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Abstract: The recognition of COVID-19 infection from X-ray images is an emerging field in the
learning and computer vision community. Despite the great efforts that have been made in this
field since the appearance of COVID-19 (2019), the field still suffers from two drawbacks. First, the
number of available X-ray scans labeled as COVID-19-infected is relatively small. Second, all the
works that have been carried out in the field are separate; there are no unified data, classes, and
evaluation protocols. In this work, based on public and newly collected data, we propose two X-ray
COVID-19 databases, which are three-class COVID-19 and five-class COVID-19 datasets. For both
databases, we evaluate different deep learning architectures. Moreover, we propose an Ensemble-
CNNs approach which outperforms the deep learning architectures and shows promising results in
both databases. In other words, our proposed Ensemble-CNNs achieved a high performance in the
recognition of COVID-19 infection, resulting in accuracies of 100% and 98.1% in the three-class and
five-class scenarios, respectively. In addition, our approach achieved promising results in the overall
recognition accuracy of 75.23% and 81.0% for the three-class and five-class scenarios, respectively.
We make our databases of COVID-19 X-ray scans publicly available to encourage other researchers
to use it as a benchmark for their studies and comparisons.

Keywords: COVID-19; deep learning; convolutional neural network; Ensemble-CNNs; X-ray scans

1. Introduction

Since the appearance of COVID-19 in the city of Wuhan, China, at the end of 2019,
great efforts have been made to recognize this disease. Reverse Transcription Polymerase
Chain Reaction (RT-PCR) is the definitive test for the recognition of COVID-19 disease.
However, RT-PCR test is a time-consuming, laborious, and complicated manual process [1].
In addition, test kits are only available in limited numbers worldwide [1]. On the other
hand, the rate of false negatives varies depending on how long the infection has been
present. In [2], the false-negative rate was 20% when testing was performed five days after
symptoms began, but much higher (up to 100%) earlier in the infection.

Chest X-ray scans show visual indexes associated with COVID-19 [3]. In addition,
chest X-ray scans are a fast, effectivem and affordable test to identify COVID-19 infection [4].
Despite the availability of chest X-ray scans, an expert radiologist is needed to identify
the COVID-19 infection. Because of the huge number of infections, the healthcare systems
have already been overwhelmed around the world. Artificial Intelligence (AI) systems can
provide an alternative solution for the automatic diagnosis of COVID-19 infections and
differentiate them from other diseases [5].

Many Artificial Intelligence (AI) systems have proved their efficiency in medical
images analysis, such as pneumonia detection [6] semantic segmentation [7]. Similarly,
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many AI systems based on deep learning have been proposed and their performance
has shown promising results in the diagnosis of COVID-19 infection from chest X-ray
images [4,5,8–10]. The ability of deep convolutional neural networks to extract relevant
and high-level features directly from data makes them more powerful than Hand-crafted
methods [11]. Hand-crafted methods are based on extracting the features using designed
models [12].

Since the appearance of COVID-19, great efforts have been made to recognize COVID-
19 infection from X-ray scans. However, this field has not achieved great progress in
the recognition of COVID-19 infection as a real application, and this is due to two main
drawbacks. The first drawback is the limitation of COVID-19 X-ray scans. The second
drawback is that there are no unified protocols, classes, and data. In the literature, each
work defines its own protocol, classes, and data, and this makes comparison between
different methods difficult. In this work, we aim to unify the efforts in this field. First, we
created a great number of COVID-19 X-ray scans. In addition, we defined two scenarios for
differentiating COVID-19 scans from scans of other lung diseases in three-class and five-
class scenarios. Furthermore, we defined train/val/test splits to allow better comparison
between different methods. We make our databases of COVID-19 X-ray scans publicly
available to encourage other researchers to use them as a benchmark for their studies. The
main contributions of this paper are:

• We created the largest COVID-19 X-ray scan database, with 504 scans collected from
open sources and 207 new scans collected from the Hospital of Tolga, Algeria.

• We proposed two scenarios to distinguish between COVID-19 disease, other lung
diseases, and healthy cases. In the first scenario, we created a three-class X-ray scan
database which consists of three classes: Normal, COVID-19, and other Pneumonia
diseases. In the second scenario, we created five-class X-ray database which includes
the following classes: Normal, COVID-19, Viral Pneumonia, Bacterial Pneumonia, and
Lung Opacity No Pneumonia. Furthermore, we divided both databases into training,
validation, and test sets. Most of the testing data classes were taken from new sources
that were not used to create the training and validation sets.

• In order to distinguish between COVID-19 infection and other Lung diseases, we
used deep learning architectures for both scenarios (three classes and five classes).
In addition, we proposed an Ensemble-CNNs approach based on the trained deep
learning architectures.

• We make our codes and databases of COVID-19 X-ray scans publicly available to
encourage other researchers to use it as a benchmark for their studies. (https://github.
com/Edo2610/Covid-19_X-ray_Two-proposed-Databases (accessed on 2 March 2021),
https://www.kaggle.com/edoardovantaggiato/covid19-xray-two-proposed-databases
(accessed on 27 February 2021)).

