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a b s t r a c t

Deepwater circulation significantly changed during the last deglaciation from a shallow to a deep-
reaching overturning cell. This change went along with a drawdown of isotopically light waters into
the abyss and a deep ocean warming that changed deep ocean stratification from a salinity-to a
temperature-controlled mode. Yet, the exact mechanisms causing these changes are still unknown.
Furthermore, the long-standing idea of a complete shutdown of North Atlantic deepwater formation
during Heinrich Stadial 1 (HS1) (17.5e14.6 kyr BP) remains prevalent. Here, we present a new compi-
lation of benthic d13C and d18O data from the North Atlantic at high temporal resolution with consistent
age models, established as part of the international PAGES working group OC3, to investigate deepwater
properties in the North Atlantic. The extensive compilation, which includes 105 sediment cores, reveals
different water masses during HS1. A water mass with heavy d13C and d18O signature occupies the Iceland
Basin, whereas between 20 and 50�N, a distinct tongue of 18O depleted, 13C enriched water reaches down
to 4000 m water depths. The heavy d13C signature indicates active deepwater formation in the North
Atlantic during HS1. Differences in its d18O signature indicate either different sources or an alteration of
the deepwater on its southward pathway. Based on these results, we discuss concepts of deepwater
formation in the North Atlantic that help to explain the deglacial change from a salinity-driven to a
temperature-driven circulation mode.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The modern Atlantic Meridional Overturning Circulation
(AMOC) in the North Atlantic is characterized by northward warm
water transport near the surface, deepwater formation at high
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Abbreviations

ACC Antarctic Circumpolar Current
AMOC Atlantic Meridional Overturning Circulation
AABW Antarctic Bottom Water
BWT Bottom Water Temperature
CGFZ CharlieeGibbs-Fracture-Zone
DSOW DenmarkeStrait-Overflow-Water
DWBC Deep Western Boundary Current
ENADW Eastern North Atlantic Deep Water
HS1 Heinrich Stadial 1
ISOW IcelandeScotland Overflow Water
NADW North Atlantic Deep Water
NAC North Atlantic Current
LDW Lower Deep Water
LNADW North Atlantic Deep Water
LGM Last Glacial Maximum
LSW Labrador-Sea Water
MOW Mediterranean Overflow Water
WNADW Western North Atlantic Deep Water
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0.2 between the deep NADWand AABW (Locarnini et al., 2013) play
only a secondary role for deepwater stratification (Adkins, 2013;
Adkins et al., 2002).

Many studies have attempted to reconstruct glacial ocean cir-
culation using compilations of benthic d13C and d18O data (Curry
and Oppo, 2005; Duplessy et al., 1980, 2002; Duplessy, 1988;
Labeyrie et al., 1992, 2005; Lund et al., 2011, 2015; Lynch-Stieglitz,
2017; Lynch-Stieglitz et al., 1999, 2007, 2014; Oppo et al., 2015,
2018; Oppo and Lehman, 1993; Sarnthein et al., 1994; Tessin and
Lund, 2013), neodymium isotope (εNd) data (Colin et al., 2010;
Crocker et al., 2016; Howe et al., 2018; Howe et al., 2017; Piotrowski
et al., 2012; Piotrowski et al., 2008; Robinson and van de Flierdt,
2009; Zhao et al., 2019), 231Pa/230Th data (Henry et al., 2016; Lip-
pold et al., 2016; McManus et al., 2004), 14C data (Balmer and
Sarnthein, 2018; Balmer et al., 2016; Ezat et al., 2019; Keigwin,
2004; Robinson et al., 2005; Skinner et al., 2010) as well as re-
sults from climate models (e.g. Ganopolski and Rahmstorf, 2001;
Gebbie, 2014; Kwon et al., 2012; Muglia et al., 2018; Rahmstorf,
2002). Collectively, these studies show that glacial deepwater cir-
culation significantly differed from the modern AMOC mode.
Though the circulation rate is still discussed controversially, the
main picture that evolved from these studies is a shoaling (Gebbie,
2014; Muglia and Schmittner, 2021) of the mid-depth ocean cir-
culation (e.g. (Lynch-Stieglitz, 2017) with AABW penetrating
further north and to shallower depths during the Last Glacial
Maximum (LGM). Reduced connectivity between deep waters and
the atmosphere may have allowed more CO2 storage in the abyssal
oceans (Sigman et al., 2010). This isolation of the abyssal ocean is
thought to be driven by changes in deepwater stratification (Stein
et al., 2020; Watson and Naveira Garabato, 2006) and/or inhibited
air-sea exchange (Khatiwala et al., 2019). According to the deep
stratification hypothesis (Adkins, 2013; Adkins et al., 2002), sup-
ported by reconstructions of deepwater salinities from pore waters,
strong cooling led to homogeneous deep ocean temperatures
of �2 �C during the LGM and a salinity control on deep stratifica-
tion, in contrast to the modern temperature control. The recon-
structed enhanced abyssal salinities were probably driven by
several factors, such as a decreased freshwater input to the surface
ocean by a reduction in rainfall, river run-off, and meltwater
discharge (including reduced basal melting of ice shelves), as well
as bymore sea ice formation and associated brine rejection (Sigman
2

et al., 2007). An asymmetric salinity increase, with a higher impact
in the Southern Ocean than the North Atlantic may have reversed
the modern salinity gradient between AABW and NADW, with
more saline AABW occupying the deep North Atlantic basin, ocean,
overlain by fresher NADW (Adkins, 2013; Adkins et al., 2002).
However, pore water salinity reconstructions are sparse, their
interpretation (Wunsch, 2016) and the deep stratification hypoth-
esis (Wilmes et al., in review) have been questioned.

During the course of the deglaciation, a decrease of benthic d18O
values is associated with a drawdown of the isotopically light
meltwater signal from the melting ice sheets into the deep ocean
through brine formation, decoupling salinity from its d18O signa-
ture (Labeyrie et al., 2005; Meland et al., 2008; Waelbroeck et al.,
2011), deepwater warming (Bauch and Bauch, 2001; Cronin et al.,
2000; Repschl€ager et al., 2015a; Skinner and Shackleton, 2006)
and freshening (Adkins et al., 2002). A temperature gradient be-
tween the North Atlantic and Southern Ocean was established,
while the salinity gradient between AABW and NADW reversed.

Previous research on deglacial stratification mainly focused on
changes in the Southern Ocean driven by the strength and position
of the Southern Ocean upwelling zone that is coupled to the
extension of Antarctic sea ice and the position and strength of
southern westerly winds (Menviel et al., 2018; Roberts et al., 2016;
Skinner et al., 2010; Thompson et al., 2019). An increase in Southern
Ocean upwelling (e.g., Knorr and Lohmann, 2003; Knorr and
Lohmann, 2007), may have led to an increased CO2 outgassing in
the Southern Ocean, causing the first deglacial atmospheric
warming. Furthermore, diabatic heat transport to the deep ocean
and/or geothermal heating are proposed to have driven deglacial
warming of the deep Southern Ocean (Ferrari et al., 2014).

In the North Atlantic, a major focus of attention has been on
AMOC evolution, and most reconstructions are based on water
mass distribution and mixing patterns between NADW and AABW
(e.g., Oppo et al., 2015). According to climate models, AMOC
strength is mainly driven by the salinity of the surface waters in the
deepwater convection regions, and density gradients between the
North Atlantic and Southern Ocean (Haskins et al., 2019 and cita-
tions therein). Low latitude storage of saline waters during degla-
cial cold events such as Heinrich Stadial 1 (HS1,17.5 ka�14.6 ka BP),
and its subsequent northward transport have been proposed to
have led to strong deepwater formation and created an AMOC
overshoot (Knorr and Lohmann, 2007; Liu et al., 2009). Observed
decreasing d18O values are explained by a drawdown of the isoto-
pically light meltwater by brine water formation (Waelbroeck et al.,
2011) or by deepwater warming (Bauch and Bauch, 2001), inferred
from benthic foraminifera and ostracod Mg/Ca records (Cronin
et al., 2000; Repschl€ager et al., 2015a; Skinner and Shackleton,
2006). An asymmetrical warming of the deep Atlantic during HS1,
compared to the other Ocean Basins is also evident in numerical
models (Zhang et al., 2017).

