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This paper presents advances in Kullback-Leibler-Quadratic (KLQ) optimal control: a stochastic control framework for Markovian models. The motivation is distributed control of large networked systems. The objective function is composed of a control cost in the form of Kullback-Leibler divergence plus a quadratic cost on the sequence of marginal distributions. With this choice of objective function, the optimal probability distribution of a population of agents over a finite time horizon is shown to be an exponential tilting of the nominal probability distribution. The same is true for the controlled transition matrices that induce the optimal probability distribution.

However, one limitation of the previous work is that randomness can only be introduced via the control policy; all uncontrolled processes must be modeled as deterministic to render them immutable under an exponential tilting. In this work, only the controlled dynamics are subject to tilting, allowing for more general probabilistic models.

Numerical experiments are conducted in the context of power networks. The distributed control techniques described in this paper can transform a large collection of flexible loads into a 'virtual battery' capable of delivering the same grid services as traditional batteries. Additionally, quality of service to the load owner is guaranteed, privacy is preserved, and computation and communication requirements are reduced, relative to alternative centralized control techniques.

I. INTRODUCTION

The setting of this paper is optimal control of Markov Decision Processes (MDPs). The state space S and input space U are assumed to be finite. A finite time horizon is considered, indexed by {k : 1 ≤ k ≤ K}. The controlled transition matrix T k defines the statistics of the state process S with input process U :

T k (x, s ′ ) = P{S k+1 = s ′ | S i , U i , 0 ≤ i ≤ k; S k = s, U k = u}
The policies {ϕ k } are assumed to be Markovian:

ϕ k (u | s) = P{U k = u | S i , U i , 0 ≤ i < k; S k = s} (1) 
As in [START_REF] Cammardella | Kullback-Leibler-Quadratic optimal control of flexible power demand[END_REF], [START_REF] Cammardella | Simultaneous allocation and control of distributed energy resources via Kullback-Leibler-Quadratic optimal control[END_REF], the Kullback-Leibler-Quadratic (KLQ) optimization criterion is based on convex functions of the marginal probability mass functions (pmfs) of the joint stateinput process X k = (S k , U k ):

ν k (x) = P{S k = s, U k = u} , x = (s, u) ∈ X (2)
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where X = S × U is the state-input space.

A sequence {C k } of cost functions is given, and the control objective is to obtain the solution to the optimization problem

J * (ν 0 ) = min U K k=1 C k (ν k ) (3) 
where the minimum is over all randomized policies. Two classes of constraints are imposed. First, the initial pmf ν 0 for X 0 is fixed. Second are the dynamics, which can be expressed as a sequence of linear constraints on the marginals:

u ′ ν k (s ′ , u ′ ) = s,u ν k-1 (s, u)T k (x, s ′ ) , s ′ ∈ S (4) 
One standard application is variance penalized MDPs. Our motivation is applications to mean field control as an approach to distributed control

A. Distributed control

The general optimization problem (3) falls outside of textbook stochastic control problems. It is inspired by meanfield game theory [START_REF] Lasry | Mean field games[END_REF], [START_REF] Huang | Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized ε-Nash equilibria[END_REF], [START_REF] Huang | Large population stochastic dynamic games: closed-loop Mckean-Vlasov systems and the Nash certainty equivalence principle[END_REF], [START_REF] Caines | Mean field games[END_REF], [START_REF] Guéant | Mean Field Games and Applications[END_REF], [8] (see [START_REF] Carmona | Probabilistic Theory of Mean Field Games with Applications I[END_REF], [START_REF]Probabilistic Theory of Mean Field Games with Applications II: Mean Field Games with Common Noise and Master Equations, ser. Probability Theory and Stochastic Modelling[END_REF] for recent surveys), and motivated in particular by applications to distributed control [START_REF] Chen | Distributed control design for balancing the grid using flexible loads[END_REF].

The control objective emerges from the approximation of a particular distributed control problem: a central authority wishes to shape the aggregate behavior of N ≫ 1 homogeneous agents, each modeled by the transition kernel T k , with state-input denoted {X i k = (S i k , U i k ) : 1 ≤ i ≤ N }. The sequence of empirical distributions is denoted

ν N k (x) = 1 N N i=1 I{S i k = s , U i k = u}, x = (s, u) ∈ X
The optimization criterion of interest is (3), but with ν k replaced by ν N k . A mean-field control approximation is justified by applying the law of large numbers: fix a sequence of randomized policies {ϕ k : 0 ≤ k ≤ K}, and consider N as a variable. The empirical distribution {ν N k } converges as N → ∞ for each k, and the limit satisfies the linear constraints [START_REF] Huang | Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized ε-Nash equilibria[END_REF].

