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Abstract: The checkerboard constitutes the best pattern for in-plane displacement and strain
measurement because it maximizes image gradient. The use of laser marking to deposit such a pattern
on flat surfaces is investigated in this paper. Optimal settings for the parameters influencing the quality
of the pattern are given. This pattern being periodic, the images are processed with the Localized
Spectrum Analysis, which is one of the spectral techniques used to process such images. It is shown
that the metrological performance in terms of measurement resolution is equivalent to the one obtained
with transferred checkerboards. Compared to the classic transfer technique generally used to deposit
such patterns, the benefit of using laser marking is its ease of use, a much higher print speed and the
fact that a thin coat of white paint instead of a thicker layer of white adhesive is employed to ensure
a good contrast in the images. Various examples of strain measurements are given, in particular the
measurement of the strain field around a knot embedded in a wood specimen subjected to a tensile
test.

Keywords: checkerboard, digital image correlation, laser marking, localized spectrum analysis,
optimal pattern, wood

1. Introduction

Non-interferometric full-field measurement techniques such as Digital Image Correlation (DIC)

are now widespread in the experimental mechanics community. The associated image processing

procedures used to retrieve displacement and strain fields from images have been widely studied in many

papers and the different parameters influencing the quality of the final result are now well known, which

enables experimentalists to employ such measuring tools for material characterization purposes [1].

From a computational point of view, the performance of such systems has globally stabilized and their

performance now mainly depends on external parameters such as computer power and digital camera

performance. Whatever the image processing procedure used, the sought information is however

always encoded in images, so the way this information is encoded also deeply influences the quality of
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the final results. Concerning DIC, developing optimal patterns is addressed is various recent papers,

see [2, 3, 4, 5, 6, 7, 8, 9, 10] for instance.

A desired pattern being defined, having a printing technique able to reliably reproduce it onto

specimens in the best possible way is the crux of the problem. Airbrushing and paint spraying are

cheap and popular pattern depositing techniques but it is clear that mastering those techniques to

obtain certain global pattern quality criteria such as the mean and the distribution of the size of the

dots as well as a uniform spatial distribution is somewhat tricky, if not impossible in practice. Some

more sophisticated techniques have been described in the literature. They are of interest when not

only global parameters are to be obtained on the printed pattern, but when localized details are to

be faithfully reproduced. This is for instance the case for the types of pattern defined in [2, 3, 4].

Ref [11] reports various techniques such as stamping [12], lithography [13], UV photolithography [14],

temporary tattoo [15] or the use of TEM (in case of regular grids at microscale [16]) as potential

printing techniques in this case. The aim of this paper is to consider another technique, namely laser

marking, which seems only having been scarcely used hitherto for this purpose [11, 17], and to delve

into its use as a marking device of flat surfaces of specimens.

Concerning the optimal pattern for in-plane displacement and strain measurements, it is worth

remembering that the contrast and the image gradient, which can be estimated for instance with the

Mean Intensity Gradient (MIG) [18], are the main influencing image parameters driving the quality

of measurements performed with DIC, both being expected to be maximized. The contrast being

assumed to be optimal, Ref. [3] claims that the checkerboard is theoretically the optimal pattern since

the MIG is maximum with this type of pattern geometry. The problem is however that DIC cannot

manage such periodic patterns if the displacement is greater than the period of this pattern. Ref. [3, 4]

thus propose patterns, which sufficiently depart from the checkerboard so that DIC converges. To

stick with this optimal pattern, Ref. [19] proposes to extract displacement fields from checkerboards

images by using one of the spectral techniques available to process periodic patterns, see [20] for a

complete comparison between these techniques. In addition, it is demonstrated in [21] that under mild
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assumptions, minimizing the optical residual in the spatial domain, as DIC does, can advantageously

be switched to the frequency domain when periodic patterns are considered. Indeed, in this case, a

closed-form solution is available, and this is precisely the formula, which is classically used in all the

procedures developed to extract displacement/strain fields from periodic patterns. Employing periodic

patterns depends however on the ability to deposit such patterns on the surface of the specimens to be

tested. The challenge is that the period is intermediary between large scale, i.e. millimetric periods,

which can easily be printed with a printer able to directly print patterns onto flat rigid surfaces,

and small-scale (“small” meaning that the period is equal to some micrometers), for which practical

solutions are also available, see [22, 23, 24] for instance. Depositing periodic patterns with intermediary

values of the period, thus corresponding to some periods per millimeter, can be made by using the

technique proposed in [25]. With this technique, the pattern is first printed onto a polymeric sheet by

using a high-resolution (up to 50,800 dots per inch) photoplotter. The black pattern is then transferred

onto the surface by using a white adhesive. Grids or checkerboards of period as low as 100 µm can

be printed with this technique. Another solution is presented in Refs. [26, 27, 28]. It relies on a high

resolution printer. It enables the authors to deposit periodic patterns such as grids, but with lower

frequencies than the preceding technique since the minimum value is about 3 lines/mm.

In this study, we investigated in depth the settings, which must be used in order to print checker-

boards on flat specimens made of various materials such as aluminum, steel, wood and polymer. The

idea was first to spray paint the surface of those specimens in white and then to engrave small black

squares to form a checkerboard. We considered a challenging case, with a checkerboard of period

p = 100µm. It means that small squares of size 50µm × 50µm constituted the smallest repetitive

square unit. This small quantity enabled us to compare the performance of the patterns obtained with

the present engraving system on the one hand, and the one obtained with the classic pattern transfer

technique proposed in [25], for which p = 100 µm is the smallest period which can be obtained.

