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advection-di�usion-reaction problems
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Abstract

A novel second order family of explicit stabilized Runge{Kutta{Chebyshev methods for
advection{di�usion{reaction equations is introduced. The new methods outperform existing
schemes for relatively high Peclet number due to their favorable stability properties and
explicitly available coe�cients. The construction of the new schemes is based on stabilization
using second kind Chebyshev polynomials �rst used in the construction of the stochastic
integrator SK-ROCK. An adaptive algorithm to implement the new scheme is proposed. This
algorithm is able to automatically select the suitable step size, number of stages, and damping
parameter at each integration step. Numerical experiments that illustrate the e�ciency of
the new algorithm are presented.

Keywords: advection-di�usion-reaction equations, explicit stabilized methods, Runge-Kutta
Chebyshev methods, RKC, SK-ROCK, ARKC.

AMS subject classi�cation (2010): 65L04, 65L20, 65M12

1 Introduction

In this paper we use the idea of stabilization by combining �rst and second kind Chebyshev
polynomials introduced in [5] to derive explicit stabilized methods for advection{di�usion problems
with, possibly, costly non-sti� reaction terms,

@t u(x; t ) = r � (D r u(x; t )) � r � (vu(x; t )) + r (u(x; t )) ; (x; t ) 2 
 � [0; T];

with initial and boundary conditions, where 
 2 Rd, D is the matrix of di�usion coe�cients, and
v is the velocity vector. The function r represents non-sti�, but possibly costly, reaction terms.
Note that in general, D and v may also depend onu leading to nonlinear di�usion and advection
terms. In the linear one dimensional setting, the equation reduces to

@t u(x; t ) = d@2
x u(x; t ) � a@x u(x; t ) + r (u(x; t )) ; (x; t ) 2 
 � [0; T] (1)

where d and a are positive reals, and 
 is a real interval. The Peclet number is de�ned by a=d
and is allowed here to be quite large. When discretizing the partial di�erential equation (PDE)
(1) in space using centered �nite di�erence for example, with mesh size �x, We obtain a system
of ordinary di�erential equations (ODEs) of the form

_y(t) = FD (y(t)) + FA (y(t)) ; y(0) = y0 2 Rd; t 2 [0; T]; (2)

� Univ Rennes, INRIA Rennes, IRMAR - UMR 6625, F-35000 Rennes, France.
Ibrahim.Almuslimani@univ-rennes1.fr.
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where FD represents the di�usion term with eigenvalues of its Jacobian grow as 1=� x2 on the
negative real axis, andFA represents the advection term (and possibly non-sti� reaction terms)
with eigenvalues of its Jacobian are of size 1=� x and located close to the imaginary axis and sym-
metric with respect to the origin. This means that the eigenvalues of the Jacobian of the obtained
system are approximately located in an ellipse with the length of its minor axis proportional to
the square root of the length of the major axis.

Explicit stabilized Runge{Kutta{Chebyshev methods were originally introduced in the context
of purely di�usive or di�usion dominated advection{di�usion problems (very small Peclet number)
as a compromise between costly implicit methods and restrictive usual explicit schemes [1, 2, 4,
8, 25]. Due to their versatility, they were extended to many other types of problems such as
advection{di�usion{reaction equations [9, 22, 27, 28, 29], stochastic di�erential equations (SDEs)
[5, 6, 7, 10], and optimal control problems [12]. Other types of stabilized methods were studied in
[23, 18, 19].

Typically, the stability domain of an explicit stabilized method contains a long narrow strip
around the negative real axis. In the context of advection{di�usion problems, the authors of the
article [28] propose the usage of the RKC method with very large damping parameter to make the
strip wider, which means that eigenvalues with slightly larger imaginary parts coming from the
advection terms can be put in. This comes at the cost of a serious shortening of the strip, which
means that, for a �xed time step, less eigenvalues with negative real parts can be put in. Later,
a partitioned Runge{Kutta{Chebyshev method (PRKC) of order 2 was designed in [29] based on
the RKC method [20] for the integration of ODEs that have a moderately sti� term (di�usion)
and non-sti� terms (advection or costly reaction terms). PRKC has a limited stability for the
advection term, and it shares with the standard RKC the same stability domain length over the
negative real axis. In [9], the authors propose a partitioned implicit{explicit orthogonal Runge{
Kutta method (called PIROCK) for the time integration of advection{di�usion{reaction problems
with possibly severely sti� reaction terms and sti� stochastic terms. The di�usion terms are solved
by the explicit, nearly optimal, second order orthogonal Chebyshev method (ROCK2). Applied to
advection{di�usion problems, the method has order 2 of accuracy and can handle the large Peclet
number regime but it needs very large damping that reduces a lot its stability domain length
over the negative real axis. In addition, PIROCK relies on the ROCK2 method, for which no
explicit formulas are available to compute the coe�cients for a given stage number. Recently, the
authors of [22] developed an improved version of the RKC method (called IMPRKC) for advection{
di�usion{reaction equations. Their idea is based on introducing an appropriate combination of
RKC polynomials which leads to a signi�cant increase of the width of the stability domain along
the imaginary axis with almost no loss of its length along the real axis. This comes at the cost of
a few additional function evaluations. The main drawback of the IMPRKC scheme is evaluating
FA at each stage of the method. This rich literature shows that the domain of stabilized schemes
is very active, and that the construction of an adaptively e�cient explicit stabilized integrator for
such important class of problems is quite challenging.

In [11, Sect. 3.7.2], the author of the present paper pro�ted from the idea of stabilization using
second kind Chebyshev polynomials, �rst introduced in [5] in the context of SDEs, to construct
a �rst order explicit stabilized method for advection{di�usion{reaction equations with optimal
stability domain. What made this quite intuitive is the similarity between mean square stability
for SDEs and the stability of the test equation for ODEs of the form (2) (see Sect. 4.1). In
this work, we construct a second order integrator based on RKC that outperforms the existing
methods in the literature. We propose a fully adaptive algorithm to implement the new second
order method.