HS1 was the major climate event at the onset of the last
deglaciation associated with cold temperatures in the North
Atlantic (Denton et al., 2010) and a strong meltwater outburst from
various northern ice sheets (Broecker, 1994; Hemming, 2004; Naafs
et al., 2013) that flushed the surface North Atlantic and capped
deepwater convection sites. A long-standing concept is that deep-
water convection in the North Atlantic and the associated AMOC
were entirely shut down during HS1 (Duplessy, 1988; McManus
et al., 2004; Rahmsdorf, 2002; Sarnthein et al., 1994) and South-
ern Ocean waters (Antarctic Bottom Waters) flushed the deeper
whole Atlantic e a concept still prevalent in the recent literature
(e.g. B€ohm et al., 2015; Lynch-Stieglitz, 2017; Schmittner and Lund,
2015; Shakun et al., 2012). However, this concept has recently been
challenged. Combined d13C and d18O data indicate active convection
in the North Atlantic (Oppo et al., 2015) reaching down to at least
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3000 m water depth in the subtropics (Repschl€ager et al., 2015a).
While these results have questioned the idea of a complete shut-
down of North Atlantic deepwater convection during HS1, the
magnitude and extent of HS1-AMOC and its importance for the
deglacial deepwater stratification changes remain unknown.

It is assumed that the HS1 AMOC shut-down led to the storage of
warm saline waters in the upper tropical to subtropical North
Atlantic. After HS1, the northward transport of warm saline tropical
waters triggered the onset and overshoot of the AMOC during the
Bølling-Allerød warm period (14.6e12.8 ka BP). The newly formed
deepwater is supposed to have been relatively warm and saline, but
this contradicts the general deglacial salinity decrease proposed by
Adkins et al. (2002). The latter involving a salinity decrease of the
newly formed deepwater would also prevent its sinking. To explain
a deglacial freshening and warming and simultaneous increase in
AMOC strength, a mechanism is needed that allows strong over-
turning despite the density loss by warming and freshening of the
deepwater.

In order to better understand the role of the North Atlantic for
water mass distribution and AMOC during the deglaciation, we
have compiled published and unpublished epibenthic d13C and
d18O datawithin the framework of the Past Global Changes (PAGES)
Ocean Circulation and Carbon Cycling (OC3) working group. The
improved spatial resolution of the dataset allows to trace deep-
water distributions in the Atlantic Ocean and gain a better mech-
anistic understanding of ocean circulation changes. Here, we focus
on HS1 as the major climate event in during the early deglaciation
with the following research questions: (1) Was there active deep-
water formation in the North Atlantic during HS1? (2) What role
did HS1 in the North Atlantic play for the reconstructed changes in
deepwater salinity and stratification?

2. Modern oceanography

Deepwater formation in the subpolar North Atlantic occurs in
two main convection areas, the Nordic Seas, the Labrador Sea
(Lherminier et al., 2010; Sarafanov et al., 2012; Schmitz and
McCartney, 1993; Xu et al., 2010), supplemented by convection
and subduction in the Irminger and Iceland basins (Pickart et al.,
2003; Sarafanov et al., 2012). Additional deepwater formation oc-
curs in the Mediterranean Sea, which contributes to the Atlantic
mid depth circulation (Lozier and Stewart, 2008; van Aken, 2000a,
2001).

Deepwaters formed in the Nordic Seas leave the area via shallow
sills, the Faroe Bank Channel (Chafik et al., 2020) and Denmark
Strait as Iceland Scotland Overflow Water (ISOW) and Denmark
Strait Overflow Water (DSOW), respectively (Hansen et al., 2016;
Hansen and Østerhus, 2000; Lherminier et al., 2010; Macrander
et al., 2005; Sarafanov et al., 2012; Schmitz and McCartney, 1993;
Schott et al., 2004; Schott and Brandt, 2013; Våge et al., 2011; Xu
et al., 2010). With a flux of about 3 Sv, ISOW flows southward
across the Iceland-Scotland Ridge (Sarafanov et al., 2012; Chafik
et al., 2020) into the Iceland Basin, propagates along the eastern
flank of Reykjanes Ridge and mixes with and entrains deepwater
formed in the Iceland Basin (0.6 Sv) (Sarafanov et al., 2012). At
Charlie-Gibbs fracture zone (CGFZ), a minor portion of ISOW con-
tinues southward along the Mid Atlantic Ridge (MAR) and form
Eastern North Atlantic DeepWater (ENADW), which occupies water
depths of 1500e3000 m (Sarafanov et al., 2012; van Aken, 2000a;
Van Aken and De Boer, 1995).

The main branch of ISOW (3.8 Sv) flows through CGFZ into the
Irminger Basin (Sarafanov et al., 2012), where a smaller branch
turns southward while the major volume flows northward along
Reykjanes Ridge (Våge et al., 2011) into the Irminger Basin. This
northward deepwater flow is deflected by the Greenland-Iceland
3

Ridge, and partially mixes with the DSOW that spills into the
Irminger Basin via the Denmark Strait. The combined water mass
called Western North Atlantic Deep Water (WNADW) is underlain
by the colder, denser pure DSOW. Both DSOW and WNADW get
further mixed on their southward way along the contours of the
Greenland slope, and anticlockwise circulation in the Labrador
Basin. The combined outflow of DSOW and WNADW from the
Labrador Sea combines partially with Labrador Sea Water and into
the Deep Western Boundary Current (DWBC) (Fischer et al., 2004,
2015). The DWBC flows around the Flemish Cap back into the
western North Atlantic basin and further along the continental
slope of eastern North America. The combined northern source
water described above, typically called Lower North Atlantic Deep
Water (LNADW), fills the deep North Atlantic below about 2000 m
to abyssal depths. To the south of about 40�N, and more promi-
nently in the South Atlantic, LNADW is underlain by northward
moving AABW (Curry et al., 2003). The boundary between LNADW
and AABW progressively shoals towards the south. At about 50�S,
NADW starts to resurface, is partially entrained into the Antarctic
Circumpolar Current (ACC), and contributes to AABW formation
(Marshall and Speer, 2012; Talley, 2013).

The cold dense NWADW is overlain by LSW forming in the
Labrador Sea and the southwestern Irminger Sea (Pickart et al.,
2003) from a mixture of saline Irminger Current and fresh cold
East Greenland Current waters. LSW formation is favored by the
cold dry winds originating from the partially ice-covered conti-
nental landmasses surrounding the Labrador Sea leading to winter
convection. LSW is less dense than ISOW, typically occupies water
depths between 500 m and 1500 m, but can even reach down to
2200 m during years with strong deepwater convection (Faure and
Speer, 2005; Yashayaev, 2007; Yashayaev and Loder, 2009). LSW
contributes 7.8 Sv to the total AMOC deep-water export of 13 Sv
(Sarafanov et al., 2012).