In this context, the paper is organized as follows. We first start by describing the main features

of the laser marker used in this study. The fluctuation of the nominal frequency of the checkerboards
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engraved with this device is then studied. The noise level in displacement and strain maps obtained

with a checkerboard pattern deposited with laser marking on the one hand, and its counterpart observed

with the classic transferring procedure on the other hand, are also compared with a specimen equipped

with these two types of checkerboards. The performance of the present engraved pattern technique is

finally illustrated with strain maps on a wood specimen in which a knot is embedded.

2. Marker settings

2.1. Principle of laser marking

The laser marker used in this paper is the MDU1000C marker made by Keyence. This printing

device is generally used for engraving small QR codes, barcodes, letters or numerals onto flat sur-

faces, not really for metrology purposes. This marker is equipped with a YVO4 UV laser featuring a

wavelength of 355 nm. This value is about three times lower than the wavelength of standard lasers,

which is 1064 nm. Such lasers feature high absorption rate on a variety of materials. The irradiated

light is therefore more efficiently absorbed by the surface. In addition, the power does not need to be

increased to obtain a highly visible mark [29]. An interesting consequence of using lasers with a low

wavelength to mark surfaces is that the heat stress is low, hence the term “cold marking”. It is worth

emphasizing that this technique does not involve the use of ink. The basic idea is that the surface of

the material at the focal point is changed by the energy delivered by the laser. “Changing” means

here vaporization, flaking or fracturation, depending on the nature of the material impacted by the

laser. In the present case, we considered flat surfaces spray painted in white, the consequence of a

laser hit being that the white color locally turned into black, which induces locally contrasted patterns.

According to the datasheet of the supplier, the maximum surface size that can be printed with this

marker is 125 × 125mm2. Specimens placed side by side can potentially be printed at the same time

as long as they do not cover altogether this maximum area. Stepped, inclined, cylindrical and cone

targets can be marked but these possibilities were not tested during this study.
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2.2. Influencing parameters

The standard use of the marker consists of loading an image saved for instance in a jpeg file. The

controller then behaves like a black box and engraves the corresponding pattern on the surface by

adjusting by itself the following influencing parameters:

1. Laser power: the maximum power is equal to 3 W at 40 kHz, but the value at the focal point is

2.5 W only. The laser power can be adjusted between 0 and this maximum value;

2. Spot variable: this setting corresponds to a slight defocus. Defocusing means that the focus plane

is shifted along the direction of the beam, thus perpendicularly to the surface to be marked. The

amplitude of this shift ranges between -5 mm and +5 mm with respect to the surface. The

apparent diameter of the spot increases as this defocus increases or decreases;

3. Repetition: this is the number of passes of the laser, i.e. the number of times the same pattern is

printed at the same place. The higher this number, the more marked the contrast of the resulting

pattern.

4. Scan speed: this is the movement speed of the laser spot. Its maximum value is 12,000 mm/s.

This is quite high but it is worth remembering that no mechanical system is involved, thus no

inertia effect may slow down this movement. This speed should ideally be high to ensure a rapid

printing of the whole pattern;

5. Pulse frequency: this is the frequency at which a pulse is emitted by the system. The higher this

frequency, the lower the spot energy. This quantity lies between 40 and 400 kHz.

However, preliminary tests (not discussed here) show that this procedure does not lead to high-

quality printed checkerboards. Indeed, this option is effective for standard printing applications, not

really for marking surfaces with tiny details and well mastered shape, color and more importantly,

high contrast. We therefore followed a second option which consists of feeding the controller with a

dxf file containing the geometrical features of the pattern to be printed as well as the toolpath. All

or only some of the five parameters above can then be set by the user in this case, which gives room

for defining procedures that are optimal for checkerboard engraving. We first started by adjusting

5



the first three parameters above, the last two being equal to default values. However, the patterns

obtained with this solution were not satisfactory, so we finally had to move on to the direct setting of

the whole set of five parameters.

It is finally worth noting that a laser marker basically prints small dots, which can be merged to

form more sophisticated forms such as lines. A minimal diameter of 25 µms is reported by the supplier

for these dots. In practice, experiments performed during this study show that this diameter is equal

to 32 µm. The question is now to examine how to combine all these parameters to achieve a better

quality than that obtained with the standard procedure described above.

2.3. Seeking the best settings

A sensitive issue is that adjusting the parameters must take into account the nature of the material

beneath the layer of paint. For instance, if we consider laser power, spot variable and repetition as

fixed parameters, and scan speed and pulse frequency as adjustable ones, a simplistic approach consists

in thinking that increasing scan speed while decreasing pulse frequency in proportion leads to the same

pattern. Preliminary tests show that it is not the case, presumably because some other parameters

depending of the material such as the heat diffusion coefficient also influences the results.

Another remark is that the checkerboards to be printed are made of small squares. Since we were

interested here in engraving checkerboards made of small squares, it is clear that with circular spots,

only shapes approximating such small squares can be obtained, see Figure 1. This point is not really

an issue since checkerboard images are obtained by sampling the actual distribution of gray levels. In

addition, cameras are equipped with a lens, which is always characterized by a certain Point Spread

Function (PSF). This manifests itself by a slight blur of the sharp details such as square borders in

checkerboard images. In practice, such “squares” were therefore obtained by following two different

routes. The first one consists in printing side by side four small circles with a diameter equal to 32 µm.