Section IV focuses on a homogeneous population of residential refrigerators for the creation of "virtual energy storage" for power grid applications. The goal is to shape the power usage of the population of loads. Let Y : X → R + denote power consumption as a function of state, so that the average power consumption of the population tracks the reference signal r, with acceptable error. The temperature of the ith load at time k is denoted Θ i k , and the power mode (0 or 1) is denoted M i k . A typical linear model is given by

Θ i k+1 = Θ i k + α[Θ a -Θ i k ] -βM i k (5)
where α > 0, β > 0 and Θ a ∈ R denotes ambient temperature. This is a (deterministic) MDP model with stateinput given by

X i k = (Θ i k , M i k ).
In this work, our control design allows for the inclusion of disturbances in the model [START_REF] Huang | Large population stochastic dynamic games: closed-loop Mckean-Vlasov systems and the Nash certainty equivalence principle[END_REF].

B. Literature review

Our primary motivation is application to distributed control of power systems, specifically Demand Dispatch. The term was introduced in the conceptual article [START_REF] Brooks | Demand dispatch[END_REF] to describe the possibility of distributed intelligence in electric loads, designed so that the population would help provide supplydemand balance in the power grid. Contributing to this science has been a focus of the authors for the past decade [START_REF] Hao | How demand response from commercial buildings will provide the regulation needs of the grid[END_REF], [START_REF] Meyn | Ancillary service to the grid from deferrable loads: The case for intelligent pool pumps in Florida[END_REF], [START_REF] Chen | Distributed control design for balancing the grid using flexible loads[END_REF], and many others (see [START_REF] Chen | Distributed control design for balancing the grid using flexible loads[END_REF] for a recent bibliography).

The goal in much of this prior work is to modify the behavior of loads so that their aggregate power consumption tracks the reference signal r that is broadcast by a Balancing authority (BA), based on distributed control, with local randomized decision rules. Randomized control techniques for Demand Dispatch have been proposed in [START_REF] Mathieu | State estimation and control of electric loads to manage real-time energy imbalance[END_REF], [START_REF] Tindemans | Decentralized control of thermostatic loads for flexible demand response[END_REF], [START_REF] Almassalkhi | Packetized energy management: asynchronous and anonymous coordination of thermostatically controlled loads[END_REF], [START_REF] Benenati | A tractable formulation for multi-period linearized optimal power flow in presence of thermostatically controlled loads[END_REF] based on entirely different control architectures.

The following control strategy is common to all of the approaches described in [START_REF] Meyn | Ancillary service to the grid from deferrable loads: The case for intelligent pool pumps in Florida[END_REF], [START_REF] Chen | Distributed control design for balancing the grid using flexible loads[END_REF]. It is assumed that a family of transition matrices {P ζ : ζ ∈ R} is available at each load. A sequence {ζ 0 , ζ 1 , . . . } is broadcast from the BA, based on measurements of the grid, and at time k an individual load transitions according to this law:

P{X k+1 = x ′ | X k = x, ζ k = ζ} = P ζ (x, x ′ )
The paper [START_REF] Meyn | Ancillary service to the grid using intelligent deferrable loads[END_REF] re-interprets the control solution of [START_REF] Todorov | Linearly-solvable Markov decision problems[END_REF] as a technique to create the family {P ζ } through the solution to the nonlinear program:

P ζ := max π,P ζ⟨ π, Y ⟩ -K(P ∥P 0 ) , ζ ∈ R , (6) 
where K denotes the infinite-horizon relative entropy rate for two Markov chains:

K(P ∥P 0 ) := x,x ′ π(x)P (x, x ′ ) log P (x, x ′ ) P 0 (x, x ′ ) (7)
in which π is the invariant pmf for P . The maximum in [START_REF] Caines | Mean field games[END_REF] is over all (π, P ) subject to the invariance constraint πP = π [START_REF] Meyn | Ancillary service to the grid using intelligent deferrable loads[END_REF], [START_REF] Bušić | Distributed randomized control for demand dispatch[END_REF], [START_REF] Chen | Distributed control design for balancing the grid using flexible loads[END_REF].

The optimal control formulation here is also based on (7), with similar motivation, but the control approaches are entirely different. Further discussion is postponed to Section II-C.

Organization. The remainder of this paper is organized as follows: Section II contains a description of our control objective and a characterization of our main result. Computation of the optimal policy {ϕ * k } is described in Section III. Results from numerical experiments are collected together in Section IV. Conclusions and directions for future research are contained in Section V. The appendix contains abbreviated proofs of some of the results of this paper. Complete proofs can be found in [START_REF] Cammardella | Kullback-Leiblerquadratic optimal control[END_REF].

