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Abstract—Anomaly Detection (AD) is an important research
topic, with very diverse applications such as industrial defect
detection, medical diagnosis, fraud detection, intrusion detection,
etc. Within the last few years, deep learning-based methods have
become the standard approach for AD. In many practical cases,
the anomalies are unknown in advance. Therefore, most of chal-
lenging AD problems need to be addressed in an unsupervised or
weakly supervised framework. In this context, deep generative
models are widely used, in particular Variational Autoencoder
(VAE) models. VAEs have been extended to Vector-Quantized
VAEs (VQ-VAEs), a model increasingly popular because of its
versatility enabled by the discrete latent space. We present for
the first time a robust approach which takes advantage of the
inner metrics of VQ-VAEs for AD. We show that the distance
between the output of the encoder and the codebook vectors
of a VQ-VAE provides a valuable information which can be
used to localize the anomalies. In our approach, this metric
complements a reconstruction-based metric to improve AD re-
sults. We compare our model with state-of-the-art AD models on
three standards datasets, including the MVTec, UCSD-Ped1 and
CIFAR-10 datasets. Experiments show that the proposed method
yields high competitive results.

I. INTRODUCTION

A. Anomaly Detection

Anomaly Detection (AD) is a field of research which has
been of interest for several decades, with a wide variety
in applications [1]. As defined by [2], an anomaly is an
observation that highly deviates from other observations, as
much as to arouse suspicion that it was generated by a
different mechanism. In other words, the anomalous obser-
vation deviates from some underlying concept of normality.
As many other fields, it has been revolutionized by deep
learning approaches which have yielded new state-of-the-art
results thanks to the unprecedented possibilities of capturing
and modeling the normality [3].

AD in an unsupervised context is the most common ap-
proach in practical cases. Indeed, anomalies are unknown in
advance, hence the impossibility to gather labeled anomalous
data to train the deep model. From now on, our work will
focus on unsupervised AD with images. Following [4], there
are three main approaches (often mixed in practice) for unsu-
pervised AD. The detection task can be:

• feature-extraction-based, which relies on a distance in the
feature space [5], [6];

• probability-based, which makes use of distributions or
statistical tests to detect anomalies [7], [8];

• reconstruction-based, which computes distances between
inputs and reconstructions [9], [10].

Reconstruction-based methods are the most explored ones in
the literature. They are often based on deep generative latent
variable models called Variational Autoencoders (VAEs)
which we now present. Note that our new approach presented
in this paper can be seen as a combination of a reconstruction-
based and a feature-extraction-based approaches.

Remark: When working with AD on images, it is significant
to distinguish two tasks: image-wise AD and pixel-wise AD.
Image-wise AD involves the detection of the anomalous image
as a whole. On the other hand, pixel-wise AD corresponds to
the localization of each anomaly. Both cases will be addressed
in this article.

B. Related work: anomaly detection with VAE-like models

In the unsupervised and weakly supervised AD contexts,
deep generative models are a popular choice of models [11].
Among these models, particular deep latent variable models
called Variational Autoencoders (VAEs) [12] have been widely
used. They are defined in a probabilistic framework detailed
in [13]. In a nutshell, VAEs transform an input image xxx into
a compressed representation zzz through a stochastic encoder
network qφφφ(zzz|xxx). The image is then reconstructed to form
the reconstruction x̂xx, by sampling from a stochastic decoder
network pθθθ(xxx|zzz). The model is trained, for both network
parameters φφφ and θθθ, by minimizing the Evidential Lower
Bound which reads:

Lθθθ,φφφ(xxx) = Eqφφφ(zzz|xxx)[log pθθθ(xxx|zzz)]︸ ︷︷ ︸
reconstruction term

−KL(qφφφ(zzz|xxx)||pθθθ(zzz))︸ ︷︷ ︸
regularization term

. (1)

Intuitively, the first term encourages the reconstruction x̂xx to be
similar to the input xxx under the constraint of a regularization
term under the form of Kullback-Leibler (KL) divergence. It
can be seen that VAEs give access to several metrics computed
from the continuous latent space and the reconstructions. Such
metrics form the foundation of many image-wise and pixel-
wise AD approaches. Some of these metrics are, for example:
the residual images between xxx and x̂xx, the evaluation the
reconstruction term and/or of the KL term of Equation 1,
the derivative of Equation 1 with respect to xxx, etc. Many
combinations of these ideas have been successfully applied



to weakly supervised AD giving rise to an important number
of recent studies such as [9], [10], [14], [15], [16].