This paper is organized in following way: In Section 2, we describe some of the state-
of-the-art works. Section 3 consists of our proposed evaluation scenarios, illustrations of
our proposed databases, and a description of the used methods and evaluation metrics. Our
proposed approach is presented in Section 4. Section 5 includes the experimental setup and
the results of the two defined scenarios. We compare our results with the state-of-the-art
methods in Section 6. Finally, concluding remarks are given in Section 7.

2. Related Works

Motivated by the success of deep learning methods in many computer vision tasks,
most of the existing works for the recognition of COVID-19 infection from X-ray scans have
used deep leaning methods [4,5,8–10,13].

Hemdan et al. [14] tested seven different CNN architectures, including VGG-19 [15],
DenseNet-121 [16], Inception-V3 [17], ResNet-V2 [18], InceptionResNet-V2 [19], Xcep-
tion [20], and Google MobileNet-V2 [21]. Their database contains only 25 COVID-19 cases
and they consider a binary classification of positive and negative COVID-19 infection.
Their results showed that the VGG-19 and DenseNet-121 models achieved the best perfor-

https://github.com/Edo2610/Covid-19_X-ray_Two-proposed-Databases
https://github.com/Edo2610/Covid-19_X-ray_Two-proposed-Databases
https://www.kaggle.com/edoardovantaggiato/covid19-xray-two-proposed-databases
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mance, where both architectures reached a 0.91 F1-score for COVID-19 infection and 0.89
for non-COVID-19 infection.

Mangal et al. [22] used CheXNet [23], which was trained on the ChestX-ray8 database [24].
They used transfer learning to recognize the COVID-19 infection within three- and four-
class scenarios. They achieved a promising result with a recognition rate for COVID-19
infection equal to 90.5% in the three-class scenario.

In [4], Yoo et al. proposed a deep learning-based decision-tree classifier based on three
binary decisions. Each binary decision is a trained ResNet-18 [18] architecture:

• First decision tree classifies the input image as normal or abnormal. The accuracy of
this decision tree is 98%.

• Second decision tree identifies abnormal images that contain signs of tuberculosis (TB)
or not. The accuracy of this decision tree is 80%.

• Third decision tree classifies abnormal images that contain signs of COVID-19 or not.
The accuracy of this decision tree is 95%.

M. Turkoglu proposed the COVIDetectioNet [1] framework, which consists of three
steps. First, the pre-trained AlexNet architecture [25] is used with transfer learning. In
second step, the trained Alexnet is used to extract deep features from all layers. These
features are concatenated to produce the combined features. In the final step, the Relief algo-
rithm [26] is used to select the most relevant features from the combined features, then they
are fed to a Support Victor Machine (SVM) classifier [27]. His approach showed a promising
result in the used database, which consists of three classes: COVID-19, Pneumonia, and
Normal. In [13], I.D. Apostolopoulos et al. tested five CNN architectures, VGG-19 [15],
MobileNet-v2 [21], Inception [17], Xception [20], and Inception-ResNet-v2 [19], on two
databases which were collected from different public resources. From their obtained results,
the VGG-19 and MobileNet architectures achieved the best performance compared with
the other used CNN architectures. In [28], A. T. Sahlol proposed using deep features
that were extracted from the Inception architecture and a swarm-based feature selection
algorithm to recognize COVID-19 infection from the X-ray scans. Their approach achieved
considerable improvement compared with the set of feature selection algorithms and CNNs
architectures.

Table 1 summarises the mentioned state-of-the-art works, the used databases, and the
obtained results. From this table, we can notice that the used databases are different from
one work to another with a small number of X-ray scans, specially for the COVID-19 class.
Moreover, each work defines different classes and evaluation protocols. This motivated us
to collect the available COVID-19 X-ray scans, provide our own COVID-19 X-ray scans,
and define the evaluation protocol and scenarios.

Table 1. State-of-the-art works summary.

Reference Database Splitting Model F1-Score

Hemdan et al. [14], 2020 - 25 Covid-19
- 25 Normal

- 40% Train
- 40% Val
- 20% Test

VGG-19
ResNet-v2
DenseNet-201

90
67
90

Apostolopoulos et al. [13], 2020

- 224 Covid-19
- 714 Pneumonia

(400 bacterial + 314 viral)
- 504 Normal

10-folds
cross-validation

VGG-19
MobileNet-v2
Inception
Xception
Inception-ResNet v2

93.48
92.85
92.85
92.85
92.85
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Table 1. Cont.