II. KULLBACK-LEIBLER-QUADRATIC CONTROL

A. Optimal control formulation KLQ is designed to balance two objectives: (i) ν k ∼ ν 0 k , where {ν 0 k } models nominal behavior. (ii) ⟨ν k , Y⟩ ≈ r k , where {r k } is a reference signal, and Y : X → R. A pmf p 0 on X K+1 defines the nominal model:

p 0 (⃗ x) = ν 0 0 (x 0 )P 0 0 (x 0 , x 1 )P 0 1 (x 1 , x 2 ) • • • (8)
where ⃗ x denotes the elements of X K+1 , {P 0 k } are the nominal Markov transition matrices with transition probabilities

P 0 k (x, x ′ ) := P{X k+1 = x ′ | X k = x}
, and the nominal marginal pmfs are:

ν 0 k (x k ) = xi:i̸ =k p 0 (⃗ x) , ⃗ x ∈ X K+1
The nominal transition probabilities are represented as a product of two conditional pmfs:

P 0 k (x, x ′ ) = T k (x, s ′ )ϕ 0 k+1 (u ′ | s ′ ) , x, x ′ ∈ X (9)
where {ϕ 0 k } denotes the nominal randomized policy. Also, any randomized policy {ϕ k } produces Markov transition matrices {P k } with transition probabilities

P k (x, x ′ ) = T k (x, s ′ )ϕ k+1 (u ′ | s ′ ) , x = (s, u) ∈ X (10)
The marginal pmfs evolve according to linear dynamics, which are shown to be equivalent to (4):

ν k = ν k-1 P k-1 , 1 ≤ k ≤ K (11) 
where the kth marginal ν k is interpreted as a d-dimensional row vector. The two control objectives motivate the cost function considered in this paper:

C k (ν) = D(ν, ν 0 k ) + κ 2 ⟨ ν, Y ⟩ -r k 2
in which κ > 0 is a penalty parameter, and D penalizes deviation from nominal behavior. The finite-horizon optimal control problem is thus

J * (ν 0 0 ) = min K k=1 D(ν k , ν 0 k ) + κ 2 ⟨ ν k , Y ⟩ -r k 2 ( 12 
)
where the initial pmf ν 0 0 is given. The relative entropy rate (7) will be adopted as the cost of deviation. Under our assumptions, this reduces to

D(ν k , ν 0 k ) := s,u ν k (s, u) log ϕ k (u | s) ϕ 0 k (u | s) (13) 
The terminology is justified through the following steps. First, we have seen that any randomized policy gives rise to a pmf p that is Markovian:

p(⃗ x) = ν 0 0 (x 0 )P 0 (x 0 , x 1 )P 1 (x 1 , x 2 ) • • •
where P k is defined in [START_REF]Probabilistic Theory of Mean Field Games with Applications II: Mean Field Games with Common Noise and Master Equations, ser. Probability Theory and Stochastic Modelling[END_REF], and the initialization ν 0 0 is specified. The relative entropy is the mean log-likelihood:

D(p∥p 0 ) = L(⃗ x) p(⃗ x) (14) 
where L = log(p/p 0 ) is an extended-real-valued function on X K+1 . The expression for P k in [START_REF]Probabilistic Theory of Mean Field Games with Applications II: Mean Field Games with Common Noise and Master Equations, ser. Probability Theory and Stochastic Modelling[END_REF] and the analogous formula for P 0 k using ϕ 0 k+1 gives

L(⃗ x) = log p(⃗ x) p 0 (⃗ x) = K k=1 log ϕ k (u k | s k ) ϕ 0 k (u k | s k ) (15) 
Consequently, D(p∥p

0 ) = K k=1 D(ν k , ν 0 k ).
The optimal control problem ( 12), subject to the constraint [START_REF] Chen | Distributed control design for balancing the grid using flexible loads[END_REF], can be expressed

J * (ν 0 0 ) := min ν,γ K k=1 D(ν k , ν 0 k ) + κ 2 K k=1 γ 2 k (16a) s.t. γ k + r k -⟨ ν k , Y ⟩ = 0 (16b) u ′ ν k (s ′ , u ′ ) - s,u ν k-1 (s, u)T k (x, s ′ ) = 0 (16c)
Prop. 2.1 asserts that the objective function is convex. It is also evident that the constraints (16b) and (16c) are linear in ν k ; hence, the optimization problem ( 16) is convex. Proposition 2.1: The optimization problem ( 16) is jointly convex in {ν k , γ k : 1 ≤ k ≤ K}. Furthermore, the constraint (16c) is equivalent to [START_REF] Chen | Distributed control design for balancing the grid using flexible loads[END_REF].

⊓ ⊔

An abbreviated proof can be found in Appendix A.

B. Dead-beat control

In Section 5 of the book chapter [START_REF] Chertkov | Ensemble control of cycling energy loads: Markov Decision Approach[END_REF] a similar optimal control formulation is proposed:

min p D(p∥p 0 ) subject to E p Y(X k ) = r k , 1 ≤ k ≤ K (17)
Relative entropy is a useful measure of cost of deviation from nominal behavior because the optimizer has a simple form: a "tilting" (or "twisting") of the nominal model [START_REF] Todorov | Linearly-solvable Markov decision problems[END_REF], [START_REF] Meyn | Ancillary service to the grid from deferrable loads: The case for intelligent pool pumps in Florida[END_REF]. This is motivation for the use of relative entropy in this prior work, which leads to the solution to [START_REF] Almassalkhi | Packetized energy management: asynchronous and anonymous coordination of thermostatically controlled loads[END_REF]:

p * (⃗ x) = p 0 (⃗ x) exp K k=1 β k Y(x k ) -Λ(β)
in which β ∈ R K are Lagrange multipliers corresponding to the average power constraints, and Λ(β) a normalizing constant.

