑥; 𝜏) :=
∫
Y

log 𝑝𝜃 (𝑥, 𝑦) 𝑝𝜏 (𝑥, 𝑦) exp(− 𝑓 (𝜏; 𝑥)) 𝜇(d𝑦).

Remark 2 Via theminorization approach of [1] (as used in Section 3) and themixture
representation from [19],we can construct anOnline MM algorithm forMoEmodels,
analogous to the MM algorithm of [20]. We shall provide exposition on such an
algorithm in future work.
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