Reference Database Splitting Model F1-Score

Karim et al. [9], 2020
- 259 Covid-19
- 8614 Pneumonia
- 8066 Normal

5-folds
cross-validation

VGG-16
VGG-19
ResNet-18
ResNet-34
DenseNet-161
DenseNet-201

76.1
92.5
92.1
86.1
94.5
90.5

Mangal et al. [22], 2020
- 155 Covid-19
- 4273 Pneumonia
- 1583 Normal

- 88.5% Train
- 0.6% Val
- 10.9% test

CovidAID 92.3

Yoo et al. [28], 2020

- 585 Normal
- 442 Abnormal
- 492 TB
- 492 Non TB
- 120 Covid-19

- 83.3% Train
- 16.7% Test

AXIR 1
AXIR 2
AXIR 3
AXIR 4

98
80
100
89

Turkoglu [1], 2020
- 219 Covid-19
- 4290 Pneumonia
- 1583 Normal

10-folds
cross-validation COVIDetectioNet 99.18

A. T. Sahlol et al. [28], 2020 - 200 Covid-19
- 1675 Non-Covid Unknown FO-MPA 99.6

A. T. Sahlol et al. [28], 2020 - 219 Covid-19
- 1341 Non-Covid Unknown FO-MPA 99

3. Methodology

In this section, we will discuss the proposed evaluation scenarios and databases. In
addition, we will describe the used CNN architectures, loss functions, and evaluation metrics.

3.1. Evaluation Scenarios

Most of the literature studies have dealt with the recognition of two or three classes of
COVID-19-related diseases using initially small databases [1,9,13,14,22]. In our work, two
scenarios are investigated to distinguish COVID-19 infection from other Lung diseases. In
the first scenario, we defined three classes, which are:

• Healthy.
• COVID-19.
• Other pneumonia diseases.

To train our models, we collected 504 X-ray scans for each class. In this scenario,
we evaluated the performance of three most popular CNN architectures (Densnet-151,
Inception-v3, and ResneXt-50) and our proposed Ensemble-CNNs approach. In the training
phase, we divided the 504 X-ray scans of each class into training–validation splits (80%–
20%). To train the deep learning models, we used data-augmentation techniques for the
training split to gain 6048 augmented X-ray scans for each class. In the testing phase, we
used 207 X-ray scans for each class, where the X-ray scans of COVID-19 were obtained
from the Hospital of Tolga, Algeria. For the other image classes, we emphasized collecting
them from new sources that were not used in the creation of the training and validation
splits. Here, we aim to study the performance of the methods in different conditions, which
can include variation in the illumination, contrast, and recording device used.

In the second scenario, we identified four classes of Lung Diseases and Normal. The
classes of the second scenario are:

• Normal.
• COVID-19.
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• Viral Pneumonia.
• Bacterial Pneumonia.
• Lung Opacity No Pneumonia.

Similar to the first scenario, we used 504 X-ray scans as training–validation splits (80%–
20%), then the same data augmentation techniques were used for the training split. In the
testing phase, we used 207 X-ray scans for each class, where the X-ray scans of COVID-19
were obtained from the Hospitals of Tolga, Algeria. Similar to the three-class database, we
emphasized collecting the non-COVID-19 images from new sources that were not used
for creating the training and validation splits. The goal is to study the performance of the
methods in different conditions that can include variation in the illumination, contrast, and
recording device used.

3.2. Databases

Most of the state-of-the-art databases for recognizing COVID-19 infection from X-ray
scans consider just two or three classes. The two classes are COVID-19 and Healthy, which
were used in [14]. Meanwhile, the three classes are COVID-19, Healthy, and Pneumonia,
which were used in [1,9,22]. In our work, we investigated two scenarios.

In the first scenario, we considered three classes, which are COVID-19, Pneumonia,
and Normal (or Healthy). Meanwhile, in the second scenario we considered five classes,
where the Pneumonia can be classified into Bacterial Pneumonia and Viral Pneumonia.
As a fifth class, we considered Lung Opacity Not Pneumonia disease, including all lung
diseases that are not Pneumonia. To the best of our knowledge, this is the first time that five
lung diseases including COVID-19 have been studied. We used the following resources to
create our databases:

1. Ieee8023 COVID-19 Chest X-Ray database [29] is the main database used in most
the state-of-the-art papers, from which we took 504 COVID-19 X-ray images. In this
database, there are others classes but with few images. License: Apache 2.0, CC
BY-NC-SA 4.0, CC BY 4.0

2. Chest X-Ray Images (Pneumonia) [30] from Kaggle that contains a lot of images for
the classes Pneumonia and Normal. For Pneumonia images, there are two classes,
which are Bacterial and Viral. License: CC BY 4.0

3. RSNA Pneumonia Detection Challenge [31] from Kaggle. From this source, we took
only Normal and Pneumonia images. In the Pneumonia class there is no distinction
between types. License: Open Source

4. CheXpert [32] is a large chest X-ray database from which we took Normal images, and
it is the only database that includes Lung Opacity images. License: Public database

5. China CXR set and Montgomery set [33] are two public databases that contain both
Normal as well as tuberculosis X-rays. We used tuberculosis images for the Bacterial
Pneumonia class. License: Public database

In addition to the use of above open source databases, we collected 207 unpublished
X-ray samples for the COVID-19 class from the Hospital of Tolga, Algeria. These COVID-19
scans were used as testing data. In addition, we selected 207 images as testing data for the
other classes. Most of the testing data classes were taken from new sources that were not
used to create the training data for both the three- and five-class scenarios.