This paper is organized as follows: in Section 2, we give a fast revision on explicit stabilized
methods. In Section 3 we present anoptimal �rst order explicit stabilized method for advection{
di�usion{reaction equations that we constructed in the thesis [11] inspired by previous work on
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SDEs [5]. In Section 4 we derive and analyze our new second order adaptive scheme in terms of
stability and convergence, and we propose a local error estimator for automatic step size selection.
Section 5 is dedicated to present and analyze some numerical experiments that illustrate the
e�ciency of the new schemes. Finally, we conclude in Section 6.

2 Preliminaries on explicit stabilized methods

This section is devoted to present useful standard materials.
In order to study the stability of a Runge{Kutta integrator applied to an ODE, the following

approach is widely used [4, 16]. Consider the test ODE

_y(t) = �y (t); y(0) = y0; (3)

where � 2 C with negative real part. If we apply a Runge{Kutta method with step size h on
(3), we get the relation yn +1 = R(h� )n y0, where the rational function R(z) is called the stability
function. Hence, the stability domain of the method is de�ned as

S := f z 2 C; jR(z)j � 1g:

In the particular case of explicit methods, R(z) is a polynomial which means that the stability
domain is necessarily bounded. For example, the stability domain of the explicit Euler method is
just a disk of radius 1 which explains the time step restriction it faces for sti� ODEs, while that of
the implicit Euler method is the complementary of a disk of radius 1. This shows the advantage of
implicit methods in terms of stability, however, for large dimensional problems and especially the
nonlinear and ill-conditioned ones, implicit methods become very costly and di�cult to implement.
Here appears the need to a compromise between classical explicit methods and implicit integrators.

This compromise is "explicit stabilized methods" (see the survey [4]). The idea is to construct
explicit Runge{Kutta integrators with extended stability domain that grows quadratically with
the number of stagess of the method along the negative real axis, and then allows to use large time
steps typically for problems arising from di�usion dominant advection{di�usion{reaction PDEs
for which the eigenvalues are close to the negative real axis and are very large in modulus.

Before proceeding, let us recall some useful facts on Chebyshev polynomials. The �rst kind
Chebyshev polynomials are de�ned by

T0(x) = 1 ; T1(x) = x; Tj (x) = 2 xTj � 1(x) � Tj � 2(x); j � 2: (4)

The second kind Chebyshev polynomials are de�ned by

U0(x) = 1 ; U1(x) = 2 x; Uj (x) = 2 xUj � 1(x) � Uj � 2(x); j � 2: (5)

Moreover, the two kinds polynomials satisfy the following

Uj � 1(x) =
T0

j (x)

j
: (6)

The stabilization procedure is based on the above relations. The fact that both kinds share the
same recurrence relation will be very useful in our analysis. Indeed, this allows to simultaneously
derive the recurrence formulas of the methods, otherwise, the cost would be doubled.

It was shown that for any explicit, consistent (order 1) Runge{Kutta method, the maximum
stability domain length over the negative real axis is 2s2, where s is the number of stages of the
method. The polynomial that achieves this optimal length is the shifted Chebyshev polynomial
Ts(1 + z=s2). See, for example, [17, Chap. V, Th. 1.1]. For robustness reasons, a damping of this
polynomial is introduced and the resulting scheme is recalled in the following subsection.
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Figure 1: Stability domains of the Chebyshev method (8) fors = 7 and di�erent damping values
� = 0 ; 0:05; 3:98.

2.1 Optimal �rst order Chebyshev methods

Consider the ODE
_y = f (y); y(0) = y0; t 2 [0; T]: (7)

Given y0, in order to compute y1 � y(h) using the optimal �rst order Chebyshev method applied
to (7) with step size h, the following recurrence is applied

K 0 = y0; K 1 = K 0 + � 1hf (K 0);

K j = � i hf (K j � 1) + � i K j � 1 + (1 � � i )K j � 2; j = 2 ; : : : ; s (8)

y1 = K s;

where ! 0 := 1 + �
s2 ; ! 1 := Ts ( ! 0 )

T 0
s ( ! 0 ) , and

� 1 :=
! 1

! 0
; � j :=

2! 1Tj � 1(! 0)
Tj (! 0)

; � j :=
2! 0Tj � 1(! 0)

Tj (! 0)
; j = 2 ; : : : ; s: (9)

The parameter � is called the damping parameter and it is necessary to avoid singularities in
the stability domain which ensures the robustness of the method (See Figure 1). Typically for
this method, � is �xed to 0 :05. It can be easily veri�ed, using the recurrence (4) and proceeding
by induction, that applied to the test problem (3), the above method produces after one step
y1 = K s = Rs(h� )y0 with

Rs(z) =
Ts(! 0 + ! 1z)

Ts(! 0)
;

for which the stability domain contains a narrow strip around the interval [ � C� s2; 0] with

C� =
1 + ! 0

s2! 1
' 2 � 4=3�

is very close to 2 (the optimal value for order 1). For � = 0 the stability function is again
Ts(1 + z=s2). The method has low memory requirements (only two stages have to be stored) and
reasonable propagation of round-o� errors even for large values ofs needed in practice [25, 26].
The fact that the length of the stability domain on the negative real axis enjoys a quadratic growth
with respect to the number of stagess is crucial to the success of explicit stabilized Runge{Kutta
methods.
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2.2 Second order RKC methods

To design a second order method, we need the stability polynomial to satisfy�

R(z) = 1 + z +
z2

2
+ O(z3):

A correction to the �rst order shifted Chebyshev polynomials was introduced to construct a sta-
bilized scheme of order 2 [13, 24, 26]. The obtained second order polynomial is the following

Rs(z) = as + bsTs(! 0 + ! 2z);

where,

as = 1 � bsTs(! 0); bs =
T00

s (! 0)
(T0

s(! 0)2)
; ! 0 = 1 +

�
s2 ; ! 2 =

T0
s(! 0)

T00
s (! 0)

; � = 0 :15: (10)

For each s, jRs(z)j remains bounded byas + bs = 1 � �= 3 + O(� 2) for z in the stability interval
(except for a small interval near the origin). The stability interval along the negative real axis
is [� 1+ ! 0