The centers of these dots were horizontally or vertically shifted from the center of each “square” by a

certain quantity equal to ±s. The second one was obtained in plotting first the four preceding spots,

and then a fifth one at the center of the square defined by the centers of the four circles. Choosing one
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of the two options depends on the nature of the material whose surface must be marked. It has been

observed that apart from steel, the second option with five circles of diameter 32 µm and s = ±8 µm

is the best one.

The period of the pattern is set by combining scan speed and pulse frequency. In this context,

various combinations were investigated for these two latter parameters as well as for the three others

listed above which all influence the final result, in addition to the geometric properties of the dot

(diameter, distance s between centers).

D = 32µm
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Figure 1: Schematic view illustrating the printing procedure. a- Option 1: printing four shifted dots to approximate a
square. b- Option 2: same as a- but with a fifth dot at the center. c- Principle of the checkerboard printing procedure
illustrated with Option 1. The checkerboard is printed in different passes, each of them being represented by a different

color, thus each set of dots of the same color is printed during the same pass along parallel horizontal lines.

We give here the final values that we obtained for the five parameters corresponding to the best

solution. The intermediate results of the trial and error procedure employed to reach this goal are

not presented for the sake of brevity and clarity. These five best parameters are gathered in Table 1.

Though fixed at its minimum value, a pulse frequency equal to 40 kHz means that 40,000 dots can be
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Parameter Optimal value
Laser power 100%
Spot variable offset=0
Repetition 20
Scan speed 4,000 mm/s
Pulse frequency 40 kHz

Table 1: Optimal settings for printing a checkerboard of period p = 100 µm with 5 dots of diameter 32 µm per
“square” and shift d = 8 µm. For steel only, 4 dots per “square” give a better contrast than 5 dots

plotted per second. One cm2 being covered by 10,000 squares, 20 repetitions and 5 dots being used

to form each black square, 4 × 20 × 5 = 400 s = 6mn 40s were necessary to mark one cm2, which is

approximately in agreement with what was observed when marking the specimens tested during this

study.

2.4. Result on different types of materials

The laser marker was employed on various types of materials, which were all spray painted in white

beforehand. Two types of polymers, namely plexiglass and polyethylene, as well as aluminium, steel

and wood were considered. Figure 2 shows a closeup view of the patterns obtained on these different

materials.

It can be observed that the resulting pattern is well contrasted in each case. Some local defects can

be detected, in a sense that some squares expected to be white are actually gray or even black. We will

see in the examples below that these defects do not really cause any visible flaws in the displacement

and strain maps. The reason is that they are too localized to be detectable by the measuring technique

or that the displacement compensation technique recalled in Section 3.3.1 below enables us to get rid

of them.

3. Assessing the metrological performance

The objective here is to compare the quality of the displacement and strain maps obtained by

using the type of engraved pattern described above instead of the one classically transferred from

printed polymeric sheets by using the procedure described in [25]. These two types of checkerboards

are respectively referred to as CKB1 and CKB2 in the following.
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3.1. Experimental procedure

CKB1 and CKB2 were engraved on the same open-hole parallelepipedic specimen made of aluminum

alloy (dimensions: 250×50×1.5 mm2) in order to facilitate the comparison between the results obtained

with each type of checkerboard, see Figure 3. The diameter of the hole was equal to 12 mm. CKB1

was printed on the left-hand side of the specimen while CKB2 was deposited on the right-hand side.

Both patterns were about 80 × 25 mm2 in size, featured a period p equal of p = 100 µm. Both were

inclined by about 10 degrees with respect to the borders of the images in order to avoid any parasitic

fringes in the strain maps due to aliasing, as suggested in [30].

A picture of this specimen is shown in Figure 4. It can be seen in this picture that CKB1 is globally

brighter than CKB2. To perform a fair comparison, it was thus necessary to adjust the shutter time

in such a way that the best contrast could be obtained for both types of patterns. The aperture of

the lens was equal to f/5.6 in both cases in order to stabilize this parameters which influences the PSF

affecting the images. Two types of images were captured in turn: one for each type of pattern. As

described in [31], the optimal setting was obtained for each type of pattern by i− adjusting the focus

of the lens, ii− plotting the histogram of the gray level distribution and iii− choosing the shutter

time in such a way that the right-hand tail of the histogram was tangent to the maximum value of

the gray level, namely 255. This shutter time was equal to 5.8 ms and 16.5 ms for CKB1 and CKB2,

respectively. Indeed, it is demonstrated in [32] that the higher the contrast, the lower the sensor noise

propagation to the final displacement and strain maps, so it is important to maximise this contrast for

each type of checkerboard to get the lowest possible noise in the final displacement and strain maps.

This point will also be discussed later on in this this paper.