3.2.1. Three-Class COVID-19 Database

We created the three-class database using all the available COVID-19 scans. In order
to create a balanced database, we selected 504 images for each class since there are just 504
COVID-19 samples that are publicly available. For training and validating our models, we
randomly split the three-class database into training and validation splits (80%–20%).

Since Deep Learning methods require huge amounts of labeled data for training, which
is actually not available for the COVID-19 class, we used data augmentation techniques
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to cope with this issue. By applying the following data augmentation techniques for the
training split, we obtained 12 augmented images for each image:

• Color jitter with brightness = 0.2, contrast = 0.2.
• Padding of 10 applied on each border.
• Random Horizontal flip.
• Random Perspective with distortion scale = 0.5.
• Random Rotation from -30 to 30 degree.
• Random Crop making sure that the smaller size remains at least 224px.

Each of the first five data augmentation techniques has an application probability
equal to 50%.

Table 2 summarizes the three-class database number of images by split and their
resources. Figure 1 shows an X-ray example for each class of the three-class COVID-19
database.

Table 2. Three-class COVID-19 database sources and statistics.

Class Train Set Validation Set Test Set
Original + Augmented

Covid-19 404 [29] + 4848 100 [29] 207 [Our]
Pneumonia 404 [30] + 4848 100 [30] 207 [32]

Normal 404 [30,31] + 4848 100 [30,31] 207 [32]

Total 1212 + 14,544 300 621

Figure 1. Samples from the three-class Covid-19 database: Covid-19 (left), Pneumonia (center), and Normal (right).

3.2.2. Five-Class Covid-19 Database

In order to distinguish between COVID-19 and the other lung diseases and healthy
cases, we created a five-class COVID-19 database. In fact, COVID-19 is a viral pneumonia,
so we aim to distinguish between Bacterial, Viral Pneumonia, COVID-19, and Healthy cases.
In addition, we considered Lung Opacity Not Pneumonia diseases as the fifth class. Similar
to the three-class COVID-19 database, we used data augmentation techniques to obtain
augmented data to train our models. The same data augmentation techniques were applied
for the training split to obtain 12 augmented images for each image. Table 3 summarizes
the five-class COVID-19 database number of images by split and their resources. Figure 2
shows an X-ray example for each class of the five-class COVID-19 database.
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Table 3. Five-Class COVID-19 database sources and statistics.

Class Train Set Validation Set Test Set
Original + Augmented

Covid-19 404 [29] + 4848 100 [29] 207 [Our]
Bacterial Pneumonia 404 [30,33] + 4848 100 [30,33] 207 [29]

Viral Pneumonia 404 [29,30] + 4848 100 [29,30] 207 [30]
Lung Opacity not Pneumonia 404 [32] + 4848 100 [32] 207 [32]

Normal 404 [30–32] + 4848 100 [30–32] 207 [33]

Total 2020 + 24,240 500 1035

Figure 2. In order: COVID-19, Viral Pneumonia, Bacterial Pneumonia, Lung Opacity, Normal.

3.3. CNN Architectures

In our experiments, we used three of the most powerful pre-trained CNN models,
which are: ResNeXt-50 [34], Inception-v3 [17], and DenseNet-161 [16].

3.3.1. ResNeXt-50

The ResNeXt [34] architecture inherited its structure from three CNN architectures:
VGG, ResNet, and Inception. From the VGG architecture, ResNext leveraged repeating
layers to build a deep architecture model. ResNeXt uses the idea of shortcut from the
previous layer to the next layer from the ResNet architecture. Similar to the Inception
block, the ResNeXt block adopts a split-transform-merge strategy (branched paths within a
single module), as shown in Figure 3. In the ResNeXt block shown in Figure 3, the input
is split into a few lower-dimensional embeddings (by 1 × 1 convolutions) with 32 paths
each for four channels, then all paths are transformed by the same topology filters of size
3 × 3. Finally, the paths are merged by summation. In our experiments, we used the
ResneXt-50 pre-trained model, which was trained on ImageNet challenge database [25].
The ResNeXt-50 construction is summarized in Table 4.
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Figure 3. A ResneXt Module with cardinality = 32, with roughly the same complexity. A layer is
shown as (# in channels, filter size, # out channels) [34].

Table 4. ResneXt-50 with a 32 × 4d template. Inside the brackets is the shape of a residual block,
and outside the brackets is the number of stacked blocks on a stage. (C = 32) suggests grouped
convolutions with 32 groups [34].