Recently, Vector-Quantized VAEs (VQ-VAEs) [17], [18]
have introduced the idea of a discrete latent space. We present
them in details in Section II-A. In the literature, several
recent studies have already reported use of VQ-VAEs for AD
(e.g. [4], [8], [19]). However, these works focus on much
more complex models and, in particular, they introduce, in a
second step, autoregressive models trained on the latent space.
Comparisons with such approaches are therefore out of scope
of our paper. Indeed, our main contribution is to show that VQ-
VAEs are able to learn a latent representation of the normality
which provides robust and competitive metrics for AD, without
additional complexity, in a similar way of the best results
obtained with VAEs. Indeed, while the VAE metrics have been
extensively studied, we aim at harnessing the inner metrics of
the VQ-VAEs for AD, and then at comparing VQ-VAEs with
VAEs on this precise point. To the best of our knowledge, this
is the first effort to conduct such a study in the field of AD.

C. Organization of the article

Our paper is organized as follows. In the next section, we
introduce VQ-VAEs and how they can be used to address
AD problems. We then present a new and robust approach
which is based on the inner metrics of the VQ-VAEs and
which aims at AD both at the image and pixel levels, via
the computation of an anomaly map. In the last section,
we compare our approach with some other state-of-the-art
approaches on the MVTec [20], UCSD-Ped1 [21] and CIFAR-
10 [22] datasets for, respectively, the detection of anomalies
on industrial images, the detection of anomalies on crowd
monitoring images, and the classification of anomalous real-
world images.

II. VECTOR-QUANTIZED VARIATIONAL AUTOENCODERS

A. The model

VQ-VAEs, first introduced in [17], are models which in-
clude discrete latent variables. They can learn rich, yet com-
pressed, latent representations and have been used to produce
much sharper reconstruction than traditional VAEs [18], [23].
Therefore, this makes VQ-VAEs an interesting model for AD,
suggesting much less noisy residual images in reconstruction-
based approaches, for example.

To cope with the discrete latent space, VQ-VAEs are trained
differently from standard VAEs. In particular, the encoder
becomes deterministic while the decoder remains stochastic.
We now denote the encoder by Encφφφ. Let M be the number of
possible states for the latent variable zk,∀k ∈ {1, . . . ,K}, K
being the dimension of the latent space. VQ-VAEs integrate a
codebook, i.e., a set of vectors (e1, . . . , eM ), each one in RD,
with D a positive integer. From the encoder output, zzzEncφφφ(xxx),
we choose the closest codebook vector for zk,∀k, following
a deterministic decision, i.e.,

zk = argmin
m∈{1,...,M}

∥(zEncφφφ(xxx))k − em∥2. (2)

This can be associated to a deterministic and categorical
encoding distribution as follows:

qφφφ(zk = m|xxx) =

1 if m = argmin
m∈{1,...,M}

∥(zEncφφφ)k − em∥2,

0 otherwise.
(3)

The inputs of the decoder, denoted by zzzDecθθθ , are then also
deterministically set as (zDecθθθ )k = ezk ,∀k. Note that, as done
in this article, when processing images with convolutional
encoders and decoders, the latent space zzz can also be con-
volutional, i.e., it consists of a latent image.

The loss function is then composed of the same reconstruc-
tion term as in standard VAEs but also of a squared ℓ2 term
to ensure that the codebook is learnt. Indeed, because of the
deterministic operations, the gradient can not flow from the
decoder input to the encoder output: it has to be automatically
copied; thus bypassing the codebook which cannot be updated.
This second term is called the codebook alignment term. A
third regularizing term is also added in the loss for stability of
the training procedure, which leads to the VQ-VAE loss, for
an image xxx:

LV Q−V AE
θθθ,φφφ,eee (xxx) = log pθθθ(xxx|zzzDecθθθ(xxx))+

∥sg[zzzEncφφφ(xxx)]− eee∥22︸ ︷︷ ︸
alignment term

+β∥zzzEncφφφ(xxx) − sg[eee]∥22, (4)

with β a scalar parameter and sg the stop gradient operator.

B. Anomaly Detection with VQ-VAEs

Similar to the metrics used for VAEs, we now define metrics
for AD with VQ-VAEs. Since we are interested in pixel-wise
AD, following [24], we define a reconstruction-based anomaly
map, called SM, which uses the Structural Similarity Index
Measure (SSIM) [25] measure. For each pixel i, we have:

SM(xi) = SSIM(pppi, qqqi) =
(2µpppµqqq + c1)(2σpqpqpq + c2)

(µ2
ppp + µ2

qqq + c1)(σ2
ppp + σ2

qqq + c2)
,

(5)
where pppi (resp. qqqi) is a patch around pixel i of xxx (resp. x̂xx).
µp, σp and σpq represent, respectively, the mean, the standard
deviation and the covariance of the patches. The scalars are
set to c1 = 0.01 and c2 = 0.03 [25].