The same procedure was applied to process images of CKB1 and CKB2 to extract the corresponding

displacement fields, the nominal period being the same for these two patterns. Only the angle between

the vertical border of the specimen and the principal axes of symmetry of the checkerboard slightly

changed from one case to another. The precise value of this angle was obtained by merely measuring

the orientation of the fundamental peaks in the spectrograms of the CKB1 and CKB2 images.
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The camera used to capture the images was a Prosilica GT 6600 featuring a CCD sensor of size

6576×4384 '28.8E+06 pixels, with a gray depth equal to 8 bits. The lens was a Nikkor Micro 200 F4

AF-D. Two LED light sources were placed symmetrically along the left- and right-hand sides of the

specimen. The specimen was fixed in such a way that its border was aligned with the rows of pixels

of the camera. Figure 5 shows the open-hole specimen placed in the experimental setup.

3.2. How to process checkerboard images to extract displacement fields? A brief reminder

The same procedure was employed to extract the displacement and strain fields from the images

of CKB1 and CKB2. It is based on the so-called Localized Spectrum Analysis (LSA), which consists

in first applying to the images a Windowed Fourier Transform (WFT) with a unique frequency equal

to the mean value of the period p′ = p
√

2/2 of the checkerboard along the diagonals of its natural

axes of symmetry, p being the period along these natural axes, see Figure 1 where these quantities

are represented. The phase distribution for both the reference and the deformed images are then

calculated by taking the argument of the result of the WFT (the WFT of an image gives a distribution

of complex numbers defined at each pixel). The displacement field is finally deduced by using the

following expression:

u(x) = − p

2π

(
Φcur(x+ u(x))− Φref (x)

)
(1)

where u is the sought displacement field, Φcur and Φref contain two phase distributions, namely one

along each direction of the reference and current images, respectively. u is involved in both parts of

this equation. It is retrieved by using the fixed-point algorithm, which rapidly converges here, one

iteration being generally sufficient [33]. Directly subtracting the phase maps without performing this

compensation of the displacement between current and reference images causes parasitic fluctuation

of the frequency of the checkerboard to impair the quality of the strain maps.

The window used in the WFT is a Gaussian envelope. Such a window gives the best tradeoff

between various constraints [34]. The function defining this Gaussian window is given by the following

equation:
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w(x) =
1

2π`2
e

− ||x||2
2`2


(2)

where ` is the standard deviation and ||.|| denotes the norm of vector .. This is a handy parameter

which can be adjusted by the user to decrease the noise level in the strain maps, as discussed specifically

in Section 3.3.2. The price to pay is however that the spatial resolution is impaired in proportion.

All details concerning this measuring technique can be found in Refs [33, 19].

3.3. Results

3.3.1. Experiment #1: fluctuation of the nominal frequency of the patterns and experimental evidence
of the benefit of the displacement compensation

In Equation 1 above, it can be seen that the current (Φcur) and reference (Φref ) phase distributions

are subtracted. The displacement is accounted for in the expression of the former to subtract these

quantities exactly at the same physical point. Indeed, as illustrated in [35], periodic patterns are

potentially corrupted by slight fluctuations of their frequency around their nominal value, and these

fluctuations may be erroneously considered as caused by the actual deformation of the surface of

the specimen. These fluctuations should therefore be removed and this is precisely what is done by

compensating the effect of the displacement in Equation 1, where u1 and u2 are taken into account

in the expression of Φcur. The present printing device also has some intrinsic limitations in terms of

frequency consistency of the periodic patterns which were engraved. As an example, Figures 6-a and

-b show Φ1 extracted from the image of CKB1 in the reference and current configurations, respectively.

These phases were obtained by using the WFT discussed in Section 3.1. No suspicious high-frequency

fluctuation can detected to the naked eye, the phase only gently evolving over the surface of the

specimen. Differentiating this quantity with respect to x1 (by using the gradient function of Matlab)

enables us to amplify tiny local fluctuations. This is illustrated in Figures 6-c and -d, where ∂Φcur
1 /∂x1

is represented. Slight regular “welts” are clearly visible. They are presumably due to the printing

device, which cannot print for some technical reason the checkerboard with a rigorously constant

period. In particular, it is worth remembering that the distance between two consecutive dots along

the horizontal lines in Figure 1 is controlled by the pulse frequency while the distance between two
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horizontal lines is given in the dxf file, the controller then imposing this vertical shift. This difference

may affect the repeatability of the pattern along the vertical and horizontal directions. Directly

subtracting the current and reference phases without any compensation to compute the displacement,

thus by using the following equation instead of Equation 1:

ũ(x) = − p

2π

(
Φcur(x)− Φref (x)

)
, (3)

where the expression of Φcur does not take into account u (we have Φcur(x) in Equation 3 instead

of Φcur(x + u(x)) in Equation 1), leads to a displacement field denoted by ũ. This displacement is

corrupted by these potential defects. Again, this is not really detectable in the ũ1 map (not shown here).

Estimating the longitudinal strain ε̃11 by differentiating ũ1 by using the gradient function of Matlab

shows that this strain distribution is skewed by these defects. This is clearly visible in Figure 6-e. The

same pattern as in Figure 6-c and -d can be observed twice, which is due to the fact that these defects

affect both Φcur and Φref , and that these quantities are not subtracted at the same physical point.

The slight shift in between is caused by the displacement of the physical points between their reference

and current positions. On the contrary, resorting to compensation to estimate the displacement (thus

using Equation 1 instead of Equation 3), enables us to get rid of these parasitic pattern in the strain

maps, as illustrated in Figure 6-f. Note that similar maps (not shown here) are obtained for the other

derivatives and strain components.