Stage Output ResneXt-50 (32 × 4d)

conv1 112 × 112 7 × 7×, 64, stride 2

conv2 56 × 56

3 × 3 max pool, stride 2[ 1 × 1, 128
3 × 3, 128, C = 32

1 × 1, 256

]
× 3

conv3 28 × 28

[ 1 × 1, 256
3 × 3, 256, C = 32

1 × 1, 512

]
× 4

conv4 14 × 14

[ 1 × 1, 512
3 × 3, 512, C = 32

1 × 1, 1024

]
× 6

conv5 7 × 7

[ 1 × 1, 1024
3 × 3, 1024, C = 32

1 × 1, 2048

]
× 3

1 × 1 global average pool
1000-d fc, softmax

3.3.2. Inception-v3

Inception-v3 [17] is the third version of the Google Inception architecture family [35].
Since choosing the right kernel size is challenging for CNN architectures, Inception net-
works use filters with multiple sizes that operate on the same level, which makes the
networks wider instead of deeper. In summary, Inception-v3 has several improvements
over the previous versions, including:

1. Factorized convolutions;
2. Smaller convolutions;
3. Asymmetric convolutions;
4. Auxiliary classifier;
5. Grid size reduction.

In our experiments, we used the Inception-v3 pre-trained model, which was trained
on the ImageNet challenge database [25]. The Inception-v3 architecture is summarized in
Table 5.
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Table 5. Inception-v3 architecture [17].

Type Parch Size/Stride or Remark Input Size

conv 3 × 3/2 299 × 299 × 3
conv 3 × 3/1 149 × 149 × 32
conv padded 3 × 3/1 147 × 147 × 32
pool 3 × 3/2 147 × 147 × 64
conv 3 × 3/1 73 × 73 × 64
conv 3 × 3/2 71 × 71 × 80
conv 3 × 3/1 35 × 35 × 192
3× Inception M1 As in Figure 4 35 × 35 × 288
5× Inception M2 As in Figure 5 17 × 17 × 768
2× Inception M3 As in Figure 6 8 × 8 × 1280
pool 8 × 8 8 × 8 × 2048
linear logits 1 × 1 × 2048
softmax classifier 1 × 1 × 1000

Figure 4. First Inception module [17].

Figure 5. Second Inception module [17].



Sensors 2021, 21, 1742 10 of 20

Figure 6. Third Inception module [17].

3.3.3. DenseNet-161

Densnet networks [16] seek to solve the problem of CNNs when going deeper. This is
because the path for information from the input layer until the output layer (and for the
gradient in the opposite direction) becomes so big that they can be lost before reaching
the other side. G. Huang et al. [16] proposed to connect each layer to every other layers
in a feed-forward fashion (as shown in Figure 7) to ensure maximum information flow
between layers in the network. In our experiments, we used the DenseNet-161 pre-trained
model, which was trained on the ImageNet challenge database [25]. The DenseNet-161
architecture is summarized in Table 6.

Table 6. DenseNet-161 architecture, the growth rate is k = 48 . Note that each “conv” layer shown in
the table corresponds with the sequence BN-ReLU-Conv [16].

Layers Outsize DenseNet-161 (k = 48)

Convolution 112 × 112 7 × 7× conv, stride 2

Polling 56 × 56 7 × 7× max pool, stride 2

Dense Block 1 56 × 56

[
1 × 1 conv
3 × 3 conv

]
× 6

Transition
Layer 1

56 × 56 1 × 1 conv
28 × 28 2 × 2 average pool, stride 2

Dense Block 2 28 × 28

[
1 × 1 conv
3 × 3 conv

]
× 12

Transition
Layer 2

28 × 28 1 × 1 conv
14 × 14 2 × 2 average pool, stride 2

Dense Block 3 14 × 14

[
1 × 1 conv
3 × 3 conv

]
× 36

Transition
Layer 1

14 × 14 1 × 1 conv
7 × 7 2 × 2 average pool, stride 2

Dense Block 4 7 × 7

[
1 × 1 conv
3 × 3 conv

]
× 24

Classification
Layer

1 × 1 7 × 7 global average pool
1000D fully connected, softmax
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Figure 7. A 5-layer dense block with a growth rate of k = 4. Each layer takes all the preceding feature-maps as an input [16].

3.4. Loss Function

In our experiments, we used the Focal loss function [36], which was used for one-
stage object detectors. Focal loss function has proven its efficiency in many classification
tasks [37,38]. The multi-classes focal loss is formulated in the following equation:

Ff l = −
C

∑
i=1

(1 − yi)
γti log(yi), (1)

where C denotes the number of categories, ti denotes a real probability distribution, yi
denotes the probability distribution of the prediction, and γ is the focusing parameter
which is used to control the rate at which easy examples are down-weighted.

In more detail, the Focal loss function applies a modulating term to the cross-entropy
loss in order to focus learning on hard negative examples. It is a dynamically scaled cross
entropy loss where the scaling factor decays to zero as confidence in the correct class
increases. Intuitively, this scaling factor can automatically down-weight the contribution of
easy examples during training and rapidly focus the model on hard examples.