Deepwater circulation in the eastern North Atlantic basin south
of the CGFZ differs from its western counterpart by a lower
contribution of ENADW.Mediterranean OutflowWater (Curry et al.,
2003) occupies the mid water depth instead of LSW, and direct
flushing with AABW into the eastern Atlantic Basin is prevented by
the Walvis Ridge. Instead, AABW enters the East Atlantic Basin via
Vema fracture zone at 11� N (Van Aken, 2000; Van Aken and De
Boer, 1995). Entrainment of the overlying water masses modifies
AABW slightly, thus is called Lower Deepwater (LDW) in the East
Atlantic Basin. LDW and ENADW are overlain by Mediterranean
Overflow Water. The latter is formed in Mediterranean Sea by high
evaporation rates that lead to a salinity increase and the formation
of a relatively warm (11 �C) and saline (36) (Locarnini et al., 2013)
deep water mass (Marshall and Schott, 1999). MOW enters the
Atlantic via the Strait of Gibraltar and typically occupies depth
between 700 and 1700 m in the Eastern to Central North Atlantic
between 30�N and 50�N (Baringer and Price, 1997; Lozier and
Stewart, 2008).

3. Methods

This compilation of published and unpublished benthic fora-
minifera d13C and d18O data focusses on the Atlantic section north of
the equator, yet records from the South Atlantic are also included.
The compilation is a product of the PAGES OC3 working group
(Schmittner et al., 2017), which aims to better understand past
changes in ocean circulation and carbon storage. The presented
North Atlantic dataset includes 105 cores. The compilation is
updated from a personal raw data compilation by O. Cartapanis,
supplemented with data from the PALMOD compilation (Jonkers
et al., 2020), and additional published and unpublished (cores
MSM58-52-02 and core KNR197-10_GGC5) deglacial sites. All data



J. Repschl€ager, N. Zhao, D. Rand et al. Quaternary Science Reviews 270 (2021) 107145
were quality-controlled revisiting the original publications
(Abrantes et al., 1998, 2018; Bauch et al., 2001; Bertram et al., 1995;
Beveridge et al., 1995; Bickert and Mackensen, 2004; Boyle and
Keigwin, 1985; Cacho et al., 2006; Came et al., 2008; Chi and
Mienert, 2003; Collins et al., 2010; Curry et al., 1988, 1999; Curry
and Oppo, 1997; Dickson et al., 2009; Duplessy, 1982, 1988; Elliot,
2017; Elmore and Wright, 2011; Elmore et al., 2015; Fink et al.,
2013; Freudenthal et al., 2002; Frigola et al., 2008; Gersonde
et al., 2003; Hagen et al., 2002; Hagen and Keigwin, 2017;
Hillaire-Marcel et al., 1994; Hoffman and Lund, 2012; Hoogakker
et al., 2015; Hüls, 1999; Jansen and Veum, 1990; Jonkers et al.,
2015; Jung, 1996; Keigwin and Jones, 1994; Keigwin, 2004;
Keigwin et al., 1991; Keigwin and Lehman, 1994; Keigwin and
Schlegel, 2002; Keigwin and Swift, 2017; Kiefer, 1998; Labeyrie
et al., 1995, 1999; Labeyrie, 1996; Lebreiro et al., 2009; Little et al.,
1997; Lund et al., 2015; Lynch-Stieglitz et al., 2011; Mackensen,
2001; Manighetti et al., 1995; Members, 1976, 2004, 2004;
Middleton et al., 2016, 2018; Millo, 2005; Millo et al., 2008; Mulitza
et al., 2008, 2017; Nam, 1997; Oppo et al., 2006, 2015; Oppo and
Fairbanks, 1990; Oppo and Horowitz, 2000; Oppo and Lehman,
1995; Pichevin et al., 2005; Praetorius et al., 2008; Repschl€ager
et al., 2015a; Richter, 1998; Rickaby and Elderfield, 2005;
Sarnthein et al., 1988, 1994; Schwab et al., 2012; Shimmield, 2004;
Sierro et al., 2005; Slowey and Curry, 1995; Telesi�nski et al., 2014;
Thornalley et al., 2010, 2011; Tiedemann, 1991; Tjallingii et al.,
2008; van Kreveld et al., 2000; Vidal et al., 1997; Voelker et al.,
2006; Vogelsang et al., 2001; Voigt et al., 2017; Waelbroeck et al.,
2001, 2006, 2011, 2019; Weinelt, 1993; Weldeab et al., 2016;
Willamowski, 1999; Zabel et al., 2001; Zahn et al., 1987; Zarriess
et al., 2011; Zarriess and Mackensen, 2011; Zhang et al., 2015).
The detailed list for the quality check is given in the supplementary
information and included revisiting the original data, controlling
first authorship of data, species names standardization, control of
potential species offset corrections and age model revisions.

For d18O measurements, offsets have been reported (Hodell
et al., 2003; Ostermann and Curry, 2000; Waelbroeck et al., 2005)
and are discussed in detail in Waelbroeck et al. (2005). Several
factorsmy influence themeasurements and lead to inter-laboratory
offsets. These are differences in 1) sample treatment prior to ana-
lyses, 2) in measurement methods, and 3) in calibration against the
standards. The influence of different cleaning methods, plasma
ashing (roasting), chemical treatment with ethanol/methanol, ox-
ygen peroxide (H2O2), sodium hypochlorite (NaOCl), Sodiumpyr-
ophosphate or Calgon have been investigated (Feldmeijer et al.,
2013; Mead et al., 1993; Serrano et al., 2008) and showed a sys-
tematic lowering of the d18O value when cleaned with H2O2
(Serrano et al., 2008), with a maximal derivation of 0.18‰ in the
d18O signal.

Main differences between d18O measurements have been re-
ported between laboratories using a common acid bath (Shackleton
and Opdyke, 1973) e.g. referred to as VG-ISOCARB and laboratories
using a single acid aliquot method that is mainly referred to as
automatic carbonate preparation device and coupled to a mass
spectrometer. The single acid aliquot method is more recently also
used in modern gas bench systems (e.g., Vonhof et al., 2020). For
the common acid bath �0.4‰ lighter d18O values in comparison to
the single acid aliquot method have been reported. This difference
is probably related to the reaction time of the samples in the acid
bath and the timing of CO2 extraction (Hodell et al., 2003) and was
solved by decreasing the extraction time (see summary in
Waelbroeck et al., 2005). No additional publications on this matter
have been issued, thus we assume that these inter-laboratory
calibration problems have been solved internally and not been re-
ported in any publications.

Problems with calibrations of internal vs in house standards
4

versus quality control standards have been reported and solved
(Ostermann and Curry, 2000). Sample size depending fractionation
(Vonhof et al., 2020, and citations therein) as well as the lack of a
standard that allows sample calibration for values higher than 4‰
may add additional uncertainty to the measurements.

To exclude an overinterpretation of the compiled datasets an
error of 0.2‰ should generally be considered as also proposed by
Waelbroeck et al. (2005). To test the dataset for laboratory offsets,
we checked the d18O records from the late Holocene times slice
(Figure S1). Though the standard deviation of LH samples partially
exceeded the 0.2‰ range, no systematic offset to lighter values
from laboratories using a common acid bath could be detected.

The d18O of C. wuellerstorfi and U. peregrina is characterized by
an offset (Duplessy et al., 1984; Shackleton and Opdyke,1973). It has
been assumed that the epifaunal C. wuellerstorfi secretes its calcite
in disequilibrium with ambient seawater due to vital effects.
Therefore, the d18O of C. wuellerstorfi is corrected for vital effects by
0.64‰ to match U. peregrina. More recently, this procedure has
been revised as the infaunal U. peregrina has been found to also
secrete its calcite in disequilibrium with ambient pore water
(Marchitto et al., 2014). Vital effects and species offsets for d13C are
even stronger and less systematic in epifaunal and infaunal species
(Fontanier et al., 2006). In order to avoid any systematic errors by
corrections for vital effects, all data presented here are based on
epifaunal Cibicidoides specimen d18O and d13C data without vital
effect corrections. All d18O and d13C data are based on observations
from foraminiferal calcite (d18Occ and d13Ccc) and are displayed
against the V-PDB scale for all stable isotope data hence forward.
This signal still includes the effect of water temperature and global
ice volume changes. To transfer d18Occ into d18O of seawater
(d18Osw), water temperature reconstructions would be needed. The
latter are not available for most records, thus, d18Occ distributions
are presented in the results and the effect of temperature and ice
volume changes is presented in the discussion.

d13Ccc of Cibicidoides represent the d13C of dissolved inorganic
carbon in the water column without vital effects and small sec-
ondary effects of carbonate ion concentrations and pressure
(Schmittner et al., 2017).