Figure 7 shows the same quantities as in Figure 6, but for CKB2 instead of CKB1. It can be

seen that the defects are less pronounced and more diffuse for CKB2. Again, the benefit of using

motion compensation is clearly highlighted when comparing Figure 7-e and Figure 7-f. In Figure 7-f,

the slight increase of ε11 due to the presence of the hole barely emerges from the noise floor, on the

right-hand side of the hole. This phenomenon is less visible in Figure 6-f, probably because the load

is not perfectly symmetric.

The reader may wonder whether the compensation is also efficient for greater values of the dis-

placement and strain. Figures 8 and 9 give the response since a higher value for the load is considered
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here, namely 3500 N instead of 500 N. It can be seen that the amplitude of the actual strain becomes

greater than the parasitic strain due to the fluctuation of the nominal frequency of the checkerboard,

but applying the compensation of the displacement still gives a significant improvement of the quality

of the strain maps since the spurious fluctuations have disappeared without impairing the spatial res-

olution. The magnitude of the load being here greater than in the preceding case, the strain increase

close to the hole is higher. It is therefore clearly visible in the maps obtained with both patterns, see

Figures 8-f and 9-f.

In conclusion, apart from the information irreversibly lost when sampling and quantifying the

information in the numerical images, the only sources of error due to image processing which affect

the displacement and strain maps are:

1. sensor noise propagation, which causes a random error in the displacement and strain maps,

2. the systematic error due to the fact that regardless to the preceding random error, the displace-

ment returned by LSA is not exactly the actual one, but the actual one convolved by the kernel

used when applying the windowed Fourier transform [36, 37].

This latter effect manifests itself by an attenuation of the amplitude of the highest spatial fre-

quencies which are necessary to represent the true displacement and strain fields. This attenuation

causes image blur to appear in the maps, especially in the strain maps. This effect can however be

considered as negligible when the actual displacement and strain fields only gently evolve over the

surface of the specimen [38], which is the case here despite the presence of a hole. The pattern-induced

bias recently described in [39, 40] is negligible for periodic patterns such as checkerboards [41]. It is

also worth remembering that other sources of error such as distortion, non-parallelism between sensor

and specimen or parasitic out-of-plane movement may also affect the final results, but they are not

discussed in this study.

In the following, we focus our attention on the first of the two effects listed above, which enables

us to assess the measurement resolution for the displacement and for the strain (see definition in

the Appendix), and for each of the two marking techniques used to prepare the specimen shown in
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Figure 3. Other metrological parameters of interest for full-field measurement techniques such as the

systematic error due the blur discussed above or the spatial resolution (as defined in [42]) are either

negligible or identical for both techniques. They are therefore not considered here. Note that the

spatial resolution is the same because the same period p is considered for both CKB1 and CKB2, and

the same standard deviation ` of the Gaussian envelope in Equation 2 is used when processing with

LSA the images obtained with both types of patterns.

3.3.2. Experiment #2: assessment of the displacement and strain resolutions obtained with CKB1 and
CKB2

Principle. The objective here is to assess the displacement and strain resolutions obtained with CKB1

and CKB2 by focusing on the propagation of sensor noise to the final displacement and strain maps.

We still considered for this the specimen shown in Figure 4. 200 pictures were taken in the reference

configuration and 200 others after applying a tensile force equal to 500 N. At each level, half of these

200 images were taken with settings optimized for CKB1 and the other half with settings optimized for

CKB2. This stack of images enabled us to calculate, for each of the two patterns, 100 displacement and

strain maps, and to deduce the pixelwise distribution of the standard deviation of each displacement

and strain component. It is worth remembering that only the shutter time was changed when taking

the images of CKB1 and CKB2, the focus and the aperture being unchanged. The equivalent standard

deviation for the displacement, defined by

σequ =

√√√√ 1

N

N∑
k=1

std2(uj(xk, yk)) j = x or j = y (4)

has also been calculated in each case. This quantity reflects the average noise level in the displacement

maps obtained for each patterns. The same quantity is introduced for the strain components. For

this quantity and by definition, σε is
√

2 smaller for the shear strain ε12 than for the normal strain

components ε11 and ε22 [37]. It is worth emphasizing that performing reliable experiments is some-

what tricky because any tiny movement between camera and specimen may potentially influence the

pixelwise estimation of the standard deviation of the displacement along time. As in similar studies
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aimed at assessing the metrological performance of full-field measurement techniques, [19] for instance,

the average displacement was subtracted for each of the displacement maps to get rid of the influence

of micro-translations on the apparent value of σequ.