! 2
; 0] which is approximately [� 0:65s2; 0], and covers about 80% of the optimal stability

interval for second order stability polynomials, and the formula now for calculating s for a given
time step h is

s :=

" r
h� max + 1 :5

0:65
+ 0 :5

#

;

where the brackets mean rounding to the nearest integer, and� max is the spectral radius of the
Jacobian of f that can be calculated at each step using power method for example. Using the
recurrence relation of the Chebyshev polynomials, the RKC method as introduced in [26] is de�ned
by

K 0 = y0; K 1 = K 0 + hb1! 2f (K 0);

K j = � j h(f (K j � 1) � aj � 1f (K 0)) + � j K j � 1 + � j K j � 2 + (1 � � j � � j )K 0;

y1 = K s;

(11)

where

� j =
2bj ! 2

bj � 1
; � i =

2bj ! 0

bj � 1
; � j = �

bj

bj � 2
; bj =

T00
j (! 0)

T0
j (! 0)2 ; aj = 1 � bj Tj (! 0); (12)

for j = 2 ; : : : ; s. The parametersb0 and b1 are free (R0(z) is constant and only order 1 is possible
for R1(z)) and the values b0 = b1 = b2 are suggested in [21].

Remark 2.1. For simplicity of the presentation, we consider the case of autonomous problems
(with f independent of time) but we highlight that our approach also applies straightforwardly
to non-autonomous problems_y(t) = f (t; y(t)) . Indeed, a standard approach is to consider the
augmented system withz(t) = t, i.e. dz

dt = 1 ; z(0) = 0 and de�ne ~y(t) = ( y(t); z(t))T , see e.g. [14,
Chap. III] for details.

� Indeed, up to order two, the order conditions for nonlinear problems are the same as the order conditions for
linear problems [14, Chap. III].
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Figure 2: Stability domain of the new optimal �rst order method (15) in the p� q plane for s = 10
and � = 0 :05. The dashed lines correspond to�

p
� 2p.

3 Optimal �rst order scheme

Note that we have discussed the content of this section in the thesis [11], but we recall it here since
it gives insight about the construction of the second order adaptive integrator in the next section.

Consider the linear test problem

_y = �y + i�y; y (0) = y0; (13)

where � 2 R� , � 2 R, and i =
p

� 1. Applying a Runge{Kutta method to the above equation,
one gets an induction of the form

yn +1 = R(p; q)yn ;

with p = h� and q = h� . We de�ne the stability domain of a Runge{Kutta method applied to
(13) by

S = f (p; q) 2 R2 ; jR(p; q)j � 1g:

Equation (13) can be seen as the test equation for linear SDEs with thei� replacing the noise.
Hence, inspired by SK-ROCK [5], we consider the following stability polynomial

R(p; q) = A(p) + B (p)iq :=
Ts(! 0 + ! 1p)

Ts(! 0)
+

Us� 1(! 0 + ! 1p)
Us� 1(! 0)

(1 +
! 1

2
p)iq; (14)

whereTs and Us are the �rst and the second kind Chebyshev polynomials of degrees (the number
of stages), and the coe�cients ! 0 and ! 1 are the same as for the Chebyshev method (8). The
stability condition jR(p; q)j � 1 is equivalent to A(p)2 + B (p)2q2 � 1 which is exactly the mean
square stability condition described in [5, Sect. 2]. By [5, Theorem 3.2] and [5, Remark 3.6], for
� > 0 and s 2 N, jR(p; q)j � 1 for all p 2 [� 2! � 1

1 ; 0] and all q such that jqj �
p

� 2p (See Figure
2).

Remark 3.1. For SDEs, the condition jqj �
p

� 2p guarantees the stability of the solution of
the continuous problem, which means that numerical stability under this condition is su�cient.
However, for our test equation (13), the exact solution is stable when� � 0 and � 2 R, hence
even whenjqj �

p
� 2p is violated. Although stability under this condition is already a signi�cant

improvement comparing to standard explicit methods, we can use larger damping parameter� to
increase the width of the stability region along the imaginary direction in the case of large advection.

The new order one method for space discretized advection{di�usion{reaction equations (2),
is de�ned in the same way as the SK-ROCK method [5], by replacing the noise term by the

6



advection-reactions terms,

K 0 = y0

K 1 = y0 + � 1hFD (y0 + � 1hFA (y0)) + � 1hFA (y0)

K j = � j hFD (K j � 1) + � j K j � 1 + � j K j � 2; j = 2 ; : : : ; s;

y1 = K s;

(15)

where� 1 = s! 1=2, � 1 = s! 1=! 0 and the rest of the coe�cients are identical to those de�ned in (9).
Assuming enough regularity onFD and FA , the convergence proof is straightforward and based
on [5, Lemma 4.2]. The above scheme is also optimal in the sense that its stability region achieves
the maximum possible length over the negative real axis for an explicit consistent scheme.

Note that the method requires only 1 evaluation of the advection-reaction termsFA per time
step, while other existing methods for advection di�usion problems such as PIROCK [9] and
PRKC [29] require 3 and 4 evaluations ofFA respectively per time step. It also outperform the
mentioned methods by far in terms of stability. However, it has only order 1 of accuracy, which
motivates the construction of a second order integrator that competes with existing schemes in
terms of stability and convergence, taking advantage of the above analysis.

Note that we can adaptively increase the stability for advection by increasing� in the price of
loosing some length on the negative real axis. This will be explained in details in the next section
for the second order scheme, for which this adaptive increase of damping is a key feature.

4 New second order scheme

In this section, we introduce the new adaptive second order integrator based on the material
presented in the �rst 3 sections and inspired by the SK-ROCK method introduced in [5].

ARKC integrator The ARKC integrator (for adaptive RKC) applied to (2) is de�ned as follows
for s � 2:

G = hFA (y0 +
h
2

FA (y0 +
! 2

2
hFD (y0)) +

h
2

FD (y0)) + hFD (y0 +
! 2 � 1

2
hFA (y0))

� hFD (y0);

K � 1 = y0;

K 0 = K � 1 +
! 2

2
G;

K 1 = K 0 + b1! 2hFD (y0) + �G; and for j = 2 ; : : : ; s;

K j = � j h(FD (K j � 1) � FD (K 0) + (1 � aj � 1)FD (y0)) + � j K j � 1 + � j K j � 2

+ (1 � � j � � j )K 0;

y1 = K s;

(16)

where� =
�
1 � ! 2

2

�
b1s! 2; and the other coe�cients are identical to those de�ned in (10) and (12).