3.5. Evaluation Metrics

To evaluate the performance of our models, we used six metrics: Accuracy, Precision,
Sensitivity, specificity, F1-score, and Area Under the ROC Curve (AUC). The Accuracy calculates
the exact percentage of the correct predicted images with respect to the total images that
were used. The formula for accuracy is as following:

Accuracy =
Number o f correct prediction
Total Number o f predictions

× 100. (2)

The formulae of Precision, Sensitivity, specificity, and F1-score are defined by:

Precision =
TP

TP + FP
× 100, (3)

Sensitivity =
TP

TP + FN
× 100, (4)

Speci f icity =
TN

TN + FP
× 100, (5)

F1-score =
2 · Precision · Sensitivity
Precision + Sensitivity

× 100. (6)

The last evaluation metric is Area Under the ROC Curve (AUC), which is calculated by
adding successive trapezoid areas below the Receiver Operating Characteristic (ROC) curve.
The ROC curve is created by plotting the true positive rate (TPR) against the false positive
rate (FPR) at various threshold values. TPR and FPR are called also sensitivity/recall and
100 specificity, respectively.
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4. Proposed Approach

For the three-class and five-class scenarios, we proposed an Ensemble-CNNs, which
is based on the trained models, ResNeXt-50, Inception-v3, and DenseNet-161. Figure 8
illustrates our proposed approach. In our Ensemble-CNNs approach, the predicted class of
each image is assigned using the average of the prediction probabilities of the three trained
models. In more detail, the probabilities of the three models corresponding to all classes
give the mean probability for all classes, then the argmax of the mean probabilities will
assign the Ensemble-CNNs predicted class.

Class 1: value
Class 2: value
…
Class N: value

Softmax

Softmax

Softmax

Probability class 1
Probability class 2
…
Probability class N

Mean of all
probability of

class 1

Mean of all
probability of

class 2

Mean of all
probability of

class N

…

A
R
G
M
A
X

Class 1: value
Class 2: value
…
Class N: value

Class 1: value
Class 2: value
…
Class N: value

Probability class 1
Probability class 2
…
Probability class N

Probability class 1
Probability class 2
…
Probability class N

Figure 8. The architecture of our proposed Ensemble-CNNs approach.

5. Experiments and Results

For three-class and five-class scenarios, we conducted the experiments using three
powerful CNN architectures (ResNeXt-50, Inception-v3, and DenseNet-161) and our pro-
posed Ensemble-CNNs approach. To evaluate the performance of these methods, we
used the validation and testing splits. The main difference between both splits is that the
validation split was created using the same sources as the training data, while the testing
data were created from different sources. In this section, we will describe our experimental
setup then the experiments of the three-class and five-class scenarios.

5.1. Experimental Setup

All the experiments were carried out on Pytorch [39] with a NVIDIA Device Geforce
TITAN RTX 24 GB. All the networks were trained for 30 epochs with the Adam opti-
mizer [40], the focal loss function with [36] γ = 2, and batch size of 64. The initial learning
rate was 1e-6 for 20 epochs, then leaning rate decreased to 1e-7 for the next 10 epochs.
Active data augmentation was performed by normalizing, resizing, and cropping the input
images in order to achieve the correct input size for each network; the input image size of
the network was 299 × 299 pixels, meanwhile the DenseNet-161 and ReNeXt-50 input sizes
were 224 × 224 pixels. For the normalization, the following values of mean and standard
deviation were used for each channel of the image:

• mean: [0.485, 0.456, 0.406],
• std: [0.229, 0.224, 0.225].

Moreover, we added a dropout layer for both DenseNet-161 and ResNeXt-50 after the
fully connected layer with a probability of 30%. Meanwhile, Inception-v3 already had a
default dropout layer with a probability of 50%.
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5.2. Three-Class Scenario Experiments

Tables 7 and 8 summarise the results of the three-class scenario on the validation
and testing data, respectively. From the results of the validation data, the best method is
our proposed Ensemble-CNNs approach for all of the used evaluation metrics (Accuracy,
Precision, Sensitivity, specificity, F1-score, and AUC). From Table 8, which contains the results
of the testing data, ResneXt-50 achieved the best performance for the Accuracy, Precision,
Sensitivity, specificity, and F1-score evaluation metrics, where it is slightly better than our
proposed Ensemble-CNNs approach. Meanwhile, for the AUC evaluation metric DenseNet-
161 achieved the best performance, and again DenseNet-161 was slightly better than our
proposed Ensemble-CNNs approach. From these results, we notice that our proposed
Ensemble-CNNs approach does not achieve the best result for all the evaluation metrics
but still gives a better trade-off between different evaluation metrics’ results. In addition,
we notice that the performance of the testing data is not good as that of the validation data.
This is because the testing data sources are different from the training and validation ones,
as shown in Table 2.

Table 7. The experimental results for the validation data of our proposed three-class COVID-19 database.

Model Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1-Score (%) AUC

ResNeXt-50 95.67 ± 2.30 95.05 94.99 97.50 95.00 0.9625
Inception-v3 92.67 ± 2.95 93.38 93.38 93.00 93.01 0.9475

DenseNet-161 95.00 ± 2.47 95.33 95.33 94.99 94.99 0.9625
Ensemble-CNNs 96.67 ± 2.03 96.77 96.67 98.33 96.66 0.9750

Table 8. The experimental results for the testing data of our proposed three-class COVID-19 database.