Sensor noise propagation has been studied in [36] and theoretical results were verified in [32]. The

predictive formulas for the standard deviation of the noise in displacement and strain maps read as

follows:



σu =

(
p′

4`π3/2

)
×
(

1

K

)
× σimage for displacement components and

σε =

(
p′
√

2

8`2π3/2

)
×
(

1

K

)
× σimage for normal strain components,

(5)

where:

• σu and σε are the standard deviation of the noise in the displacement and strain maps, respec-

tively;

• p′ is the period of the periodic pattern along its diagonals. p being the period of the checkerboard

along its natural axes of symmetry, p′ is equal to p′ = p×
√

2

2
= 100×

√
2

2
' 70.7 µm for both

CKB1 and CKB2, see Figure 1 where p and p′ are represented;

• ` is the standard deviation of the Gaussian envelope used as a kernel in the WFT, see Equation 2

above. This quantity is set to ` = p = 100 µm in the examples shown below;

• σimage is the standard deviation of the noise affecting the images, this noise being assumed to

be homoscedastically distributed while noise affecting real image is heteroscedastic [43]. Note

that heteroscedastic noise can be stabilized and changed into homoscedastic noise by using the

Generalized Anscombe Transform [44] but this procedure has not been applied since we do not

use this equation to thoroughly predict the noise level in displacement and strain maps, but to

discuss the parameters influencing sensor noise propagation to this maps;

• K is the modulus of the WFT used in LSA. For a periodic function, this modulus is theoretically
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equal to [36]:

K =
|d1|γA

2
(6)

where γ is the contrast defined as a coefficient lying between 0 and 1, and A the amplitude of

the periodic function. |d1| is the modulus of the coefficient of the first non-constant term in

the Fourier expansion of the function describing the periodic profile. This coefficient reflects the

“closeness” of this function to a pure sine function. The higher this coefficient, the better this

closeness.

Following these equations, it is clear that the higher the value of γA, the higher the value of K and

the lower the value of the noise in the maps. Since we seek the best performance for the measuring

system at hand and since we try to highlight the influence of the pattern, it was decided to keep only a

region (denoted by D) of each pattern image for the assessment of the noise in both the displacement

and strain maps. D is defined for each pattern by the region where K is greater than a threshold

value equal to 50% of the maximum value of K over the checkerboard image. The border of the zone

covered by D is plotted in blue for each type of pattern in Figure 4.

Results. Figure 10 shows the histograms of the standard deviation of the in-plane displacement com-

ponents u1 and u2 calculated pixelwise from the stack of images. These quantities are calculated only

for the pixels within domain D defined for CKB1 and CKB2.

As in other recents studies using the same type of procedure to quantify the noise in displacement

maps [19, 38], the shape of these histograms is not exactly a nice and smooth Gaussian curve, which

is probably due to the fact that some tiny parasitic movements are not perfectly eliminated. The

noise level is also slightly greater along the loading direction (direction 1), which is consistent with the

results obtained in [19] with similar experiments. The main conclusion is however that the noise level

is similar for CKB1 and CKB2.

Considering now the strain maps enables us to completely get rid of the effect of in-plane parasitic
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movements. The histograms of the distribution of the standard deviation over D of the three in-

plane strain components are represented in Figure 11. These histograms are much smoother than

their counterparts plotted in the preceding figure for the displacement components. As expected, the

results are similar along directions 1 and 2. The noise level is lower for the shear strain, which is logical

since by definition, it is expected to be
√

2 times lower than for the normal strains along directions

1 and 2. A ratio close to
√

2 is obtained with these experimental results: for instance, for ε11, if we

multiply by
√

2 the standard deviation obtained for ε12 for CKB1, we have σequ×
√

2 = 1.71×
√

2 ' 2.41

instead of 2.45 which is observed in the experiment. Similar ratios are obtained for ε22 as well as for

CKB2. Again, the main conclusion is that the noise level is only slightly greater with CKB1 than with

CKB2 while the effort and time required to deposit CKB1 is much lower than for CKB2. In addition,

no adhesive layer is deposited, only a thin paint layer being sprayed before engraving the pattern.

The thickness of the coat of paint has been measured with a measuring column. It is equal to about

20− 30 µm, which is much lower than the thickness of the white adhesive, which is generally observed

to be equal to some tenths of mm, depending on the skill of the experimentalist. This is certainly

much more favorable for studying crack propagation for instance.

The objective of the next section is to illustrate the versatility of the technique by using it in a

case for which strain fields are expected to be highly heterogeneous.

3.4. Experiment #3: measuring the strain field around a knot embedded in a wood specimen

We considered here a wood specimen of dimensions 250×35×15 mm2 subjected to a tensile test. A

situation for which a knot is embedded in this specimen has been deliberately chosen, see Figure 12-a.

Indeed, this knot is expected to behave like an inclusion embedded in an orthotropic material and, as

such, to give rise to a heterogeneous strain field around it. In addition, this specimen can be regarded

as a stack of early and late wood layers featuring different rigidities. These layers are therefore also

expected to give rise to heterogeneous strain distributions with sharp fluctuations. The presence of

a crack in the knot (detail A in Figure 12-a) and the wavy aspect of the wood rings (detail B) are

also expected to increase the strain heterogeneity in this zone. The objective here was to examine to
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what extent such a strain measuring system could be able to reveal fine details in the strain maps.

A thin layer of wood filler was applied onto the knot and sanded to obtain the best possible flatness

of the specimen in this region. The specimen was then uniformly spray painted in white and the

checkerboard was engraved with the laser marker by following the procedure described in Section 2.3.

The specimen was finally subjected to a tensile test along direction 1 and images were captured with

the same camera as above. The same lighting system as in the preceding experiment was employed.

The displacement-controlled loading rate was equal to 1 mm/mn. The shutter time was equal to 5.3 ms

and the aperture to f/5.6. The zone marked with the checkerboard is the gray rectangle in Figure 12-b.