We also define a new metric producing a latent space
anomaly map, intrinsic to VQ-VAEs, which we call the
Alignment Map (AM):

AM(xxx) = ∥sg[zzzEncφφφ(xxx)]− eee∥22. (6)

The intuition behind the AM anomaly map is as follows.
During training time, the codebook vectors are trained to be
close to the output of the encoder, and reciprocally, in virtue
to the last two terms in Equation 4. Therefore, at testing time,
the anomalies (encoded in zzzEncφφφ(xxx)), which have not been
seen yet by the model, will be far from the codebook vectors,
relatively to the normal features (also encoded in zzzEncφφφ(xxx)).
This is what is reflected in the AM.

It should be noted that this particular anomaly map is
defined in the latent space and is not directly usable. In the



next section, we construct an approach to efficiently use the
AM to segment anomalies.

Remark: The AM resonates with the approaches which use
the Kullback-Leibler divergence value of a VAE as a metric
to localize anomalies [10]. However, as our experiments will
show in Section III, the alignment loss of a VQ-VAE seems to
be a much more robust and more interpretable way to localize
anomalies as our results are competitive to those yielded by
the state-of-the-art approaches.

C. Improved Anomaly Detection using the Alignment Map

The AM is a small image with same dimension as the
latent space where some pixels stand out. Those pixels can be
seen as markers. They correspond to the latent variables with
high alignment loss, i.e., anomalies. To be used in addition
to the SM anomaly map, the AM is first upsampled. Then
it undergoes a morphological grey dilation which aims at
emphasizing the markers. However, none of these markers
correctly represent the anomaly since they are just upsampled
pixels. Therefore, we propose to recover a more realistic shape
for the anomaly by multiplying the AM with the SM. Figure 1
graphically summarizes all the steps of our approach which we
call VQ-VAE SSIM+AM.

One of the advantages of this approach is that it does
not rely solely on the reconstruction of the model. Indeed,
traditional VAE approaches rely on the promise that anomalies,
unseen as training will disappear at the output; and they
are then isolated based on the principle of the residual im-
age [9]. However, because of the intrinsic blurriness of the
reconstructions, this often stands out as a very complex task.
Therefore, the AM, as a source of information to localize the
anomalies, is useful insofar as it does not directly rely on the
reconstructions.

III. EXPERIMENTS & RESULTS

A. Network architecture

The same VQ-VAE architecture is used in the following
experiments. It is based on the original VQ-VAE architec-
ture [17]:

• The encoder consists in three convolutional layers (kernel
size 4, stride 2 and padding 1), each followed by a ReLU
activation and Batch Normalization. It is then followed by
three residual layers (decomposed as a ReLU activation,
a convolutional layer (kernel size 3, stride 1, padding 1),
a ReLU activation and a convolutional layer (kernel size
1, stride 1, padding 0)). All the depth dimensions are 256,
except the input images which have depth 1 or 3.

• The latent space image has the width and height of the
original image divided by 8 (when 3 convolutions de-
scribed above are stacked in the encoder). The codebook
size is set to M = 512 and each vector of the codebook
has dimension D = 256.

• The decoder is constructed as the reverse of the encoder.
Moreover, when the image pixels are encoded in [0, 255].
We rescale the input images into the range [0, 1] and use a

Category AE SSIM
[20]

VEVAE
[14]

FCDD
[27]

VQ-VAE
SSIM

VQ-VAE
SSIM+AM

Carpet 0.87 0.78 0.960.960.96 0.92 0.94
Grid 0.94 0.73 0.91 0.990.990.99 0.990.990.99

Leather 0.78 0.95 0.980.980.98 0.980.980.98 0.980.980.98
Tile 0.59 0.80 0.910.910.91 0.70 0.75

Wood 0.73 0.77 0.880.880.88 0.82 0.84
Bottle 0.93 0.87 0.970.970.97 0.94 0.95
Cable 0.82 0.900.900.90 0.900.900.90 0.87 0.87

Capsule 0.940.940.94 0.74 0.93 0.93 0.940.940.94
Hazelnut 0.97 0.98 0.95 0.98 0.990.990.99

Metal Nut 0.89 0.90 0.940.940.94 0.89 0.90
Pill 0.910.910.91 0.83 0.81 0.86 0.90

Screw 0.96 0.97 0.86 0.980.980.98 0.980.980.98
Toothbrush 0.92 0.94 0.94 0.96 0.970.970.97
Transistor 0.90 0.930.930.93 0.88 0.77 0.78

Zipper 0.88 0.78 0.92 0.97 0.980.980.98

Mean 0.86 0.86 0.920.920.92 0.90 0.920.920.92

TABLE I: ROCAUC scores on the MVTec dataset.

decoder where we consider xxx as the realization of a continuous
Bernoulli random variable [26]. We found that this provided
much better results and reduced convergence issues while
training the VQ-VAE, as compared to considering a Gaussian
distribution for the stochastic decoder pθθθ(xxx|zzz).