All age models were updated and synchronized using Paleo-
DataView (Langner and Mulitza, 2019) and its interface to the Ba-
con age modeling software (Blaauw and Christen, 2011). Where
available, age models are based on planktonic 14C dates, and
reservoir age correction is carried out with reservoir ages derived
from Butzin et al. (2017). We note that these reservoir age estimates
are uncertain, especially for high latitudes (Alves et al., 2019), but
they allow the same standard to be applied to records from the
same region and result in a consistent dataset. Additionally, surface
ocean d18O records were regionally compared for consistence and
aligned where needed. Cores that lack 14C dating were aligned
using the software “BIGMACS” (Bayesian Inference Gaussian pro-
cess regression for Multiproxy Alignment of Continuous Signals),
described in (Lee et al., 2019).

Though different deglacial time slices have been analyzed in the
project, here we concentrate on the time slice HS1 that we defined
for our study to last from 17.5 to 14.8 ka BP. To account for un-
certainties associated with agemodels and climate transitions (e.g.,
between the LGM and HS1), the boundaries between time episodes
were avoided in our study. Only records covering at least part of the
glacial and deglacial time slices (i.e., from the LGM to the YD) are
included in the dataset of this study. For quality control, the number
of datapoints included from each core for HS1 were plotted and are
shown in Figure S1.
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4. Results

4.1. Isotope signatures in the eastern North Atlantic basin

During HS1, high benthic d13Ccc (1.25e0.75‰) indicate the
presence of 13C enriched water that occupies the upper 3000 m of
the water column at latitudes between 60 �N and 40 �N in the
eastern NA basin (Fig. 2c, S2). A strong boundary between 13C
enriched (0.5e1.5‰) and 13C depleted (0.0‰) waters to the south is
observed between 20 �N and 30 �N. Below 3000mwater depth, the
basin is filled with 13C depleted (0.25 to �1‰) waters. In the upper
2000 m, a tongue with a depleted benthic d18Occ signature
(2.75e3.25‰) is observed between 40 �N and 50 �N (Fig. 2d, S2).
The d18Occ signal below 2000 m water depth is relatively homo-
geneous throughout the basin with values between 3.5‰ and 4‰.
The d18Occ signature does not coincide with that of d13Ccc.

4.2. Western basin

In the Western Atlantic basin, 13C enriched waters (0.5e1.5‰)
(Fig. 2a,b, S2) fill the upper 3000 m from 60�N southward. The
southernmost extent of this 13C enriched water mass is not well
constrained due to the sparsity of data in the South Atlantic, but it
seems to extend to ~25�S. This water mass is underlain by 13C
depleted waters (0.5 to �1‰). A tongue of waters with a depleted
d18Occ signature (3e3.5‰) is evident between 60�N and 20�N. It
reaches down to about 4000 m at 40� N and shoaling southwards.
North of 20�N, the 18Occ depleted waters are surrounded by waters
with an enriched benthic 18Occ signature (3.5e4.5‰). At the
equator, a d13Ccc enrichment to 0e0.25‰ below 3000 m water
depth is observed.

4.3. Water mass distribution

4.3.1. HS1 eastern Atlantic water masses
The Irminger and Nordic Seas are filled with deep waters with

an enriched 18O and 13C signature, which indicates active deep-
water convection in this region and contradicts previous studies
suggesting a complete AMOC shut-down (Lund et al., 2015;
Rahmsdorf, 2002; Sarnthein et al., 1994; Schmittner and Lund,
2015). Modeling suggests a shut-down AMOC would lead to a
d13Cminimum at 1e2 km depth and 60� N in the North Atlantic due
to the accumulation of isotopically-light respired carbon
(Schmittner and Lund, 2015), a feature inconsistent with the dis-
tribution of d13Ccc in our HS1 compilation. The HS1 d13Ccc signature
in the eastern North Atlantic basin, shows a depletion of 13C south
of 20�N, consistent with previous studies (Duplessy, 1988;
Sarnthein et al., 1994). A significant weakening of deepwater for-
mation and AMOC during HS1 and stronger Southern Ocean con-
tributions have been favored as a reason for decreasing d13Ccc
values in the North Atlantic (Duplessy, 1988; Sarnthein et al., 1994;
Schmittner and Lund, 2015, and many others), yet already ques-
tioned by (Bauch, 2013). More recent studies using combined d18Occ
and d13Ccc records from the North Atlantic (Andrews et al., 1999;
Campos et al., 2020; Keigwin and Swift, 2017; Repschl€ager et al.,
2015a), show heavy d18Occ values during the LGM and HS1 in the
deep North Atlantic indicating a northern source of these deep
waters (Keigwin and Swift, 2017; Repschl€ager et al., 2015a) and
further questioned the collapsed HS1 AMOC hypothesis.

Data presented here (Fig. 2d) indicate a layer of waters with a
depleted d18Occ signature in the eastern Atlantic during HS1 be-
tween 20�N and 50�N. Yet, these 18O depleted waters are restricted
to the upper 2000 m water depth, and seem to reach no further
south than 20�N, and thus do not appear to have contributed to
deepwater export in the eastern Atlantic. The 18O enriched waters
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below 3000 m water depth and south of 20�N indicate the exis-
tence of another deepwater mass that may have a different origin.

4.3.2. 18O depleted waters
A remarkable tongue of waters with a low d18Occ signature en-

ters both the eastern and western Atlantic between 45�N and 20�N.
It stays above 2000 mwater depth in the eastern basin, whereas in
the western North Atlantic it reaches down to 4000 m. These d18Occ
signatures are not observed south of 20�N. This water mass bears
a13Ccc enriched signature that is indistinguishable from the water
mass signature farther north.

5. Discussion

5.1. Origin of water masses

To better identify the origin and spatial distribution of the
different water masses, d18Occ and d13Ccc distributions are plotted
along the flow path of the three modern deep- and intermediate
water masses, ISOW/NADW, LSW, and MOW (Figs. 1 and 3)
(Lherminier et al., 2010; Sarafanov et al., 2012; Schmitz and
McCartney, 1993; Xu et al., 2010). Additionally, binned data with
1000-m water-depth bins are used to investigate the spatial
extension of thewater masses (Fig. 4). Surprisingly, at stations close
to the sills to the GIN Seas, 18Occ and 13Ccc enriched signatures are
traced (Figs. 3,4,5, S3), our interpretation is that these correspond
to the classical ISOW and DSOW waters.

Yet, below 1500mwater depth in the eastern Atlantic basin a13C
depleted, 18O enriched waters are observed and correspond to
ENADW. The d13Ccc depletion may have been caused by several
mechanisms: a stronger admixture of stronger 13C depleted
(Khatiwala et al., 2019; Martínez-García et al., 2014) southern
sourced LDW/AABW to ENADW as previously proposed (Duplessy,
1988; Sarnthein et al., 1994), a general weaker deepwater convec-
tion in both the North Atlantic and the Southern Ocean (Zhang
et al., 2017) that led to a general increase in residence times of
the deepwaters and associated uptake of isotopically-light respired
carbon in the ENADW (Crocker et al., 2016; Thornalley et al., 2015)
and LDW. The light ISOW d13Ccc signature in the d18Occ vs d13Ccc
cross-plot (Fig. 4) and d18Occ signatures similar to AABW in the
shallow northern Iceland Basin and the Irminger Sea exclude a
southern origin of these waters and indicates that the deepwater
filling the abyssal eastern North Atlantic are of Northern origin.