Note that for purely di�usive equations ( FA � 0), the method reduces to standard RKC (11).

Complexity The method requires s + 2 evaluations of FD and 3 evaluations of FA per time
step. The standard RKC and the PRKC methods both require s evaluations of FD per time step,
but RKC requires s evaluations of FA while PRKC requires only 4. The PIROCK merhod needs
s + 2 + l evaluations of FD (l = 1 or 2) and 3 evaluations of FA per time step. Finally, the
IMPRKC scheme requiress + ŝ evaluations of eachFD and FA , where ŝ becomes quite large for

7



very sti� problems. The advantage of our new scheme comes from having larger stability region
that changes adaptively, which allows to use bigger time steps.

Construction In order to construct a second order scheme, we need our stability function to
satisfy the following equality

R2(p; q) = 1 + p + iq +
1
2

(p + iq)2 + O((( p + iq)3)

= 1 + p + iq +
p2

2
+ ipq �

q2

2
+ O((p + iq)3):

(17)

A natural approach would be to modify the last stage of the �rst order scheme to reach second
order, but such naive modi�cation will cause severe instability. Our idea is to start the stabilization
using second kind Chebyshev polynomials from the beginning of the integration process. Hence,
inspired by the previous section, we consider the following polynomial

R2(p; q) = A2(p) + B2(p)( iq �
q2

2
)

:= as + bsTs(! 0 + ! 2p)

+
�

! 2

2
+

�
1 �

! 2

2

� Us� 1(! 0 + ! 2p)
Us� 1(! 0)

�
(1 +

! 2

2
p)( iq �

q2

2
);

(18)

where all the coe�cients are de�ned in (10), from which we can derive the new adaptive second
order ARKC method (16) for advection{di�usion{reaction problems, using the relations (4), (5),
and (6). The �rst part of our stability function (18) corresponds to the stability polynomial of
the standard second order RKC scheme, while the second part involves second kind Chebyshev
polynomials (as in (14)) in order to stabilize the advection part, and has the correct order. The
construction of the method from the polynomial (18) is done by induction using the relations
(4)-(6). See also Lemma 4.2 below.

Unlike the case of standard ODEs where the termz2=2 is enough to have order two for nonlinear
problems, some additionalcoupling conditions need to be satis�ed here due to the partitioned
nature of the scheme (see [14, Sect. III.2]). These conditions result from the fact that the term
ipq in (17) is in fact the sum of two terms: 1

2 ipq and 1
2 iqp, which are not necessarily equal for

multidimensional and/or nonlinear problems. The quantity G is constructed carefully to get order
2 of convergence for general nonlinear problems. For linear equations,G = (1 + ! 2

2 )( iq � q2

2 ).
Analogously to some existing second order methods [9, 28], our damping parameter is not �xed
to a small value, but it is an increasing function of the stage numbers. However, for relatively
large Peclet numbers, no huge damping is needed, and the method still perform very well as will
be shown in Section 5.

4.1 Stability analysis

Remark 4.1. The stability analysis of Runge{Kutta type methods is usually made on linear test
problems, but we emphasize that such test equations only give insight on the stability of the stabilized
method under study (here ARKC). This is because practical problems are usually nonlinear, and
even for linear problems, the involved operators cannot in general be diagonalized simultaneously.

Lemma 4.2. The scheme(16) applied to the linear test problem(13) with step sizeh, produces
the following recurrence

yn +1 = Rs(h�; h� )yn ;

where the stability polynomialRs(p; q) is de�ned in (18).
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(a) � = 0 :15, � s = 0 :65s2 , � s = 0 :17s. (b) � = 1 :5, � s = 0 :56s2 , � s = 0 :35s.

(c) � = 3, � s = 0 :5s2 , � s = 0 :5s. (d) � = 10, � s = 0 :35s2 , � s = 0 :9s.

Figure 3: Illustration of the stability regions of the ARKC method (16) in the p � q plane for
s = 20 and di�erent values of the damping parameter � . For each stability region, we plot the
largest possible ellipse that �ts inside.

Proof. By induction on j , it can be shown that, for every j � 1, the internal stages satisfy

K j = Rj (p; q)yn ;

where,

Rj (p; q) := aj + bj Tj (! 0 + ! 2p)

+
� ! 2

2
+

�
1 �

! 2

2

�
Uj � 1(! 0 + ! 2p)

�
bj s! 2(1 +

! 2

2
p)( iq �

q2

2
):

For j = s, we have that bss! 2 = 1=Us� 1(! 0) becauses� 1T0
s(! 0) = Us� 1(! 0) and the proof is

done.

In contrast to the �rst order scheme (15) and the stochastic integrator SK-ROCK [5], the
damping parameter for the ARKC method is not �xed. Indeed, it is an increasing function of the
Peclet number and the number of stagess. We provide numerical stability analysis that illustrates
the nice features of the new scheme (see Figures 3 and 4).

In what follows, we will respectively denote by � s and � s the half width and the half height of
the largest ellipse that can be put in the stability region of the corresponding method.