The VQ-VAE model is tested against comparable
approaches, i.e., approaches which are designed in a similar
way. The approaches we selected from the literature are then
solely based on an encoder-decoder architecture and inner
metrics, without any additional modules and very limited pre-
and post-processing.

Remark: In the following experiments, training the models
does not make use, in any way, of labeled data. However,
because we train the models only on normal data, devoid
of anomalies, this is, strictly speaking, not an unsupervised
context but rather a weakly supervised context.

B. MVTec dataset

The MVTec dataset [20] is a standard dataset for AD on
images. The dataset provides non-anomalous and defective
RGB images of manufactured objects from 15 different cate-
gories. Several defect types are available for each category.
In this section, we resize the image to 256 × 256 pixels,
leading to a 32 × 32 latent space. Following the literature,
we give the results in terms of pixel-wise ROCAUC which is
generated from the heatmap available after processing and the
available ground truth. The full approach for AD described
in Section II-C is called VQ-VAE SSIM+AM. We also have
the VQ-VAE SSIM approach where the SM anomaly map is
directly used to compute the ROCAUC score, without using
the AM. We compare with the ROCAUC scores of a classical
Autoencoder with SSIM (AE SSIM) [20], the state-of-the-art
Visually Explained VAE (VEVAE) [14] and the state-of-the-art
Fully Convolutional Data Description (FCDD) [27].

Table I shows the score for the models over all the categories
of the dataset. The scores for the other methods are taken from



Input
Encoder

Latent space (zzz)

Codebook (e1, . . . , eM )

...

Decoder
Reconstruction

SM

AM

U
ps

am
pl

in
g

G
re

y
di

la
tio

n

Anomaly mapGround Truth

pixel-wise ROCAUC

sample-wise ROCAUC

Segmentation

Fig. 1: Illustration of the proposed workflow for improved AD with VQ-VAE (Sections II-B and II-C). The network architecture
is described in Section III-A. This approach is called VQ-VAE SSIM+AM. It is possible to directly use the SM anomaly map
for ROCAUC computations or anomaly segmentation. In this case the approach is called VQ-VAE SSIM.
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Fig. 2: Selected illustrations for the MVTec experiment. Anomaly maps and reconstructions from our proposed approach.
Top row: original image. Middle row: the anomaly maps overlaying the VQ-VAE reconstruction. Bottom row: The segmented
anomaly.



VAE L2
[9]

VEVAE
[14]

VQ-VAE
SSIM

VQ-VAE
SSIM+AM

ROCAUC 0.86 0.92 0.950.950.95 0.950.950.95

TABLE II: ROCAUC scores on the UCSD-Ped1 dataset.

their respective referenced paper. We can see that our VQ-
VAE SSIM+AM approach performs similarly as the FCDD
approach which represents the state-of-the-art result on MVTec
for this family of approaches. Our proposed approach also
gives better results than AE SSIM and VEVAE. This suggests
that VQ-VAEs might be more robust baseline architectures
than AEs and VAEs. VQ-VAE SSIM also performed worse
than VQ-VAE SSIM+AM, which highlights the interest of
using the additional information provided by the AM to
improve the final anomaly map.

We noticed that the worst results of the VQ-VAE approaches
seem to be linked with relatively big defects being too well
reconstructed, for example, a black spot over a background
composed of black spots (in Tile) or a missing part of an
object which reveals more background (in Transistor). In these
cases, the metrics failed to localize the anomalies. On the other
hand, the strength of the model seems to reside in its ability
to detect even the smallest defects thanks to the sharpness of
the reconstructions permitted by VQ-VAEs (holes in Hazelnut
or small damages in Screw). Figure 2 provides some selected
graphical illustrations of the experiment.

C. UCSD-Ped1 dataset

This second experiment addresses another standard dataset
for AD on images and videos: the UCSD-Ped1 dataset [21].
The dataset is composed of black and white video sequences
of pedestrians walking in a park. This represents 6, 400 images
for training and 2, 000 images for testing. In this experiment,
we resize the image to 128× 128 as done in [14]. Following
the literature, the metric used will be the pixel-wise ROCAUC.
In the context of this experiment, localizing the anomalies
consists in localizing all non-pedestrian moving objects in this
park scenery (car, bikes, skateboards, etc.).