When plotted along the modern NADW flow path, a water mass
enriched in 18Occ and 13Ccc can be traced back to the Iceland Sea/
Nordic Seas below 1000 m water depth (Fig. 3a and b). Its recon-
structed southward flow crosses the Iceland Basin and CGFZ, and
seems to be interrupted in the region of the Irminger Sea, Labrador
Sea, and the east coast of North America between 50 and 35�N
(7000e15,000 km) (Figs. 3 and 4). Within this area, a18O depleted
13C enriched water mass reaches down to more than 3000 mwater
depth. This area resembles the area of HS1 meltwater extent
reconstructed by the distribution of ice rafted debris (IRD)
(Hemming, 2004; Ruddiman, 1977). A potential origin of the 18O
depleted water is the relatively warm and saline MOW. Under
modern conditions, the 18O depleted, 13C enriched waters sourced
from the Mediterranean overflow (Fig. 3e and f, Fig. 4) reach down
to 2500 m water depth in the eastern Atlantic basin. Although this
is slightly deeper than MOW distribution (Curry et al., 2003), this
indicates that 18Occ depleted waters in the eastern North Atlantic
basin could be affected by MOW. This is also evident from the
d13Ccc/d18Occ cross plots (Fig. 5).

In thewestern North Atlantic basin, the 18O depletedwatermass
reaches down to 3500 m depth, which is far deeper than its
counterpart in the eastern basin (2000 m). The question arises,



Fig. 1. Map overview on the modern deepwater circulation in the North Atlantic, modified after Repschl€ager et al. (2015a), based on Schott et al. (2004) supplemented with data of
van Sebille et al. (2011) and (van Aken, 2000a); van Aken (2000b); (van Aken, 2001). Abbreviations: ISOW IcelandeScotland Overflow Water; DSOW DenmarkeStrait-Overflow-
Water; DWBC Deep Western Boundary Current, LSW Labrador-Sea Water; MOW Mediterranean Overflow Water; ENADW Eastern North Atlantic Deep Water; WNADW Western
North Atlantic Deep Water; LDW Lower Deep Water; AABWAntarctic Bottom Water; CGFT CharlieeGibbs-Fracture-Zone; E Entrainment, © Deepwater convection areas. Map based
on Ocean Data View (Schlitzer, 2012).
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whether this water mass is affected by MOW or represents an
altered DSOW/ISOW or LSW. Along the modern flow path of LSW
(Fig. 3), these waters are mainly found along the east coast of North
America and the southern tip of Greenland. Data resolution does
not allow to prove any admixture of MOW, and densities of modern
MOW do not allow these waters to sink below 2000 m. Therefore,
we assume that the observed light d18Occ in the western North
Atlantic basin originates from a western source and not fromMOW
directly.

A clear boundary between the 18O depleted 13C enriched water
mass signature to the north and 13C depleted 18O enriched water to
the south is observed at 20�N in the western Atlantic basin below
about 2 km depth (Fig. 2). The origin of the 13C depleted and 18O
enriched water masses can be traced back to the southernmost
sites of our study (Fig. 2a and b, 3a,b), indicating its origin from the
Southern Ocean. The extremely light d13C signature (Figure S4e,
Supplementary Information) is associated with the uptake of
respired carbon during the long residence time of the deepwater in
the abyssal Southern Ocean and/or an increase in the biological
pump in the Southern Ocean, for example, by iron fertilization.

Surprisingly, below 3500 m water depth d13C depleted waters
from the North and the South are separated by relatively d13C
enriched waters at the equator (Fig. 2a). Waters below 4000 m at
the equator are lighter in its d13C signature than the waters to the
North of it (Figure S4e). With up to 0.75‰, the signal is statistically
significant and may indicate that the abyssal water mass north of
the equator originates from the North Atlantic. The boundary is
probably formed by well-ventilated mid-depth waters being mixed
down to the abyssal ocean at the interface between deep waters of
southern and northern origins. Our hypothesis is supported by
benthic 14C AMS data compiled by Zhao et al. (2018) that reveal
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younger ages in the deep North Atlantic than its southern coun-
terpart, in agreement with data and modeling studies for HS1
(Repschl€ager et al., 2015a) and the LGM (Gebbie, 2014; Keigwin and
Swift, 2017; Zhao et al., 2018). Consequently, the existence of
northern and southern sources of abyssal waters during HS1 argues
against the classical suggestion that southern sourced deep waters
filled the entire abyssal ocean during the LGM and HS1 (Curry and
Oppo, 2005; Oppo et al., 2018; Rahmsdorf, 2002; Sarnthein et al.,
1994).

Based on the above properties and distribution patterns, we
distinguish seven different deepwater masses filling the North
Atlantic during HS1:

ISOW is characterized by relatively high benthic d18Occ and
d13Ccc values. Its formation area is situated in the Nordic Seas and/or
Iceland Basin. Its water mass signature is similar to modern ISOW,
indicating a deepwater formation process similar to the modern
situation. The early disruption of its classical flow path at 50�N in
the western Atlantic basin points either to a weak deepwater for-
mation, in agreement with previous studies (Duplessy, 1988;
Sarnthein et al., 1994), or to an alteration of ISOW on its southward
flow path. The latter would be in agreement with relative strong
ISOW formation during HS1 (Crocker et al., 2016), and is discussed
in chapter 5.3.

DSOW is characterized by relatively high benthic d18Occ and
d13Ccc values and only traceable in the Irminger Basin close to
Denmark Strait.

ENADW is characterized by 18Occ enriched 13Ccc intermediate to
depleted signatures and fills the eastern North Atlantic basin below
3000 m water depth.

MOW is characterized by benthic d18Occ depletion and d13Ccc
enrichment and its flow path corresponds to the classical MOW



Fig. 2. d13Ccc (a, c) and d18Occ (b, d) sections across the western (a, b) and eastern (c, d) Atlantic for HS1. Panels (e) and (f) show maps indicating the core locations used for both
sections.
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spreading into the North Atlantic.
HS1-NADW is characterized by low-d18Occ high-d13Ccc benthic

signatures and situated in the subtropical to subpolar North
Atlantic between 20�N and 50�N. The wide distribution of 18O-
depleted signatures below 3000 m water depth (Figs. 2b and 3b)
and occupation of the deep western North Atlantic basin, as well as
its occurrence at the southern tip of Greenland, argues against its
origin from MOW. Though HS1 NADW occupies the space that in
modern days is filled with LSW, LSW formation is supposed to have
been absent until 7 ka BP (Hoogakker et al., 2011; Kissel et al., 2013;
Solignac et al., 2004; Thornalley et al., 2013). Thus, in the following,
this water mass is called HS1-NADW. The d18O signature of this
water mass significantly differs from ISOW signature. Thus, a
deepwater formation process different from the Nordic Seas or an
alteration of the ISOW must have occurred in the region between
45�N and 50�N, as is discussed in chapter 5.3.

Below 4000 m water depth and to the north of 20�N, the
western North Atlantic Basin is filled with LNADW with a13Ccc-
depleted, 18Occ-enriched (Fig. 2a and b) signature. This water mass
probably originated from the north and is poorly ventilated due to
weaker abyssal ocean circulation than the mid-depths.

South of the equator, below 2000 m depth, both the eastern and
western Atlantic basins are filled with AABW/LDW with high-
7

d18Occ, low-d13Ccc signature, which are likely of southern origin
(e.g., Oppo et al., 2015; Oppo et al., 2018) and correspond tomodern
AABW and LDW. They will not be further addressed in this study.