The optimization criterion ( 17) is a form of dead-beat control, which might cause concern: is the optimization problem feasible? are there stability issues, as is well known for dead-beat control of linear systems?

For the KLQ formulation described in this paper, the tracking constraint in ( 17) is replaced by a quadratic loss function. As κ → ∞ we recover the solution to the deadbeat control problem (however, our final result is different than the solution in [START_REF] Chertkov | Ensemble control of cycling energy loads: Markov Decision Approach[END_REF] wherein ν 0 is not constrained).

The convex program formulation ( 16) has many advantages. First, ( 16) is always feasible, while feasibility of ( 17) requires conditions on p 0 and r. Theorem 3.1 requires no assumptions on the model or reference signal. Second is the value of flexibility in choice of κ, so that we can learn what is an "expensive" reference signal. It is anticipated that the penalty parameter κ can be used to make tradeoffs between tracking performance and robustness to modeling error: robustness and sensitivity analysis will be a topic of future research.

C. KLQ and IPD

The finite-horizon version of ( 6) is also considered in [START_REF] Meyn | Ancillary service to the grid from deferrable loads: The case for intelligent pool pumps in Florida[END_REF], [START_REF] Bušić | Distributed randomized control for demand dispatch[END_REF], similar to the KLQ formulation:

p ζ := arg max p ζE p K k=1 Y(x k ) -D(p∥p 0 ) . (18) 
This and ( 6) are versions of the Individual Perspective Design (IPD) [START_REF] Bušić | Distributed randomized control for demand dispatch[END_REF].

The IPD design [START_REF] Benenati | A tractable formulation for multi-period linearized optimal power flow in presence of thermostatically controlled loads[END_REF] has the following alternative interpretation. For a scalar r 0 ∈ R, consider the constrained optimization problem

max p -D(p∥p 0 ) subject to E p K k=1 Y(x k ) = Kr 0 , 1 ≤ k ≤ K (19)
The dual function φ * : R → R is defined by

φ * (λ) = max p λE p K k=1 Y(x k ) -D(p∥p 0 ) -λKr 0
where λ ∈ R is a Lagrange multiplier. It is evident that the optimizer p * λ is an IPD solution for each λ. Consequently, for each ζ, the IPD solution (18) also solves [START_REF] Meyn | Ancillary service to the grid using intelligent deferrable loads[END_REF] for some scalar r 0 (ζ).

Note however that the IPD approach is designed to construct a family of transition matrices {P ζ }. This is then used in a pure feedback control design in which {ζ k } is broadcast to the loads from the BA. The present work is focused on feed-forward control.

III. DUALITY

Structure for the solution of ( 16) will be obtained by consideration of a dual, in which λ ∈ R K and g ∈ R K×|S| denote the vectors of Lagrange multipliers for the first and second set of constraints, respectively. The Lagrangian is thus

L(ν, γ, λ, g) = K k=1 D(ν k , ν 0 k ) + κ 2 K k=1 γ 2 k + K k=1 λ k b k + K k=1 s ′ g k (s ′ )c k (20)
where b k and c k refer to the left-hand-side of equations ( 16b) and (16c), respectively. The dual function is the minimum:

φ * (λ, g) := min ν,γ L(ν, γ, λ, g)
and the dual of the optimization problem ( 16) is defined as the maximum of the dual function φ * over λ and g. We will see that there is no duality gap, so that for a quadruple (ν * , γ * , λ * , g * ),

J * (ν 0 0 ) = L(ν * , γ * , λ * , g * ) = φ * (λ * , g * ) .
In the following subsections we obtain a representation of the dual function that is suitable for optimization, and in doing so we obtain a representation for the optimal policy. Properties of the dual function are contained in Theorem 3.1 and Prop. 3.2 that follow. The statement of these results requires additional notation: define a function

T λ k : R |S| → R |S| , for f : S → R, λ ∈ R K , and s ∈ R |S| via T λ k (f ; s) = log u ϕ 0 k (u | s) exp s ′ T k (x, s ′ )f (s ′ ) + λ k Y(s, u)
The maximum of the dual function over g is denoted

φ * (λ) := max g ϕ * (λ, g) = φ * (λ, g λ )
where g λ is a maximizer:

g λ ∈ arg max g ϕ * (λ, g)
We will show that the sequence of functions g λ is given by the recursion

g λ k = T λ k (g λ k+1 ) , 1 ≤ k ≤ K
, where g λ K+1 ≡ 0 (21) and denote:

G λ k (x k-1 ) = s T u k-1 (s k-1 , s)g λ k (s) (22) 
Theorem 3.1: There exists a maximizer {λ * k , g * k : 1 ≤ k ≤ K} for φ * , and there is no duality gap:

φ * (λ * , g * ) = J * (ν 0 0 )
The optimal policy is obtained from {g * k } via:

ϕ * k (u | s) =ϕ 0 k (u | s) exp s ′ T k (x, s ′ )g * k+1 (s ′ ) + λ * k Y(s, u) -g * k (s) where g * k (s) =T λ k (g * k+1 ; s) and g * K+1 ≡ 0 (23) 
⊓ ⊔ Proposition 3.2: The following hold for the dual of ( 16): for each λ ∈ R K , (i) A maximizer g λ is given by [START_REF] Bušić | Distributed randomized control for demand dispatch[END_REF] (ii) The maximum of the dual function over g is the concave function

φ * (λ) = λ T r - 1 2κ ∥λ∥ 2 -⟨ ν 0 , G λ 1 ⟩ (24) 
(iii) The function ( 24) is continuously differentiable, and

∂ ∂λ k φ * (λ) = r k - 1 κ λ k -⟨ ν λ k , Y ⟩ (25) 
where {ν λ k } is the sequence of marginals obtained from the randomized policy defined in [START_REF] Chertkov | Ensemble control of cycling energy loads: Markov Decision Approach[END_REF], substituting {g * k } by {g λ k } defined in (i).

⊓ ⊔

To conclude this section, we provide representations of the log-likelihood ratio L(⃗ x), relative entropy D(p λ ∥p 0 ), and primal objective function,

J(p λ , ν 0 0 ) := D(p λ ∥p 0 ) + κ 2 K k=1 ⟨ ν λ k , Y ⟩ -r k 2 ( 26 
)
where p λ is the pmf obtained from the randomized policy defined in [START_REF] Chertkov | Ensemble control of cycling energy loads: Markov Decision Approach[END_REF], substituting {g * k } by {g λ k } defined in Prop. 3.2, part (i).

Corollary 3.3: The following hold for all {λ k , g λ k : 1 ≤ k ≤ K}:

(i) The log-likelihood ratio can be expressed:

L(⃗ x) = K k=1 {∆ k (x k-1 , s k ) + λ k Y(x k )} -G λ 1 (x 0 ) (27) 
where for each k (recalling

x k = (s k , u k )), ∆ k (x k-1 , s k ) = G λ k (x k-1 ) -g λ k (s k ) (28) 
(ii) The relative entropy is given by

D(p λ ∥p 0 ) = K k=1 λ k ⟨ ν λ k , Y ⟩ -⟨ ν 0 , G λ 1 ⟩ (29) 
(iii) The value of the primal is

J(p λ , ν 0 0 ) = -⟨ ν 0 , G λ 1 ⟩ + K k=1 λ k ⟨ ν λ k , Y ⟩ + κ 2 ⟨ ν λ k , Y ⟩ -r k 2 ⊓ ⊔
The stochastic process {∆ k (X k-1 , S k )} is a martingale difference sequence; it vanishes when nature is deterministic, reducing to the solution obtained in [START_REF] Cammardella | Kullback-Leibler-Quadratic optimal control of flexible power demand[END_REF], [START_REF] Cammardella | Simultaneous allocation and control of distributed energy resources via Kullback-Leibler-Quadratic optimal control[END_REF].

IV. NUMERICAL EXPERIMENTS

Numerical experiments are conducted in the context of Demand Dispatch. The goal here is to modify the behavior of flexible loads such that their aggregate power consumption tracks a reference signal {r k } that is broadcast by a BA. Previous work has demonstrated the potential for pool pumps [START_REF] Meyn | Ancillary service to the grid from deferrable loads: The case for intelligent pool pumps in Florida[END_REF], HVAC systems [START_REF] Hao | How demand response from commercial buildings will provide the regulation needs of the grid[END_REF], water heaters [START_REF] Mathias | Demand dispatch with heterogeneous intelligent loads[END_REF], and refrigerators [START_REF] Mathias | Smart fridge / dumb grid? Demand Dispatch for the power grid of 2020[END_REF] to provide grid services. The following numerical experiments demonstrate distributed control of a collection of homogeneous residential refrigerators.

A. Algorithms

We have found in examples that using gradient ascent on the dual function curve may be slow to converge, likely due to a large "overshoot" when applying standard first-order methods [START_REF] Cammardella | Kullback-Leibler-Quadratic optimal control of flexible power demand[END_REF]. In the numerical results that follow we opt for proximal gradient methods [START_REF] Parikh | Proximal Algorithms, ser. Foundations and Trends in Optimization[END_REF]. Monte Carlo methods have also been used to estimate λ * . This is motivated by the representation of the gradient in terms of the first-order statistics of the random variable {Y(X)} when X ∼ ν λ k :

E k [Y(X)] = x k ∈X ν λ k (x k )Y(x k ) = ⟨ ν λ k , Y ⟩ (30) 
Lemma 4.1 follows from (25) combined with (30): Lemma 4.1:

For any λ ∈ R K and 1 ≤ k ≤ K, ∂ ∂λ k φ * (λ) = r k - 1 κ λ k -E k [Y(X)] , X ∼ ν λ k . (31) 
⊓ ⊔

B. Designing the nominal model

The nominal model is carefully designed to ensure the uncontrolled dynamics remain unchanged. The state-input space is the cartesian product of two state-input spaces: X = X n × X u , where X n contains the uncontrollable components and X u contains the the controllable components. The nominal state transition matrices (9) that define the nominal model (8) are products of T k , which represents the uncontrollable components, and ϕ 0 , which represents the nominal control policy. In order to satisfy this decomposition, the state at time k for a refrigerator is defined to be

S k = (θ k , θ k-1 , U k-1 ) (32) 
where θ k ∈ R denotes the temperature inside the refrigerator and U k ∈ {0, 1} is the power mode. The uncontrollable component T k can not be modified and is derived from the linear model ( 5), with the addition of disturbances to represent randomness from nature. The nominal policy ϕ 0 k is designed to approximate the deterministic control that is standard for a refrigerator [START_REF] Chen | Distributed control design for balancing the grid using flexible loads[END_REF]. 
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C. Designing the Experiment

The output process as a function of the state is defined to be the power consumption of a single refrigerator

Y(x) = uϱ , x = (s, u) ∈ X .
where ϱ is its rated power consumption. In the plots shown below, the expected power consumption ⟨ν k , Y⟩ and the reference signal r k are multiplied by the number of refrigerators N to show the aggregate response. The reference signal is obtained from the solution to a separate optimization problem [START_REF] Cammardella | Balancing California's grid without batteries[END_REF] which was designed to calculate optimal power trajectories for distinct classes of flexible loads. These power trajectories are optimal with respect to minimizing peaks and ramps in net load while satisfying quality of service constraints such as maintaining a given temperature range inside a refrigerator.

To simulate prediction error, the reference signal is created by adding random noise to the optimal power trajectory. Data from the California Independent System Operator (CAISO) show that hour-ahead predictions are fairly accurate, which inspires our use of model predictive control (MPC): fix two time periods T 0 and T , where T 0 ≪ T ; we choose T 0 = 1 hour and T = 12 hours. At the initial time t 0 , the marginal pmf ν 0 is estimated, the reference signal is predicted over the time window [t 0 , t 0 + T ], where its value at time t 0 is observed and has zero prediction error, and a solution is computed over the time window [t 0 , t 0 + T ]. Then, the solution is implemented, but restricted to the smaller time window [t 0 , t 0 + T 0 ]. At time t 0 + T 0 , the marginal pmf is estimated, the reference signal is predicted over the time window [t 0 + T 0 , t 0 + T 0 + T ], where its value at time t 0 + T 0 is observed and has zero prediction error, a solution is computed over [t 0 + T 0 , t 0 + T 0 + T ], and the process continues.
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D. Results

The first experiment, shown in Fig. 1, depicts an ideal case, where the reference signal is feasible, with respect to satisfying strict temperature bounds for each refrigerator. The variance of the prediction error is chosen to match the variance of the prediction error in hour-ahead forecasts observed by CAISO on February 25, 2021 [START_REF]CA 95763-9014[END_REF]. The reference signal is an optimal power trajectory for 20 million refrigerators on a typical sunny day in California. Notice how the refrigerators are asked to consume more during the day when solar output is high and to ramp down during the evening peak. Tracking is nearly perfect in this ideal case.

The second experiment, shown in Fig. 2, depicts a case where the reference signal is made infeasible by reducing the number of participating loads to 7 million. Satisfying the energy requirements of this signal would require refrigerators to violate their temperature bounds. This is not possible since quality of service is guaranteed with our distributed control control architecture, where switching decisions are still made at the load level [START_REF] Cammardella | Kullback-Leibler-Quadratic optimal control of flexible power demand[END_REF]. Notice how the collective power consumption is gracefully truncated at the peak and valley of the reference signal while tracking remains nearly perfect at all other times.

V. CONCLUSIONS

A Lagrangian decomposition separates the finite-horizon optimal control problem into K separate convex programs, one for each time step. By applying a few well-known concepts from information theory, the optimal policy at each time step is found to be an exponential tilting of the nominal policy. The main novelty is to allow for more general Markovian models. Numerical experiments demonstrate the usefulness of this distributed control technique in a power system setting: a collection of flexible loads can be controlled such that their aggregate power consumption tracks a reference signal.

Plans for future research include: (i) Evaluate robustness and sensitivity (ii) Investigate techniques to reduce computation (iii) Extend this stochastic KLQ formulation into a continuous-time setting and search for more effective relaxation techniques; initial work may be found in [START_REF] Bušić | Distributed control of thermostatically controlled loads: Kullback-Leibler optimal control in continuous time[END_REF].

(iv) Consider other cost functions, e.g., the Wasserstein distance.