We compare our VQ-VAE-based approaches with a classical
VAE architecture [9] and the VEVAE [14] architecture whose
results are available in the literature. Note that in our approach,
because of the small resolution of the original images, the
VQ-VAE encoder and decoder described in Section III-A are
reduced to two convolutional layers. The latent space then
has dimension 32 × 32. Moreover, we found out that much
better results were obtained by performing a morphological
grey dilation also on the SM anomaly map. This is reflected
in the illustrations of Figure 3, where patches from the SSIM
computation are emphasized.

Table II gives the ROCAUC for the models over all the
testing dataset. The scores for the other models are both taken
from [14]. We can see an improvement over the other models,
which signifies that more accurate anomaly maps are produced
by the VQ-VAE approaches. In the context of this experiment,
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Fig. 3: Selected illustrations of the detection of our model in
the UCSD-Ped1 experiment.

it is not possible to favor one of our VQ-VAE versions.
Illustrations of the experiment are available in Figure 3.

D. CIFAR-10 dataset

This last experiment addresses the problem of image-wise
AD on the CIFAR-10 dataset [22]. The dataset is composed
of 60, 000 distributed between 50, 000 train and 10, 000 test
images; all equally divided in 10 categories. The original 32×
32 size of the images is used without resizing. We test all the
models in a one-versus-rest way. More precisely, a model is
trained on images from one category only and, at test time,
we want to discriminate between the one class, the normal
samples upon which the model was trained, and the rest class,
the anomalous samples which can come from all the other
categories. The metric used is then the image-wise ROCAUC.

We compare our VQ-VAE approaches with a vanilla au-
toencoder approach [28] and the Deep Support Vector Data
Description [29], a standard approach for image-wise AD.
To provide an anomaly score for a whole image in the VQ-
VAE approaches, we take the average value over all the
pixel-wise anomaly map. Note that the VQ-VAE encoder and
decoder described in Section III-A are also reduced to two
convolutional layers in this experiment. The latent space here
has dimension 8× 8.

Table III gives the scores for the models over all the
categories of the dataset. Scores for the other models are both
taken from [29]. We can see that our VQ-VAE approach has
a slight advantage against the others which suggests that the
provided anomaly map is also relevant for sample-wise AD.
Figure 4 illustrates the experiment by highlighting the most
normal and anomalous samples according to the VQ-VAE
metric. It appears that the VQ-VAE is able to correctly award a
high normality score to relatively diverse images inside a same



Category AE L2
[28]

DSVDD
[29]

VQ-VAE
SSIM

VQ-VAE
SSIM+AM

Airplane 0.59 0.62 0.710.710.71 0.69
Automobile 0.57 0.660.660.66 0.63 0.65

Bird 0.49 0.51 0.63 0.650.650.65
Cat 0.58 0.59 0.62 0.630.630.63

Deer 0.54 0.61 0.60 0.640.640.64
Dog 0.62 0.66 0.670.670.67 0.670.670.67
Frog 0.51 0.680.680.68 0.61 0.63
Horse 0.59 0.670.670.67 0.63 0.63
Ship 0.770.770.77 0.76 0.74 0.74

Truck 0.67 0.730.730.73 0.64 0.65

Mean 0.59 0.65 0.65 0.660.660.66

TABLE III: ROCAUC scores on the CIFAR-10 dataset.

(a) Most normal samples

(b) Most anomalous samples

Fig. 4: Selected illustrations from the CIFAR-10 experiment
for the VQVAE SSIM+AM model: some of the most normal
(a) and anomalous (b) samples from the Automobile (top),
Deer (middle) and Cat (bottom) categories, when the model
is trained on this category.

class (colors, scenery, background, etc.). This might reflect that
the model extracts relevant features from the images.

IV. CONCLUSION

In this paper, we showed the potential of VQ-VAEs for
AD. We highlighted for the first time that the inner metrics of
VQ-VAE models are robust and efficient to detect anomalies
in images. Indeed, after developing an intuitive approach to
construct an anomaly map, we reported results competitive
with several other state-of-the-art approaches for pixel-wise

AD on the MVTec and UCSD-Ped1 datasets, as well as for
image-wise AD on the CIFAR-10 dataset.

The results show that the inner metrics of VQ-VAEs out-
perform the inner metrics of VAEs, without introducing more
complexity in the model. Our results also corroborate the
increasing interest of the machine learning community for VQ-
VAEs. In the near future, further study might be conducted to
assess whether VQ-VAEs should replace VAEs as the standard
architectures in AD workflows.
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