5.2. Water mass formation mechanisms during HS1

5.2.1. Formation of ISOW
Modern ISOW is formed by the cooling of warm saline North

Atlantic Current (NAC) waters. Classical circulation patterns for HS1
suggest blocking of the northward warm water transport by a
meltwater lens and cessation of subpolar deepwater formation.
These scenarios are in contradiction with the d18O and d13C signa-
tures observed in this study that indicate active deepwater for-
mation in the Iceland Basin during HS1. The latter was previously
reported also for HS11 in the Nordic Seas (Bauch, 2013). Though
potentially subject to changes in the erosion patterns (Struve et al.,
2019), εNd and sortable silt records from the Irminger Sea (Crocker
et al., 2016 and citations therein) further support the export of
deepwater from the Irminger Sea during HS1. Thus, a mechanism
needs to be found that can explain northward NAC transport and
ISOW formation during HS1.

Despite blocking of the NAC by the meltwater lens and asyn-
chronous warming of the subtropics (Benway et al., 2010), and



Fig. 3. a) benthic d13Ccc and b) benthic d18Occ distribution during HS1 along the flow path of NADW, c) d) LSW (white circles), and e) f) MOW (red circles).
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widespread cooling at the Iberian Margin and subpolar North
Atlantic (40e55�N) (Bard et al., 2000; Chapman et al., 2000;
Heinrich, 1988; Maslin et al., 1995; Naafs et al., 2011; Penaud et al.,
2016; P�erez-Folgado et al., 2003), north of 55�N surface water
warming of at least 2 �C between the LGM and HS1 is apparent in
Mg/Ca and MAT data from core ODP 980 (Benway et al., 2010) sit-
uated at Rockall Plateau, as well as in Mg/Ca SST records of plank-
tonic foraminifera in core RAPID-15e4 P south of Iceland
(Thornalley et al., 2011). Mg/Ca records of G. bulloides (Peck et al.,
2008) indicate strong warming during HS1 and are suggested to
be caused by sporadic northward warm water transport with
advection of G. bulloides from warmer areas (Peck et al., 2008) and
is in agreement with studies from the Nordic Seas (Bauch, 2013)
and the North Atlantic (Bauch et al., 2000). This warm (and pre-
sumably salty) water advection may have fueled sporadic deep-
water formation in the subpolar North Atlantic. Yet, the warm NAC
waters would need to be transported across the meltwater lens.
Two scenarios are possible for the latter: a) surface transport and
mixing with the meltwater, and b) subduction of the NAC waters
underneath the meltwater, and resurfacing and cooling of the
meltwater lens on its transport to the north (Fig. 6). To comprehend
this process, analyses of the surface processes including detailed
spatial SST and SSS analyses of surface and subsurface dwelling
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foraminifers would be needed.

5.2.2. Formation of MOW
MOW formation in the Mediterranean may have been increased

during HS1 due to higher salinities and regional surface water
cooling. Assuming a reduced formation of ISOW during the same
time interval, MOW may even have contributed more to the
deepwater export than under modern conditions (Bauch, 2013;
Rogerson et al., 2010; Sch€onfeld, 1997; Sch€onfeld and Zahn, 2000;
Voelker et al., 2006). Consequently, MOW may have transported
over longer distances and penetrated greater depth in the eastern
and western North Atlantic.

5.2.3. Formation of NADW
In the following, we discuss four different mechanisms that may

explain the occurrence of the light d18Occ signature during HS1 at
1000 to 4,000 m water depths in the western North Atlantic be-
tween 20�N and 50�N. As discussed, pure MOW probably can be
ruled out as the primary origin for the d18Occ depleted water mass
signature in the Western Atlantic Basin. The origin of the light
d18Occ signature can either be admixture of isotopically light waters
during active deepwater formation within this area or warming of
the deepwater. We first present different mechanisms of NADW



Fig. 4. Regional distribution of benthic d18Occ data at 1000 me5000 m water depth during HS1. Binned depth intervals of 1000 m are used for plotting.
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formation and deepwater warming, and then discuss their feasi-
bility based on the d18Occ signatures, temperature, salinity, and
resulting density.

Mechanism A (Fig. 6a) - convection at the southern edge of
meltwater lens: HS1 was associated with a strong cooling of mid-
latitudes (Bard et al., 2000; Chapman et al., 2000; Heinrich, 1988;
Maslin et al., 1995; Naafs et al., 2011; Penaud et al., 2016; P�erez-
Folgado et al., 2003) and an extreme southward displacement of
the Arctic Front (e.g. Bard et al., 1987; Eynaud et al., 2009 and ci-
tations therein) as well as a southward displacement of the North
Atlantic Subtropical Gyre (Repschl€ager et al., 2015b). Glacial iceberg
scours found on the eastern US shelf indicate that the meltwaters
from these bergse potentially also during HS1e reached as far into
the subtropical ocean as the Florida Strait (Hill and Condron, 2014),
consequently leading to cooling of that region. Under such cold
conditions, strong cooling of the Gulf Stream and NAC waters could
have appeared along the southern extension of the meltwater lens,
and the southern boundary of thewinter sea ice extent (Fig. 7). Cold
and strong winds during HS1 could have enhanced such a cooling
and eventually have led to deepwater formation. Admixture or
entrainment of meltwater into the downwelling water mass during
destratification events may have transported the 18O depleted
waters into the deep ocean. Although deepwater formation off the
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coast of the eastern US has not been investigated so far, our pro-
posed open-ocean convection at the southern edge of the melt-
water lens (Fig. 7, Mechanism A) is in agreement with
reconstructed destratification of the upper water column based on
stable oxygen isotope records from different planktonic forami-
nifera at 40�N during HS1 (Rashid and Boyle, 2007).

Mechanism B (Fig. 7b) - warm polynyas: Warm NAC waters
could have been subducted underneath the freshwater and sea ice
lens, similar to modern circulation in the Arctic Ocean (Polyakov
et al., 2012, and citations therein). Sporadic break-up of sea ice by
subsurface warming would lead to the opening of polynyas and
cause deepwater convection by cooling of the warm and saline
surfacing waters. Similar mechanisms are reported from the Arctic
and subpolar North Atlantic (Morales Maqueda et al., 2004) and
have been discussed previously (Bauch and Bauch, 2001; Bauch
et al., 2001). Presumingly, this process includes entrainment of
meltwaters into the newly formed deepwaters, and would lead to a
stepwise erosion of the meltwater lens, similar to the mechanism
proposed by Krebs and Timmermann (2007) that preconditioned
the AMOC resumption at the onset of the Bølling-Allerød.

Mechanism C (Fig. 7c) - cold polynyas: This scenario is similar to
modern deepwater formation in the Southern Ocean, i.e., freezing
of sea ice and increasing the salinity of the surface waters.



Fig. 5. d18Occ versus d13Occ cross plots for the dataset for HS1.

Fig. 6. Mechanism for deepwater formation in the Iceland Basin during HS1 assuming subduction of the NAC underneath the meltwater lens, its northward transport, resurfacing,
cooling and convection north of the meltwater lens.
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Additional opening of polynyas would lead to heat loss and favor
deep water formation by brine water rejection. This scenario is
most likely to occur on the Greenland shelf and/or the Labrador Sea,
and has previously been proposed (Meland et al., 2008;Waelbroeck
et al., 2011) and discussed (Bauch et al., 2001; Bauch and Bauch,
2001).

Mechanism D (Fig. 7d) describes deepwater formation within
the Irminger and/or Iceland Basin, its southward transport, and
abyssal warming underneath the meltwater lens. This scenario
would be consistent with a diffusive heat transport within the
water column as published by (de Lavergne et al., 2017). As low d18O
is mainly occurring underneath the meltwater lid, a connection
10
between both meltwater lid and abyssal warming is likely. The
latter may be caused by two different mechanisms: subsurface
warming caused by the subduction of NAC waters underneath the
meltwater lens, or increased heat transport from enhanced MOW.
5.3. 18O-depleted deep waters-a density paradox?