The natural axes of symmetry of this checkerboard are parallel to the sides of the small squares and

aligned with the border of this gray rectangle. It can be seen that this rectangle is slightly inclined

with respect to the border of the specimen, as already justified. It can also be observed in Figure 12-b

that the gray level is not uniform over the rectangle. Some local fluctuations are visible. They are

certainly due to the fact that the paint layer is not perfectly uniform. We will however see that no

questionable changes are detected in the strain maps shown below, which is presumably due to the

fact that the information is encoded in the phase of the periodic signal, not directly in its amplitude.

We focused our attention on the zone around the knot and thus only plot the strain fields in the

region of interest represented by the white dashed box in Figure 12-a. Hence only a small portion of

the images is considered here. The three strain fields over this zone are depicted in Figures 13, 14

and 15 for a tensile force equal to F = 5, 000 N. The local rotation ω12 (defined as the antisymmetric

part of the displacement gradient) is also given in Figures 16. As in the preceding experiment, these

quantities were obtained by setting the standard deviation of the Gaussian used in the WF to ` = p.

The calculation time to extract the maps from the deformed and reference images was equal to 3 min

and 40 s. The computer used for these calculations was equipped with an 2-core Intel Core i7 5557U

@ 3.1Ghz CPU and 16 Gb memory. The following remarks can be drawn from these maps:

• the noise level is quite low compared to value of the actual strain components calculated for this

value of the load. The spatial resolution is however sufficiently small to reveal small details in
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the strain distribution. The white circle at the bottom right of Figure 13 (see detail D in this

figure) has a diameter equal to 6× `. This is the apparent width of the Gaussian envelope used

to obtain these maps according to the 3−σ rule [45], which claims that the apparent diameter of

a Gaussian enveloppe is equal to 6 times its standard deviation. The standard deviation of the

Gaussian ` being set to ` = p in this case and the period p of the checkerboard along its natural

axes of symmetry being equal to 6.23 pixels=100 µm, it means that the diameter of this circle is

equal to 0.6 mm. The calculation of the displacement and strain components being performed

pixelwise, it is like these strain maps were obtained with as many strain displacement/strain

gages as pixels in these maps, namely about 13 millions in the present case, only a portion of

the 28.8 millions of pixels of the camera sensor being used to cover the region of interest. The

size of these gages is a circle of diameter 0.6 mm. These gages are shifted between each other

by a quantity equal to 1 pixel, thus 100/6.23 ' 16 µm, which means that a significant overlap

occurs between these gages. This is the reason why the quantities displayed in these maps are

not independent at all the pixels, which can be modeled by a mere convolution of the actual and

sought phases of the periodic signal by a kernel which is precisely the Gaussian envelope defined

in Equation 2 and used in the WFT [36];

• a striking similarity is observed between the strain maps and the closeup view of the specimen

in Figure 12-a. No ground truth is available for this strain distributions, but fine details such

as the crack at the middle of the knot (see detail “A” in Figures 12-a) or the wavy wood rings

around the knot (see detail “B” in Figures 12-a) are faithfully replicated in the strain maps,

especially for ε22 and ε12, and for the local rotation map ω12;

• the shear strain map and the rotation map are more or less antisymmetric with respect to an

approximately vertical line passing through the knot;

• increasing the value of the standard deviation ` of the Gaussian envelope used in the WFT would

directly reduce the noise level in the strain maps. According to Equation 5, multiplying ` by
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a factor equal to k would reduce (thus improve) the strain resolution by k2. The price to pay

would be to induce a blur in the fine details given in these maps;

• interestingly, a small piece of dirt is visible at the top left of the three maps. It cannot be removed

by using the displacement compensation procedure because it is fixedly connected to the lens

and thus does not move with the specimen. The compensation causes a slight shift of this dirt

to appear in the maps, which enables us to visually assess the magnitude of the displacement in

this zone, see detail “C” in Figure 13.

Conclusion

A procedure for depositing on flat surfaces checkerboard patterns of period as low as 100 µm was

discussed in this paper. This technique relies on the use of a laser marker. The main conclusion is that

the metrological performance of the measuring system based on this type of marking device is globally

the same as the one classically obtained with checkerboards transferred from preprinted sheets with

white adhesive. The benefit of using this type of marking device is that checkerboard patterns are

obtained in a more systematic way, without any layer of adhesive, and that marking surfaces is much

more rapid. It has been shown that the nominal frequency of the checkerboard is not regular, which

corrupts the phase derivative maps of the periodic signal which are measured. The final strain maps

are however flawless thanks to the displacement compensation used while processing the images.

In some ways, the present study gives a response to a timely issue, namely the definition of the

optimal pattern for DIC and the availability of printing means suitable for this pattern. This response

is that the optimal pattern for in-plane displacement and strain measurement being checkerboard

(because image gradient is maximized) and the latter being periodic, the problem of the minimisation

of the optical residual over small regions shall be switched from the spatial domain to the Fourier

domain where such a pattern becomes processable. It has been shown in the present paper that such

a pattern can be laser marked.