Model Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1-Score (%) AUC

ResNeXt-50 75.42 ± 3.39 78.85 75.36 87.68 73.53 0.8080
Inception-v3 72.92 ± 3.50 73.18 72.95 71.30 72.92 0.7971

DenseNet-161 74.44 ± 3.43 76.84 74.40 87.20 72.69 0.8152
Ensemble-CNNs 75.23 ± 3.40 78.28 75.20 87.60 73.43 0.8140

Figure 9 consists of the confusion matrices of the testing data. The main observation
is that all models achieved 100% for the classification of COVID-19 samples. The real
confusion for all models was in distinguishing between the Normal and Pneumonia classes.
Since all models achieved 100% in the recognition of COVID-19 samples, we checked the
number of samples that were wrongly classified as COVID-19 for the testing split, as shown
in Table 9. From this table, we observe that the best model was DenseNet-161, which had
the smallest number of false positives, and our proposed Ensemble-CNNs approach was
the second best one. From the above results, we conclude that our proposed approach is
more stable in the classification of the three classes and the recognition of COVID-19.

Table 9. False positive of the testing three-class split for the COVID-19 class.

Model False Positive TotalNormal Pneumonia

ResNeXt-50 2 9 11
Inception_v3 16 12 28
DenseNet-161 2 6 8

Ensemble-CNNs 2 7 9
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Figure 9. Confusion matrices of the three-class COVID-19 testing data using ResneXt-50, Inception-
v3, DenseNet-161, and Ensemble-CNNs, respectively. The vertical axis is for the true classes and the
horizontal axis is for the predicted classes.

5.3. Five-Class Scenario Experiments

Tables 10 and 11 summarise the results of the five-class scenario with the valida-
tion and testing data, respectively. From these results, we notice that our proposed
Ensemble-CNNs approach outperforms all of the three tested CNN architectures (ResNeXt-
50, Inception-v3, and DenseNet-161) in both the validation and testing splits for all of
the used evaluation metrics (Accuracy, Precision, Sensitivity, specificity, F1-score, and AUC).
This proves the benefit of using the ensemble approach. As we noticed in three-class, the
performance of the testing data was lower than that of the validation data. This is because
the training and validation data were from the same sources for all classes. Meanwhile,
most of the five-class testing data classes were from different sources, as shown in Table 3.

Table 10. The experimental results of the validation data of our proposed five-class COVID-19 database.

Model Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1-Score (%) AUC

ResNeXt-50 81.24 ± 3.42 83.96 83.60 86.40 83.63 0.8870
Inception-v3 80.55 ± 3.47 82.57 83.20 85.80 83.07 0.8950

DenseNet-161 82.20 ± 3.35 84.50 84.40 89.85 84.40 0.8963
Ensemble-CNNs 93.2 ± 2.21 93.93 93.20 98.30 93.25 0.9575
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Table 11. The experimental results of the testing data of our proposed five-class COVID-19 database.

Model Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1-Score (%) AUC

ResNeXt-50 79.94 ± 2.44 81.42 79.90 84.79 79.57 0.8617
Inception-v3 78.62 ± 2.50 79.35 78.65 84.66 78.31 0.8665

DenseNet-161 77.93 ± 2.53 80.43 77.51 84.47 77.93 0.8744
Ensemble-CNNs 81.00 ± 2.39 82.99 82.96 85.24 81.49 0.8810

To gain a better explanation for the recognition of the individual classes, Figure 10
contains the confusion matrices of the testing data. From these confusion matrices, we
notice that the Ensemble-CNNs approach achieves the best performance in the recognition
of COVID-19 samples (98.1%). In addition, the Lung Opacity No Pneumonia samples are
well recognized by all models (the best one is Ensemble-CNNs, at 98.1%). This happened
because all the samples for Lung Opacity No Pneumonia class were from a single source
(we found only one source for this class). Table 12 shows a comparison between all four
tested models in the recognition of the individual classes. From this table, we observe
that our proposed approach is the best in the recognition of three classes out of five. This
confirms the superiority of our approach compared with the other used CNN architectures.

Figure 10. Confusion matrices of the five-class COVID-19 testing data using ResneXt-50, Inception-v3,
DenseNet-161, and Ensemble-CNNs, respectively. The vertical axis is for the true classes and the
horizontal axis is for the predicted classes.
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Table 12. The best classification method for each class of the testing split of the five-class scenario.