(v) Investigate the relationship between optimality and coupling of the pmfs, and the implications to control design.

(vi) Careful design of a terminal cost function may result in better performance for smaller time horizons [START_REF] Chen | Value iteration and optimization of multiclass queueing networks[END_REF].

APPENDIX

This appendix contains abbreviated proofs of some of the results of this paper. Complete proofs of every result can be found in [START_REF] Cammardella | Kullback-Leiblerquadratic optimal control[END_REF].

A. Proof of Prop. 2.1 Proof: Clearly, ( 16) is convex in γ k , a quadratic function of ν k . Convexity in ν k is established by constructing a sub-gradient for D(ν k , ν 0 k ): the function

g µ,k (s, u) = log µ(s, u) ν 0 k (s, u) -log μ(s) ν0 k (s) , (33) 
satisfies the sub-gradient property

D(ν k , ν 0 k ) ≥ D(µ, ν 0 k ) + ⟨ ν k -µ, g µ,k ⟩ (34) 
where μ(s) = u ′ µ(s, u ′ ) and νk (s) = u ′ ν k (s, u ′ ). Hence, ( 16) is jointly convex in ν k and γ k since it is a sum of convex functions.

The equivalence claim is proven by multiplying both sides of (16c) by ϕ k (u ′ | s ′ ), yielding

P{X k = x ′ } = x P{X k-1 = x}P{X k = x ′ | X k-1 = x}
which is identical to [START_REF] Chen | Distributed control design for balancing the grid using flexible loads[END_REF]. The proof of the implication ( 11) =⇒ (16c) is similar. A complete proof can be found in [START_REF] Cammardella | Kullback-Leiblerquadratic optimal control[END_REF].

B. Relative entropy and duality

The proofs of Theorem 3.1 and Prop. 3.2 make use of the following four lemmas. The first is based on a well known result regarding relative entropy. For any function h :

X K+1 → R denote Ł 0 (h) := sup p ⟨p, h⟩ -D(p∥p 0 ) (35) 
Lemma 1.1 (Convex dual of relative entropy): For each p 0 and function h : X K+1 → R, the (possibly infinite) value of (35) coincides with the log moment generating function: Ł 0 (h) = log⟨ p 0 , e h ⟩ Moreover, provided Ł 0 (h) < ∞, the supremum in ( 35) is uniquely attained with p * = p 0 exp(h -Ł 0 (h)). That is, the log-likelihood L * = log(dp * /dp 0 ) is given by

L * (⃗ x) = h(⃗ x) -Λ 0 (h) ⊓ ⊔ Lemma 1.2:
The dual function can be expressed

φ * (λ, g) =λ T r - 1 2κ ∥λ∥ 2 -⟨ ν 0 , G λ 1 ⟩ + K k=1 min s g k (s) -T λ k (g k+1 ; s) (36) 
where g K+1 ≡ 0.

⊓ ⊔

Proof: First, substitute ν k (s, u) = νk (s)ϕ k (u | s) in the Lagrangian [START_REF] Todorov | Linearly-solvable Markov decision problems[END_REF] so that its minimization requires obtaining each of the K minimizers {ν λ,g k : ν λ,g k (s, u) = νλ,g k (s)ϕ λ,g k (u | s)}. It follows from Lemma 1.1 that the minimizers are given by

ϕ λ,g k (u | s) =ϕ 0 k (u | s) exp s ′ T k (x, s ′ )g k+1 (s ′ ) + λ k Y(s, u) -Λ k (s) (37) 
with Λ k (s) = T λ k (g k+1 ; s). Lemma 1.1 also gives the value:

arg min ϕ k L = -T λ k (g k+1 ; s) (38) 
resulting in min ν L(ν, γ, λ, g)

= K k=1 κ 2 γ 2 k + λ k γ k + λ k r k - s,u ν 0 0 (s, u)G λ 1 (s, u) + K k=1 min νk ⟨ νk , g k -T λ k (g k+1 ) ⟩ (39) 
Next, observe that the minimizer νλ,g k is obtained when the support of each νk satisfies supp νk (s) ⊆ arg min

s g k (s) -T λ k (g k+1 ; s) so that min s g k (s) -T λ k (g k+1 ; s) = ⟨ νλ,g k , g k -T λ k (g k+1 ) ⟩ Also, the minimizer γ λ k is γ λ k = - 1 κ λ k (40) 
Substituting the minimizers {ν λ,g k , γ λ k } into (39) results in (36).