The method (16) is designed to handle quite large Peclet numbers, this means that we need the
width of the stability region in the imaginary direction to be as large as possible. While the length
over the negative real axis grows quadratically withs, we cannot achieve more than linear growth
on the imaginary direction (this fact is given as an exercise in [16, Chap. IV]). In [28], the RKC
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method is proposed with large damping value which reduces the length of the stability domain
over the negative real axis to � s = 0 :34s2, and leads to a growth of only O(

p
s) for the ellipse

half-height � s. The PRKC method proposed in [29] uses the standard small damping� = 0 :15
that keeps � s � 0:65s2, but � s is �xed to 1 :7 no matter how large is the number of stagess, which
does not add much to the standard RKC method since this might be useful only in the small Peclet
number regime. However, the main feature of the method is to reduce the number of evaluations
of possible non sti� terms such as non-sti� advection or reaction terms. The PIROCK integrator
[9], is notably better than the two mentioned methods RKC and PRKC. Two kinds of damping
are proposed for PIROCK, the �rst lead to a nearly optimal length over the negative real axis
� s � 0:81s2 but � s is limited to 0:07696s + 1 :878. For the second damping,� s = 0 :5321s + 0 :4996
but � s reduces to 0:43s2. It shares as well the feature of reducing the evaluation of non di�usive
terms. Nevertheless, PIROCK still have two drawbacks: the �rst one is the non-availability of
explicit closed form formulas to compute its coe�cients for a given number of stagess, the other
is the limited choice of damping.

The stability region of the ARKC method changes adaptively with the spectrum of the Jacobian
of the vector �elds at each time step. This change is due to the damping parameter� which is not
necessarily constant. In fact, the ellipse half width � s still grows quadratically with s, while the
ellipse half height � s grows linearly with s, in contrast to RKC and PRKC methods. For example,
for the standard value of � = 2=13 used for RKC in [20] and PRKC in [29],� s is still equal to 0:65s2

and � s ' 0:17s (see Figure 3a), whereas for PRKC� s is �xed to 1 :7 . In addition, increasing
the value of the damping parameter� adds more space in the imaginary direction which is very
favorable for the advection dominated problems. Figure 3c illustrates the stability region in the
p-q plane for s = 20 and � = 3. We can see that � s = 0 :5s2 and � s = 0 :5s, while the best that
PIROCK [9] could achieve for almost the same� s is � s = 0 :43s2 which makes di�erence for large
values of s. For � = 10 we have � s = 0 :35s2 and � s = 0 :9s as shown in Figure 3d, compare that
with the case of standard RKC with in�nite damping, considered in [28], where � s = 0 :34s2 while
� s = O(

p
s). The last method to compare with is IMPRKC introduced in [22] where the authors

provide a plot for s = 50 stages andŝ = 3 additional stages. The length over the negative real
axis stays almost the same as RKC at 0:65s2, while the width along the imaginary axis is around
0:8s. As said before, the evaluation of the advection{reaction term at every step of IMPRKC
is a disadvantage that limits its performance. For instance, for small Peclet numbers it needs
time steps as much as the standard RKC scheme which makes it a bit more expensive because of
the additional stages needed. In Section 5, our scheme ARKC is shown to perform better in all
regimes.

4.2 Choice of damping

In fact, � s is a function of s and � , this introduces additional di�culty in the estimation of the
value of � s. Therefore, we will introduce many choices of the range of Peclet number to simplify the
implementation. Let � D and � A be the spectral radii of the Jacobians ofFD and FA respectively.
For ODEs coming from the discretization of the linear PDE (1), we have � D = 4d=� x2 and
� A = a=� x, then

� A
p

� D
=

a

2
p

d
:

We de�ne the number
P0

e :=
a

p
d

;

hence,� A =
p

� D = 1
2 P0

e. Similarly, we can show that q = 1
2 P0

e
p

� hp. We will use this new number
P0

e to adapt our choice of damping according to the parameters of the problem. Notice that this
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(a) � = 0 :15, � s = 0 :65s2 . (b) � = 1, � s = 0 :59s2 . (c) � = 5, � s = 0 :4345s2 .

Figure 4: Stability polynomial (18) for s = 200 (left) and s = 30 (middle and right), and di�erent
values of � and q.

is just another measure of the advection dominance that is proportional to the Peclet number and
more convenient to use in our algorithm.

For P0
e � 1=10, i.e, � A =

p
� D � 1=20, we �x � = 0 :15 up to s = 200, and for s between 200 and

500 we set� = 0 :6 (we do not allow s to be more than 500). For 1=10 < P 0
e � 1=2 which means

that 1=20 < � A =
p

� D � 1=4, we consider the following choices fors and � :

2 � s � 30 31 � s � 60 61 � s � 110 111� s � 160
� = 0 :2 � = 0 :45 � = 1 � = 1 :5

161� s � 260 261� s � 360 361� s � 500
� = 2 :4 � = 3 � = 4

Table 1: 1=10 < P 0
e � 1=2; 1=20 < � A =

p
� D � 1=4.

Tables for other values ofP0
e are given in appendix A. In�nitely many choices could be done, but

we will present and use only a few choices since they are enough for the method to perform very
well. The methodology to compute the above values is easy, it is enough to plotRs(p; q) for the
corresponding choice ofq and to vary � in a way that we stay stable for the given value ofs (see
Figure 4).

4.3 Convergence analysis

In this section we will prove the second order of convergence of the scheme (16) when applied to
ODEs of the form (2) arising from the discretization of advection{di�usion{reaction problems.

Theorem 4.3. Let T > 0 and consider the system of ODEs(2) on the time interval [0; T], where
FD and FA are of classC2 and are Lipschitz continuous. Suppose in addition that the �rst and
second derivatives ofFD and FA are bounded. LetN 2 N, h = T=N, and tn = nh; n = 1 ; : : : ; N ,
and consider the method(16) applied to (2) with step sizeh, such that the number of stagess and
the damping parameter� are chosen appropriately to guarantee stability. Then, we have for all
n = 1 : : : ; N ,

ky(tn ) � yn k � Ch2; (19)

where C is independent ofh and n. In other words, the method converges with order 2.

Proof. Let us prove �rst that the local error (the error after one step) satis�es

ky(h) � y1k = O(h3): (20)
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Throughout the proof, Fi (y0) will be simply denoted by Fi , and F 0
i (y0)Fj (y0) will be denoted by

F 0
i Fj with i; j 2 f D; A g.