Class Model Best Accuracy (%)

Bacterial Pneumonia DenseNet-161 58.0
COVID-19 Ensemble-CNNs 98.1
Lung Opacity Not Penumonia Ensemble-CNNs 98.1
Normal Inception-v3 72.0
Viral Pneumonia DenseNet-161 & Ensemble-CNNs 86.0

5.4. Heatmap Representation

To explain our approach’s classification decision of different lung diseases from the
X-ray scans, we used the Randomized Input Sampling for Explanations (RISE) approach [41].
Figure 11 shows the heatmap of five X-ray scans, where each scan has a different class.
These X-ray scans were taken from the testing split of our five-class COVID-19 database. In
Figure 11, the red color indicates the greater importance of the corresponding region to our
model and the blue color indicates a lower importance. For the Healthy case (Figure 11a),
most of the X-ray scan regions have a blue color, which indicates that all regions have
the same importance as our approach, since there is no infection. Meanwhile, for the
COVID-19, Viral Pneumonia, Bacterial Pneumonia, and Lung Opacity cases (Figure 11b–e),
our approach gave more attention to the lung regions (red color), which correspond to the
real regions where the infection occurs.

(a) (b)

(c) (d)

(e)

Figure 11. (a) Normal case, (b) COVID-19 case, (c) Viral Pneumonia case, (d) Bacterial Pneumonia case, (e) Lung Opac-
ity case.
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6. Discussion

Since the state-of-the-art works have no unified data, classes, or evaluation protocols,
it is hard to compare different methods. In Table 13, we tried to compare the recognition of
COVID-19 in our approach and that of some state-of-the-art methods. From this table, we
notice that our approach has achieved a high performance in the recognition of COVID-19
in both scenarios (three and five classes), despite the fact that we used a new source of
scans for the testing: Algeria. From other hand, the distinguishing between other lung
diseases and normal cases is still challenging and need more improvement. It should be
mentioned that the number of X-ray scans used for the training CNN architecture is very
limited (404 X-ray scans for each class). One possible solution to improve the performance
is to use more X-ray scans for each class.

Table 13. Comparison between our results and the state-of-the-art results for the recognition of
COVID-19 infection.

Reference Classes Total COVID-19 Test COVID-19 COVID-19
Samples Samples Accuracy

Hemdan et al. [14] 2 25 5 100%
Apostolopoulos et al. [13] 3 224 24 98.66%

Karim et al. [9] 3 259 137 90.5%
Mangal et al. [22] 3 155 30 100%

Yoo et al. [4] 4 120 42 95%
Turkoglu et al. [1] 3 219 20 100%

Ensemble-CNNs (our) 3 711 207 100%
Ensemble-CNNs (our) 5 711 207 98.1%

Since we evaluated three CNN architectures and our proposed Ensemble-CNNs ap-
proach on our proposed new databases and scenarios, it is unfair to compare the complexity
of our approach with the state-of-the-art methods. Table 14 contains the required time to
test a single X-ray scan for the evaluated three CNN architectures and our approach for the
three-class and five-class scenarios. From Table 14, we notice that the required time is very
trivial for all the evaluated methods. This proves the efficiency of using X-ray scans for the
recognition of COVID-19 infection compared with currently used tests, such as RT-PCR.

Table 14. Testing time for the evaluated CNN architecture and our proposed Ensemble-CNNs
approach for three-class and five-class scenarios.

Model Scenario
Three-Class Scenario (s) Five-Class Scenario (s)

ResNeXt-50 0.024985 0.029988
Inception-v3 0.014991 0.065963

DenseNet-161 0.037979 0.038977
Ensemble-CNNs 0.077955 0.134928

7. Conclusions

In this paper, we created two databases to distinguish between COVID-19 infection
and other lung diseases from X-ray scans. In the first database, we considered three classes,
which are Healthy, COVID-19, and Pneumonia. In the second database, we considered five
classes, which are Healthy, COVID-19, Viral Pneumonia, Bacterial Pneumonia, and Lung
Opacity No Pneumonia. In both databases, we collected public databases and used them as
training and validation splits. However, we used new COVID-19 scans as testing images.
Moreover, the testing splits of the other classes were collected from different sources.

To distinguish between different lung diseases in both scenarios, we evaluated three
CNN architectures (ResNeXt-50, Inception-v3, and DenseNet-161) and proposed an Ensemble-
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CNNs approach. Since the CNN architectures require huge amounts of labelled data for
training, we used data augmentation to cope with this limitation. The obtained results
showed that our approach outperformed the CNN architectures. Our proposed Ensemble-
CNNs achieved a high performance in the recognition of COVID-19 infection, resulting in
accuracies of 100% and 98.1% in three-class and five-class scenarios, respectively. In addi-
tion, our approach achieved promising results in the overall recognition accuracy—75.23%
and 81.0% for the three-class and five-class scenarios, respectively.

As future work, we are working on collecting more COVID-19 X-ray scans from
hospitals. Moreover, we are planning to define more lung disease classes depending on
the available X-ray scans. On the other hand, we are planing to use more powerful CNN
architectures in our Ensemble approach. In addition, combining deep features of different
architectures is an interesting approach that can improve the performance.
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CNN Convolutional Neural Network
RT-PCR Reverse Transcription Polymerase Chain Reaction
SVM Support Vector Machine
TP True Positive
FP False Positive
FN False Negative
AUC Area Under the ROC Curve
ROC Receiver Operating Characteristic
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