The signature of low d18Occ in the deep Atlantic during HS1 has
been reported previously (Campos et al., 2020; Waelbroeck et al.,
2001) and is assumed to show the drawdown of the 18O-depleted
signal from waters stored in the global ice sheets that are released
during the deglaciation into the global ocean. The isotopically light



Fig. 7. Four mechanisms for deepwater formation in the subpolar to subtropical North
Atlantic during HS1. (a) describes cooling and convection at the southern limit of the
meltwater lens; (b) subsurface warm water transport and opening of warm water
polynyas; (c) deepwater formation due to the opening of coldwater polynyas and brine
rejection; (d) subsurface warm water transport and opening of warm water polynyas
and deepwater formation north of the meltwater lens and diabatic heating of the
water column beneath the meltwater lens, with major heat contribution from the
MOW.
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d18O signals are caused by the extreme isotopic depletion of the
melting ice and resulting fresh water (Vetter et al., 2017). Increased
salinity and cooling of these waters would be needed to form wa-
ters that are dense enough for deep convection. Both processes
increase the d18O values, thus preventing the light d18O signal from
being transported into the deep sea.

The classical explanation for this paradox is deepwater forma-
tion by brine rejection. Freezing of sea ice is a process with little
isotope fractionation that leaves salt behind in the ocean, thus
decoupling d18O from salinity. This mechanism illustrated in
deepwater formation Scenario C (Fig. 7c) is widely used to explain
11
the deglacial drawdown of the light d18O signal during the degla-
ciation. While explaining the depleted d18Occ signature, this
concept does not explain deglacial warming and salinity decrease
of NADW proposed by Adkins et al. (2002). In the following, wewill
discuss two different mechanisms that explain the occurrence of
18Occ depleted benthic signals under the consideration of deglacial
deep ocean temperature and salinity changes: mixing of low d18O
meltwaters with high d18O tropical waters, and abyssal warming of
the deepwater.

Mixing of isotopically depleted cold meltwaters and isotopically
enriched warm and salty subtropical (NAC) waters is illustrated in
Fig. 8 using the d18Occ of calcite. The temperature dependence of the
d18O fractionation in calcite during cooling follows isotope frac-
tionation lines, calculated using the equation of Shackleton (1974).
Temperature and isotopic signature of foraminifera for the sub-
tropical water masses was taken from published data from a core
(26JPC) situated in the Florida Strait (Schmidt and Lynch-Stieglitz,
2011). For meltwater data core PC04 from the inner Labrador Sea
(Gibb et al., 2014) representing the meltwater outburst from Hud-
son Strait was used. Mixing of about 50% of subtropical waters and
50% of meltwaters and its cooling to deepwater temperatures of
2 �C, as reconstructed for the late HS1 (Cronin et al., 2000;
Repschl€ager et al., 2015a), results in d18Occ signatures of 3.5‰ as
observed in the western Atlantic basin during HS1 (Fig. 8). Surface
temperatures and d18Occ data from the subtropical and subpolar
North Atlantic are within the range of the anticipated fractionation
line. Thus, simple mixing and cooling of surface waters could
explain the observed deepwater d18Occ signature. Yet, it needs to be
tested whether this water mass would still be dense enough to
form the observed deepwater masses.

The salinity of the resulting mixed water mass was calculated as
follows. For the HS1 meltwater dinocyst-based salinity re-
constructions from the inner Labrador Sea in front of Hudson Strait
were used (Gibb et al., 2014). Its reconstructed salinities of 31 are in
good agreement with modern meltwater signatures from the
Hudson Strait (Locarnini et al., 2013). No direct salinity re-
constructions exist for the Gulf Stream/NAC waters. Thus, we
calculated the latter using the ice volume and Mg/Ca temperature
corrected d18Osw record of core JPC26 (Schmidt and Lynch-Stieglitz,
2011) using the equations of Fairbanks et al. (1992). To visualize the
entire possible range of salinities, we used the regression line for
slope waters as well as Sargasso Sea waters. The only existing
deepwater salinity reconstructions independent of d18Osw were
generated from porewaters on a LGM time slice (Adkins et al.,
2002). The LGM data represent the saltiest endmember of NADW
(Fig. 8b). A water mass mixed from about 50% subtropical and 50%
meltwaters would have a salinity between 33.8 and 36. When
cooled down to 2.5 �C its density would lie within the range of
glacial NADW reconstructed by Adkins et al. (2002).

These results in general indicate the feasibility of deepwater
formation with low d18Occ signatures by pure mixing of water
masses without evoking any brine water formation. Yet, these re-
sults highly depend on the assumed d18O-salinity relationship of
the subtropical water masses and have a very high uncertainty. To
fully assess the salinity changes involved in this process, indepen-
dent surface and deepwater salinity reconstructions would be
needed.

Το test whether NADW was formed independently from ISOW
or originates from an altered ISOW or MOW, in the following we
discuss different mechanisms that could explain the d18Occ signa-
ture of foraminifers bathed in ISOW. The d18Occ signature of 4.2‰ as
observed in the Iceland Basin can be generated by deepwater for-
mation from a mixture of 75% subtropical waters and 25% melt-
water (cooling line B) under the assumption of Bottom Water
Temperature (BWT) of 2 �C, or by cooling a mixture of 50%



Fig. 8. Mixing of meltwater and subtropical waters as source of the observed deep-
water d18Occ signature during HS1. (a) d18Occ plotted versus water temperature, with
the light-yellow vertical shading indicating the observed range of deepwater d18Occ

data in the deep western Atlantic Basin (NADW) (20e50�N at 1000e4000 m water
depth) from this study. The turquoise field indicates d18Occ data in the Iceland Basin
(ISOW) (1000e3000 m water depth from this study. Grey lines indicate d18Occ frac-
tionation lines calculated using the equation of Shackleton (1974). The orange field
represents the range for tropical surface waters reported by Carlson et al. (2008) and
Schmidt and Lynch-Stieglitz (2011). The violet field indicates surface values reported
from the subpolar North Atlantic (e.g., Thornalley et al., 2010; Benway et al., 2010), and
the dark blue square indicates the HS1 meltwater signature from the inner Labrador
Sea (Gibb et al., 2014). (b) Isolines of potential densities (sigma-theta; orange lines) of
different mixtures shown on a T-S diagram. Yellow bars correspond to the crossing
point of the cooling lines A and B with the water mass mixing line in plot. Red squares
indicate modern NADW, AABW (Adkins et al., 2002) and MOW (Locarnini et al., 2013)
signatures. Blue squares indicate HS1 meltwater signature (Gibb et al., 2014), and
reconstructed glacial deepwater signatures (Adkins et al., 2002). The orange bar rep-
resents the reconstructed T-S range of tropical waters (Schmidt and Lynch-Stieglitz
(2011). The horizontal light blue bars in both plots indicates HS1 Bottom Water
Temperature (BWT) range reconstructed by Repschl€ager et al. (2015a) and Skinner and
Shackleton (2006), respectively.
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subtropical waters and 50% meltwater (cooling line A) to �1.5 �C.
Thus, NADW and ISOW during HS1 either originate from the same
water mass and only differ in temperatures, or originate from two
different deepwater sources that differ in meltwater admixtures.
Surface d18Occ from the Iceland Basin (Thornalley et al., 2011) better
match mixing line A, as well as the average BWT of �0.5 to �1 �C
reconstructed from the Iceland Basin (Thornalley et al., 2011) and
the IberianMargin (Skinner and Shackleton, 2006) at 2400mwater
depth. Therefore, the d18Occ signature of 4‰ can be explained by
12
the cooling of a 50% subtropical and 50% meltwater mixture to the
reconstructed temperatures.