Using Taylor expansion, we can easily see that

G = hFA +
h2

2
F 0

A FA +
h2

2
F 0

A FD + ( ! 2 � 1)
h2

2
F 0

D FA + O(h3):

Now, let us suppose that

K j = y0 +  j
1hFD +  j

2hFA +  j
3h2F 0

D FD +  j
4h2F 0

D FA +  j
5h2F 0

A FD +  j
6h2F 0

A FA + O(h3): (21)

The �rst two stages of the method satisfy:

K 0 = y0 +
! 2

2
G; K 1 = y0 + b1! 2hFD (y0) + ( � +

! 2

2
)G;

hence, we have, 0
1 = 0,  1

1 = b1! 2,  0
2 = ! 2

2 ,  1
2 = � + ! 2

2 ,  0
3 =  1

3 = 0,  0
4 = ! 2 ( ! 2 � 1)

4 ,
 1

4 = ( � + ! 2
2 ) ! 2 � 1

2 ,  0
5 = ! 2

4 ,  1
5 = 1

2 (� + ! 2
2 ),  0

6 = ! 2
4 , and �nally,  1

6 = 1
2 (� + ! 2

2 ). By
performing a Taylor expansion of the stagesK j de�ned in (16) and replacing K j � 1 and K j � 2 by
the expansion de�ned in(21), and �nally identifying the coe�cients, we get the following relations

 j
1 = � j (1 � aj � 1) + � j  j � 1

1 + � j  j � 2
1 ;

 j
2 = � j  j � 1

2 + � j  j � 2
2 + (1 � � j � � j )

! 2

2
;

 j
3 = � j  j � 1

1 + � j  j � 1
3 + � j  j � 2

3 ;

 j
4 = � j ( j � 1

2 �
! 2

2
) + � j  j � 1

4 + � j  j � 2
4 + (1 � � j � � j )

! 2(! 2 � 1)
4

;

 j
5 = � j  j � 1

5 + � j  j � 2
5 + (1 � � j � � j )

! 2

4
;

 j
6 = � j  j � 1

6 + � j  j � 2
6 + (1 � � j � � j )

! 2

4
:

In order to prove (20), it is su�cient to show that  s
1 =  s

2 = 1 and  s
3 =  s

4 =  s
5 = 1

2 . Obviously,
 j

6 =  j
5 for all j � 0. We will provide proofs for the �rst 3 coe�cients, the other two can be done

using similar arguments.

� For  j
1 we have:  0

1 = 0,  1
1 = b1! 2, and  j

1 = � j (1 � aj � 1)+ � j  j � 1
1 + � j  j � 2

1 , thus  j
1 are the

internal stages of the RKC method (11) applied to the problem _y = 1 ; y(0) = 0 with step
sizeh = 1. This means that for all 0 � j � s,  j

1 = cj , where cj is the j th node of the RKC
method. Therefore,  s

1 = cs = 1. Moreover, according to [20, Sect. 2], for allj = 2 : : : ; s we
have

 j
1 = cj = ! 2

T00
j (! 0)

T0
j (! 0)

; c1 =
c2

T0
2(! 0)

= b1! 2; c0 = 0 :

� It can be proved that  j
2 ; j = 2 ; : : : ; s are given by  j

2 = ! 2
2 + � bj

b1
Pj (! 0); where Pj (x) are

polynomials that satisfy the following two term recurrence relation

P0(x) = 0 ; P1(x) = 1 ; Pj (x) = 2 xPj � 1(x) � Pj � 2(x); j � 2:

Comparing with the relation (5), it can be easily seen that for all j � 1,

Pj (x) = Uj � 1(x) = T0
j (x)=j:

Hence, s
2 = ! 2

2 + � bs
sb1

T0
s(! 0) = ! 2

2 + (1 � ! 2
2 )! 2bsT0

s(! 0) = 1 :
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� The proof for  j
3 is very similar to that of  j

2 . Indeed, we can prove for eachj = 0 ; : : : ; s the
equality  j

3 = 2 ! 2
2bj Qj (! 0), where

Q0(x) = 0 ; Q1(x) = 0 ; Qj (x) = T0
j � 1 + 2xQ j � 1(x) � Qj � 2(x); j � 2:

Using the relation (4), we observe that for all j � 0, Qj (x) =
T 00

j (x )
4 , which implies that

 s
2 = 2 ! 2

2bsT00
s (! 0)=4 = 1:

Thus, (20) is proved, and using regularity assumptions made on the vector �elds, [15, Theorem 3.6]
implies the global convergence estimate (19).

4.4 Variable step size control and the fully adaptive algorithm

We introduce the following local error estimator that allows us to adaptively select the time step
size in order to reach a given accuracy,

Est n +1 = C(12(yn � yn +1 ) + 6 h(FD (yn ) + FA (yn ) + FD (yn +1 ) + FA (yn +1 ))) ;

where C = 1=6 � c2 + (1 =2 � c1)� � 1=6� , with � = 0 if FA � 0 and � = 1 otherwise, and

c1 =
! 2

2

�
1 �

! 2

2

� �
1 + ! 2

U00
s� 1(! 0)

Us� 1(! 0)

�
; c2 = sbsU00

s� 1(! 0)
! 3

2

6
:

To get an intuition about the above coe�cients, compare the third order term in the exact poly-
nomial which is (p + iq)3=6 = p3=6 � iq3=6 + iqp2=2 � pq2=2 and the third order term of stability
polynomial (14) that is equal to c2p3 + c1iqp2 � pq2=2. Note that the above estimator is inspired
by the one considered for RKC in the paper [20], and they coincide for� = 0. In contrast to the
estimators introduced for PRKC [29] and PIROCK [9], we do not consider two separate estimators
for FD and FA , since our method is de�ned in a di�erent way. Indeed, for improved stabilization,
the advection-reaction terms are computed at the beginning and not separately at the end, which
makes the method more similar to RKC. We adopt the standard step size selection strategy pro-
posed in [20] for RKC (see also [15, page 167]). Now, we are ready to present our fully adaptive
algorithm,

Algorithm 4.4 (y0 7! y1). Given a time step sizeh and an initial value y0:

� Calculate � A and � D at the current value of the solution.

� Calculate � A =
p

� D and choose the corresponding table among Tables 1, 3, 4, 5, 6, 7.

� Search the minimums (and the corresponding� ) in the chosen table such that1+ ! 0
! 1

> h� D .