Future studies are necessary to improve the present results:
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• it would be of interest to see if depositing a coat of paint to increase image contrast, as we did

in the present study, could be avoided. Indeed, laser gravers can potentially deposit black and

white patterns by adjusting the settings discussed at the beginning of the present paper, but this

possibility depends on the nature of the material;

• checkerboards of period equal to 100 µm were engraved in this study, but the technique is perhaps

able to print checkerboards with smaller periods. This should be checked with additional printing

tests;

• whatever the type of patterning technique, we discussed here a 2D technique, which “only” gives

in-plane displacement, strain or rotation components, and not the out-of-plane displacement for

instance. A work is currently underway to address this issue in a similar spirit as stereo-DIC.
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Appendix: definition of the measurement resolution

In Ref. [46], the measurement resolution is defined by the smallest change in a quantity being

measured that causes a perceptible change in the corresponding indication. More precisely, it is proposed

in [47] to define it as the change in quantity being measured that causes a change in the corresponding

indication greater than one standard deviation of the measurement noise, which enables us to quantify

the measurement resolution. This definition is quite arbitrary, any other multiple of the standard

deviation being also potentially acceptable, but the idea is that the resolution quantifies the smallest

change not likely to be caused by measurement noise [47].
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a- Plexiglass b- Polyethylene

c- Aluminium d- Steel

e- Wood

Figure 2: Checkerboard obtained by laser marking different materials prepainted in white. Period of the checkerboard
along its natural axes of symmetry: p = 100 µm
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CKB1

<latexit sha1_base64="TNx63CQgyeR7xbNx8nQYxsZ9coc="></latexit>

CKB2

<latexit sha1_base64="P8gqfxoTTnyr/c6dPdi4xC/LRJg="></latexit>

CKB1

<latexit sha1_base64="TNx63CQgyeR7xbNx8nQYxsZ9coc="></latexit>

CKB2

<latexit sha1_base64="P8gqfxoTTnyr/c6dPdi4xC/LRJg="></latexit>

Figure 3: Schematic view of the specimen and location of the two checkerboard patterns CKB1 (engraved) and CKB2
(transferred).
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Figure 4: CKB1 and CKB2 as deposited onto the specimen, with lighting optimal for CKB1 (a-) and CKB2 (b-). The
border of domain D used for assessing the noise level in the maps in Section 3.3.2 below is plotted in blue for each

pattern.

24



Figure 5: Experimental setup.
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Figure 6: CKB1. a- Φref
1 at 0 N. b- Φcur

1 at 500 N. c- ∂Φref
1 /∂x1 at 0 N. d- ∂Φcur

1 /∂x1 at 500 N. e- ε̃11 calculated
with Equation 3. f- ε11 calculated with Equation 1
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Figure 7: CKB2. a- Φref
1 at 0 N. b- Φcur

1 at 500 N. c- ∂Φref
1 /∂x1 at 0 N. d- ∂Φcur

1 /∂x1 at 500 N. e- ε̃11 calculated
with Equation 3. f- ε11 calculated with Equation 1

27



-5

0

5

10

15

-5

0

5

10

15

-0.01

-0.005

0

0.005

0.01

-0.01

-0.005

0

0.005

0.01

-3

-2

-1

0

1

2

3
10-3

-3

-2

-1

0

1

2

3
10-3

1

<latexit sha1_base64="Y/FOkopwxb3WPSYmJc3dVJClT9k="></latexit>

2

<latexit sha1_base64="/Za65Uw1iJTwIlCZUBmjp1tWAIM="></latexit>

Figure 8: CKB1. a- Φref
1 at 0 N. b- Φcur

1 at 3500 N. c- ∂Φref
1 /∂x1 at 0 N. d- ∂Φcur

1 /∂x1 at 3500 N. e- ε̃11 calculated
with Equation 3. f- ε11 calculated with Equation 1
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Figure 9: CKB2. a- Φref
1 at 0 N. b- Φcur

1 at 3500 N. c- ∂Φref
1 /∂x1 at 0 N. d- ∂Φcur

1 /∂x1 at 3500 N. e- ε̃11 calculated
with Equation 3. f- ε11 calculated with Equation 1
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Figure 10: Distribution over D of the standard deviation for the two in-plane displacement components.a- CKB1. b-
CKB2.
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Figure 11: Distribution over D of the standard deviation for the three in-plane strain components. a- CKB1. b- CKB2.
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a- Central zone of the wood specimen and approximate location
of the region of interest where strain and local rotation maps are plotted.

A: crack along the diameter of the knot.
B: wavy aspect of the annual rings around the knot.

b- Same zone as in a- after spray painting the specimen in white
and engraving the checkerboard pattern by laser marking.

Figure 12: Wood specimen before and after spray painting the surface in white and engraving the checkerboard pattern.
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Figure 13: εxx strain map over the zone of interest shown in Figure 12. C: piece of dust on the sensor giving an idea of
the amplitude of the actual displacement between current and reference configurations. D: top view of the Gaussian

envelope according to the 3− σ rule [45].

Figure 14: εyy strain map over the zone of interest shown in Figure 12. See in Figure 12 the crack along the diameter
(detail A) and the wavy aspect of the annual rings (detail B).

33



Figure 15: εxy strain map over the zone of interest shown in Figure 12.

Figure 16: ωxy local rotation map over the zone of interest shown in Figure 12.
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[19] M. Grédiac, B. Blaysat, and F. Sur. Extracting displacement and strain fields from checkerboard

images with the localized spectrum analysis. Experimental Mechanics, 59(2):207–218, 2019.
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[33] M. Grédiac, F. Sur, and B. Blaysat. The grid method for in-plane displacement and strain

measurement: a review and analysis. Strain, 52(3):205–243, 2016.
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