5.4. The role of MOW and diabatic heat transport during HS1

The draw-down of isotopically light water to the deep Atlantic
can be explained with simple mixing and cooling, as shown above.
The reconstructed deepwater warming of 2 �C toward the end of
HS1 (Barker et al., 2011; Repschl€ager et al., 2015a; Skinner and
Shackleton, 2006; Thornalley et al., 2015) would lead to a density
loss of about 0.2 kg*m�3 that argues against a drawdown by active
deepwater convection. To keep the density high enough for con-
vection, either additional salt would be needed, or deep ocean
warming and increased mixing rates would need to be assumed.
MOW with modern salinities of 37.4 could act as a source of salt to
the deepwater. Yet, undermodern conditions, downwardmixing of
MOW is restricted to the upper 2000 m of the water column.
Therefore, stronger vertical mixing of the water column due to
heating and or stronger tidal energy dissipation (Wilmes et al.,
2019) of the deep ocean would probably be needed (see 5.5).

Three different sources of heat are conceivable: (1) geothermal
heating, as has been proposed for the Southern Ocean (Miller et al.,
2012), (2) diabatic warming by heat transported downward from
the subducted NAC, or (3) from MOW. The distribution pattern of
depleted 18Occ with a major decrease at intermediate depths argues
against (1) geothermal heating at the seafloor. An average heat flux
of 116.3 mW*m�2 in the North Atlantic region (Bullard and Day,
1961; Davies, 2013) is not sufficient to heat a water column of
3000m by 2 �C even under the assumption of a complete shutdown
of AMOC and stagnation of deepwater flow in the North Atlantic
and the a potentially higher geothermal heating at the termination
of the LGM because of lower sea level (Lund et al., 2016). (2) Sub-
duction of the NAC underneath themeltwater lens is comparable to
the modern situation in the Nordic Seas and Arctic (Polyakov et al.,
2012). Nomodern deepwater warming is reported from this region,
therefore, we suppose that warming from the NAC played a sub-
ordinate role. (3) Under modern conditions, MOW brings 11 �C
warm waters down to a depth of 1,500 m. Therefore, diabatic heat
transport from this source to the abyssal ocean may have played a
major role in the deepwater warming, especially when considering
an MOW strengthening during the later part of this period (Bahr
et al., 2014, 2015; Lebreiro et al., 2018; Voelker et al., 2006).

If our hypothesis is correct, and heating resulted from diabatic
warming, the deepwater would not have warmed immediately at
the beginning of HS1, but would have started sometime later.
Indeed, a time delay is also apparent in d18Occ time series data, with
the d18Occ decrease not starting before 16 ka BP (Waelbroeck et al.,
2011), yet would need to be tested with benthic bottom water
temperature reconstructions.

5.5. The role of vertical mixing

Traditionally, the strengthening of the AMOC after HS1 is
explained by a salinity kick-off caused by the onset of the north-
ward transport of warm saline waters, and its cooling and sinking.
The production of saline deep waters argues against successive
freshening needed to leave the glacial deepwater circulation mode
(Adkins et al., 2002). To replace the glacial saline deepwater, a
process is required that mixes down freshwaters into the abyssal
ocean.

The southern extent of the waters with light d18Occ confined to
20 �N indicates a reduced southward transport of NADWand ISOW
and has been associated with a weak AMOC in previous studies
(e.g., Rahmsdorf, 2002; Sarnthein et al., 1994). This weak AMOC
mode probably led to an increased residence time of deepwaters in
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the North Atlantic, and increased the proportion of diabatic heat
transport (de Lavergne et al., 2017) and diffusive vertical mixing
over the meridional mixing component as calculated previously for
the South Atlantic (Lund et al., 2011). Increased dissipation of tidal
energy may also have contributed to an increase in diapycnal
mixing, particularly in the North Atlantic (Wilmes et al., 2019). Such
an increased vertical mixing would have led to an increased
ventilation that is supported by heavy d13Ccc signatures. Further-
more, vertical mixing would have favored NADW freshening by
downward mixing as well as diabatic warming of the deepwater
indicated by light d18Occ signatures. This has been shown in a
modeling study as asymmetrical warming of the North Atlantic
(Zhang et al., 2017), and also explains the deglacial stratification
reversal.

5.6. Importance of HS1 in setting the deglacial climate

The sum of our arguments supports Scenario D (Fig. 7d) and
explains deepwater formation in HS1. During HS1, tropical warm
and saline waters accumulated within the subtropics and were
partially exported northward underneath the HS1 meltwater lens.
On its northward path, NAC waters entrained overlying meltwaters
(about 50%e50% mixing), thereby decreasing its d18O signature. In
the Irminger/Iceland Basin, NAC waters resurfaced, cooled down,
and formed ISOW. The cooling process led to an increase of d18Occ in
foraminifera, masking the freshening signal of the waters. ISOW
slowly propagated into the western Atlantic basin on a flow path
similar to modern. In the area between 50�N and 20�N, the deep-
water was warmed by diabatic heat transport. The heat originated
fromMOWas well as warm surface waters that accumulated in the
subtropics. The reduction of deepwater flow and thus long resi-
dence times favored the deepwater warming and its vertical mix-
ing. This process would have led to a weakening of the salinity
driven stratification of the water column, and, at the same time,
transport of both heat and freshwater into the abyssal ocean.
Consequent weakening of the stratification eventually also allowed
deepwater formation Scenarios A and B (Fig. 7), and mixing may
have also led to an entrainment of MOW.

The strong vertical mixing and stratification weakening, which
is traceable in our dataset by the drawdown of isotopically light
d18O in wide parts of the North Atlantic, may have set the condi-
tions for the massive deepwater formation during the Bølling-
Allerød. This proposed new mechanism shows that the HS1 melt-
water outburst is not only an important driver of Southern Ocean
upwelling by teleconnection, but also had a direct effect on the
reversal of the deepwater stratification in the North Atlantic, which
allowed the resumption of the strong AMOC during the BA.

6. Summary and conclusions

The OC3 North Atlantic compilation of epibenthic d13Ccc and
d18Occ with improved spatial coverage allows the reconstruction of
water mass origin and distribution as well as water mass compo-
sition changes along the flow path of the water masses. Distinct
patterns of d13Ccc and d18Occ are observed in the deep North Atlantic
for HS1 and indicate seven differentwatermasses. ISOWand DSOW
originated from a convection cell situated in the Icelandic Basin/
Nordic Seas and produced deepwater with a classical heavy d13C
and d18O signature. These waters mainly supplied the eastern and
western Atlantic basin at high latitudes. Strong contributions of
18O-depleted and 13C-enriched MOW can be reconstructed for the
eastern Atlantic. NADW-like deep waters (HS1-NADW) are situated
in the subtropical to subpolar North Atlantic north of 20�N and
show distinct high d13Ccc and low d18Occ signatures underneath the
HS1 meltwater lens. Its formation may involve deepwater
13
convection underneath and at the boundaries of themeltwater lens
as well as diabatic warming of ISOW due to a weakened southward
export and thus long residence times. The abyssal North Atlantic
below 4000 m probably have been filled with waters of northern
origin with a low d13Ccc and high d18Occ signature north of 20�N
corresponding to ENADW and LNADW. South of the 20�N, waters
with a southern origin prevailed (LDW/AABW).

Enhanced mixing of meltwaters, subtropical waters, and MOW
in the upper 3500 m of the water column during long residence
times and successive diabatic warming of the deepwaters may
explain the drawdown of isotopically light d18O and fresh waters
into the abyssal North Atlantic that started the salinity reversal of
the deep ocean and preconditioned the onset of deepwater con-
vection during the BA. To test the proposed mechanisms, deep-
water salinity and temperature reconstructions with proxies
independent of oxygen isotope composition would be needed. The
new reconstruction also presents a challenge for future modeling
studies to reproduce carbon and oxygen isotope distributions
during HS1.
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