� Generate the coe�cients (10) and (12) and apply the recurrence(16) to calculate y1.

� Update the step size according to the automatic step size selection procedure and repeat until
reaching the �nal time.

Remark 4.5. To ensure stability, it is enough to chooses such that 1+ ! 0
! 1

> h� D , because the
relation between � and the corresponding range fors in each table is built to ensure that, once
� h� D lies inside the stability domain, the whole ellipse containing the eigenvalues for the given
spectral radii �ts inside.
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Remark 4.6. In the case where the eigenvalues have nonzero imaginary part and very small real
part, this is close to purely advective regime, which is out of the scope of the paper. However,
this case can be treated in two di�erent ways, either by using the adaptive algorithm without any
modi�cation and then the error estimator will choose a very small time step, or by modifying the
algorithm to integrate such systems (extremely large Peclet number) with RK3 or RK4 (for which
the stability domain includes a part of the imaginary axis).

For the calculation of the spectral radii � D and � A , we use the Matlab function "eig". In other
programming languages, one can use nonlinear power method as in [3] for example. However, the
cost of such methods is a di�erent issue and is beyond the scope of the present paper. The code
of the ARKC integrator as well as the drivers that reproduce the numerical experiments will be
made publicly available on the page: https://sites.google.com/view/ ibrahim-almuslimani.

5 Numerical experiments

We will compare ARKC with IMPRKC, PIROCK, and PRKC as they were shown to outperform
the other stabilized methods for advection{di�usion{reaction problems where the reaction term is
not sti�.

5.1 Linear 1D advection{di�usion problem

An excellent example to compare the performance of ARKC with IMPRKC, PIROCK, and PRKC
is the following 1-dimensional advection{di�usion equation with periodic boundary conditions

@t u + a@x u = @2
x u;

u(x; 0) = sin(2 �x );

u(0; t) = u(1; t);

(22)

wherea is a positive constant (Pe = a), x 2 [0; 1], and t � 0. We discretize the space interval [0; 1]
to a uniform grid f xk gN

k=0 with xk = kh, and h = 1=N. We use second order central di�erences
for the advection and the di�usion terms. We denote by uk (t) the approximation of u(xk ; t), and
the periodic boundary conditions propose that u0(t) = uN (t). The eigenvalues of the obtained
matrix are

� k =
2
h2 (cos(2k�h ) � 1) �

ia
h

sin(2k�h ); k = 1 ; : : : ; N;

and are located in an ellipse in the left half-planeC� , which makes the problem typical for the
comparison of the three schemes.

For the numerical experiments, we takeN = 150, t 2 [0; 1=2], and we �x Atol = Rtol = tol .
The initial step is �xed to 10 � 3. The number of rejected steps is always very small and thus
neglected. We can clearly see in Table 2 that PRKC can compete with our scheme ARKC only
in the very small Peclet number regime, while For moderate and large Peclet number, ARKC is
notably better. On the other hand, the cost of ARKC is close to that of PIROCK for moderate Pe

with small advantage for the latter when using large tolerance 10� 2 . However, ARKC becomes
cheaper and more accurate at the same time for large values ofPe (in our experiment for Pe = 10
and 12). For small tolerance 10� 5 ARKC outperforms PIROCK in all Peclet number regimes.
This is expected because the damping (and so the vertical with of the stability region) is �xed
for PIROCK (when FA 6= 0, PIROCK has � s = 0 :43s2 and � s ' 0:53s + 0 :5). The adaptivity of
ARKC allows to continuously increase the vertical width of its stability region which lets it to be
more exible with respect to the change in Pe. One should not forget that the explicit availability
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Method a Steps FD evals FA evals s max L 1 error at t = 1=2
PRKC 0:1 14j71 862j1860 56j284 126j106 4:8 � 10� 4j3 � 10� 7

PIROCK 0:1 13j237 789j3654 39j711 150j104 1:8 � 10� 3j7:5 � 10� 7

IMPRKC 0:1 15j83 953j2150 953j2150 139j118 3:4 � 10� 4j3:3 � 10� 7

ARKC 0:1 14j79 886j2098 42j237 145j97 4:3 � 10� 4j3:3 � 10� 7

PRKC 0:5 27j77 1341j2067 108j308 57j57 8:7 � 10� 9j3:8 � 10� 9

PIROCK 0:5 13j237 789j3648 39j711 150j104 1:8 � 10� 3j7:3 � 10� 7

IMPRKC 0:5 15j83 953j2152 953j2152 112j118 3:5 � 10� 4j2 � 10� 7

ARKC 0:5 13j79 909j2132 39j237 142j117 2:5 � 10� 4j2:2 � 10� 7

PRKC 1 47j89 1803j2342 188j356 40j40 9 � 10� 10 j6:1 � 10� 10

PIROCK 1 13j237 849j3648 39j711 200j104 1:7 � 10� 4j6:6 � 10� 7

IMPRKC 1 15j84 949j2147 949j2147 138j121 3:7 � 10� 4j4:5 � 10� 7

ARKC 1 11j74 896j2104 33j222 194j153 2 � 10� 4j3:6 � 10� 7

PRKC 2 90j120 2575j2893 360j480 29j29 1:2 � 10� 10 j1 � 10� 10

PIROCK 2 13j237 934j3720 39j711 200j150 2 � 10� 62:5 � 10� 8

IMPRKC 2 15j86 942j2174 942j2174 141j108 4:5 � 10� 4j2:8 � 10� 7

ARKC 2 10j56 995j2267 30j168 228j172 4:8 � 10� 5j1:8 � 10� 7

PRKC 5 222j229 3980j4049 888j916 18j18 4:1 � 10� 11 j4 � 10� 11

PIROCK 5 14j238 1043j3826 42j714 182j150 1:8 � 10� 51:7 � 10� 7

IMPRKC 5 16j103 966j2350 966j2350 148j111 5:5 � 10� 4j1:6 � 10� 7

ARKC 5 12j59 1272j2764 36j177 237j184 1:9 � 10� 6j2:9 � 10� 8

PRKC 10 442j453 5738j5818 1768j1812 13j13 6:2 � 10� 11 j6 � 10� 11

PIROCK 10 24j246 1574j4086 72j738 125j125 1:3 � 10� 3j1:2 � 10� 5

IMPRKC 10 23j149 1227j2819 1227j2819 106j111 9 � 10� 4j2:1 � 10� 6

ARKC 10 15j84 1359j3207 45j252 234j160 5:4 � 10� 6j7:3 � 10� 8

PRKC 12 530j543 6355j6436 2120j2172 12j12 6:4 � 10� 11 j6:2 � 10� 11

PIROCK 12 28j255 1750j4306 84j765 104j104 1:1 � 10� 2j4:3 � 10� 6

IMPRKC 12 27j170 1353j3036 1353j3036 92j92 2:1 � 10�� 3j3:1 � 10� 6

ARKC 12 18j104 1557j3593 54j312 196j150 3:5 � 10� 5j4:3 � 10� 7

Table 2: Comparison of ARKC, PRKC, and PIROCK for the linear advection{di�usion problem
(22). The numbers on the left correspond totol = 10 � 2, while those on the right correspond to
tol = 10 � 5.

of ARKC coe�cients helps a lot in making the scheme adaptive with respect to the change inPe,
the feature that is missing in PIROCK.

In the small Peclet number regime, IMPRKC performs very similar to standard RKC method,
which is expected, and thus it is outperformed by ARKC and the other two schemes. For large
Peclet numbers, IMPRKC outperforms PRKC and its cost is close to PIROCK, while ARKC
performs much better due to the very small number of evaluations of the advection term compared
to that of IMPRKC.

The smaller number of steps needed in ARKC compared to the three other methods, leads to
a signi�cantly lower number of FA evaluations no matter how big is the number of stages.

5.2 Burgers equation with a nonlinear reaction term

As an example of a PDE with variable Peclet number, we consider the following Burgers equation
with a nonlinear reaction term and periodic boundary conditions
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@t u + 10u@x u = @2
x u + sin( u2); (x; t ) 2 [0; 1] � [0; 1=2];

u(x; 0) = 1 + sin(2 �x );

u(0; t) = u(1; t) 8 t 2 [0; 1=2]:

(23)

We discretize the above equation in space using second order central di�erences with �x = 10 � 2,
into N + 1 grid points with N = 100. We calculate a reference solution using the Radau IIA
method of order 5 [16].

Figure 5: Change in Peclet number with respect to time in problem (23).

In Figure 5, we plot the Peclet number of equation (23) as a function of time. we see that it
is variable and of quite large magnitude.

Figure 6: Solution of equation (23) obtained using ARKC method (16) at di�erent time moments.
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Figure 6 shows the solutionu(x; t ) of equation (23) obtained using ARKC method (16) at
di�erent time moments.

(a) FD evaluations (b) FA evaluations

Figure 7: Comparison between ARKC, IMPRKC, and PIROCK in terms of cost for problem (23).

In Figure 7, we compare the number of functions evaluations needed to obtain a given accu-
racy for the solution of the Burgers equation (23) using 3 di�erent numerical methods: ARKC,
IMPRKC, and PIROCK. The results are obtained for tol = 10 � r ; r = 1 ; : : : ; 6. The advantage of
our scheme ARKC (16) is very clear. For IMPRKC, the number of FD evaluations is reasonable,
while that of FA evaluations is very large compared to ARKC and PIROCK. For PIROCK, the
�xed damping increases the number of steps and of functions evaluations with respect to ARKC.
The exibility of ARKC gives it remarkable advantage over the other schemes. We can also see
that even when the number ofFD evaluations for ARKC is close to that of the other two schemes,
the number of evaluations ofFA containing the nonlinear advection and reaction terms stays much
lower, that is because of the low number of time steps needed.

6 Conclusion

In this paper, we have constructed a fully adaptive second order explicit stabilized Runge{Kutta{
Chebyshev time integrator for advection{di�usion{reaction PDEs, called ARKC. The new scheme
is implemented using an algorithm that is able to adaptively choose the step size, the number of
stages and the damping parameter of the method according to the Peclet number. The new scheme
is shown to outperform existing methods in the literature for the same type of problems. This
high performance is a result of the full adaptivity of Algorithm 4.4, in particular, the adaptive
damping that allows signi�cant control of the form of the stability region as a function of the
Peclet number.
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A Damping and number of stages for some choices of Peclet
number

s < 11 < 21 < 31 < 41 < 51 < 61 < 71 < 81 < 91 < 101
� 0:15 0:6 1 1:4 1:7 2:1 2:4 2:7 3 3:3
s < 121 < 141 < 161 < 181 < 201 < 251 < 301 < 401 < 501
� 3:7 4:1 4:5 4:9 5:3 6 6:6 7:7 8:8

Table 3: 1=2 < P 0
e � 1; 1=4 < � A =

p
� D � 1=2.

s < 11 < 21 < 31 < 41 < 51 < 61 < 71 < 81
� 0:7 1:5 2:3 2:9 3:5 4 4:5 4:9
s < 91 < 101 < 141 < 181 < 251 < 301 < 401 < 501
� 5:2 5:5 6:7 7:7 8:8 9:8 11 12

19



Table 4: 1 < P 0
e � 3=2; 1=2 < � A =

p
� D � 3=4.

s < 11 < 21 < 31 51 < 71 < 111 < 151 < 311 501
� 1 2:5 3:5 4:8 6 7:8 9 12:5 15

Table 5: 3=2 < P 0
e � 2; 3=4 < � A =

p
� D � 1.

s < 11 < 21 < 31 51 < 71 < 111 < 151 < 311 501
� 2 3:8 5 6:8 8 10:4 12 16 19

Table 6: 2 < P 0
e � 2

p
2; 1 < � A =

p
� D �

p
2.

s < 11 < 31 < 71 < 151 < 311 < 501
� 4 9 13:5 18 23 27

Table 7: P0
e > 2

p
2; � A =

p
� D >

p
2.

One can get more tables and increase the adaptivity of the algorithm with respect to damping.
This will for sure increase the performance of the method. However, the method performs already
very well with the tables we provided.
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