C. Duality

Lemma 1.3: The maximum of the dual function over g is

φ * (λ) := max g φ * (λ, g) = λ T r - 1 2κ ∥λ∥ 2 -⟨ ν 0 , G λ 1 ⟩ (41) with G λ 1 (s, u) = s ′ T k (x, s ′ )g λ 1 (s ′ ).
A maximizer g λ is given by the recursive formula:

g λ k = T λ k (g λ k+1 ) , 1 ≤ k ≤ K , where g λ K+1 ≡ 0 , (42) ⊓ ⊔
Proof: Adding a constant to any of the (g 1 , g 2 , . . . , g K ) does not change the value of L or φ * (this follows from ( 21)), so without loss of generality we assume, for each k,

min s g k (s) -T λ k (g k+1 ; s) = 0 (43) 
and consequently

g k ≥ T λ k (g k+1 ) for each k . (44) 
Thus, in view of (36), φ * (λ) =

λ T r - 1 2κ ∥λ∥ 2 -min g1 s,u ν 0 0 (s, u) s ′ T k (x, s ′ )g 1 (s ′ ) , (45) 
where the minimum is subject to the constraint (44). Next, observe that T λ k is a monotone operator, so that for each k ≤ K,

g k ≥ T λ k • T λ k+1 • • • • • T λ K (g K+1 ) . = g λ k ,
where g K+1 ≡ 0

Based on the expression (45), we now show that the maximum arg max g ϕ * (λ, g) is obtained by choosing each g k to reach this lower bound, giving (42). Indeed, g λ 1 achieves the minimum in (45), since g λ 1 ≤ g 1 for any g 1 for which (44) holds. This result along with (43) yields (41).

Lemma 1.4: The maximizers {g λ k } have at most linear growth in ∥λ∥:

|g λ k (s)| ≤ ∥Y∥ ∞ K i=k |λ i | ≤ √ K∥Y∥ ∞ ∥λ∥ (46) 

⊓ ⊔

Proof: The proof is by induction, starting with the base case k = K. Then, we assume the hypothesis is true for k ≤ K and show it holds for k -1.

Next, we present a proof of Theorem 3.1.

Proof: We prove the existence of a maximizer λ * by showing that ϕ * (λ) is an anti-coercive function, i.e., ϕ * (λ) → -∞ as ∥λ∥ → ∞. By Lemma 1.4,

φ * (λ) = λ T r - 1 2κ ∥λ∥ 2 - s,u ν 0 0 (s, u) s ′ T k (x, s ′ )g λ 1 (s ′ ) ≤ ∥λ∥∥r∥ - 1 2κ ∥λ∥ 2 + max s ′ |g λ 1 (s ′ )| ≤ ∥λ∥∥r∥ - 1 2κ ∥λ∥ 2 + √ K∥Y∥ ∞ ∥λ∥
Since ϕ * (λ) is upper-bounded by an anti-coercive function, ϕ * (λ) itself is an anti-coercive function. Thus a maximizer λ * exists, and (λ * , g * ) = (λ * , g λ * ) by ( 42).

The primal is a convex program, as established in Prop. 2.1. To show that there is no duality gap it is sufficient that Slater's condition holds [START_REF] Boyd | Convex Optimization[END_REF]Section 5.3.2]. This condition holds: the relative interior of the constraint-set for the primal is non-empty since it contains {ν 0 k }. Optimality of ( 23) is established by substituting g * k+1 into (37) and by making the substitution g * k = T λ k (g * k+1 ) implied by (42). Next, we present a proof of Prop. 3.2.

Proof: This proof has three parts:

(i) ( 21) is proven by Lemma 1.3.

(ii) ( 24) is proven by Lemma 1.3.

(iii) The representation of the derivative in part (iii) is standard (e.g., Section 5.6 of [START_REF] Boyd | Convex Optimization[END_REF]), but we provide the proof for completeness. The representation [START_REF] Todorov | Linearly-solvable Markov decision problems[END_REF] implies that φ * is concave in (λ, g), since it is the infimum of linear functions. This representation also gives a formula for a derivative:

∂ ∂λ k φ * (λ, g) = r k - 1 κ λ k -⟨ ν λ,g k , Y ⟩
where ν λ,g k is any optimizer in (39). Using φ * (λ) = φ * (λ, g λ ) then gives

∂ ∂λ k φ * (λ) = r k - 1 κ λ k -⟨ ν λ k , Y ⟩ + ∂ ∂g φ * (λ, g λ ) • ∂ ∂λ k g λ
The first order condition for optimality gives ∂ ∂g φ * (λ, g λ ) = 0, which completes the proof of the representation. It is evident that φ * is continuously differentiable since ν λ k is continuously differentiable for each k by construction.

Next, we present a proof of Corollary 3.3.

Proof: This proof has three parts:

(i) Application of ( 15) and ( 23) results in the loglikelihood ratio:

L(⃗ x) = K k=1 s T k (x k , s)g λ k+1 (s) + λ k Y(x k ) -g λ k (s k ) = K k=1 G λ k+1 (x k ) + λ k Y(x k ) -g λ k (s k )
where the second identity follows from the definition [START_REF] Cammardella | Kullback-Leiblerquadratic optimal control[END_REF].

We have from the definitions, G λ K+1 ≡ 0, which results in

L(⃗ x) = -G λ 1 (x 0 ) + K k=1 G λ k (x k-1 ) + λ k Y(x k ) -g λ k (s k )
This combined with (28) yields [START_REF] Cammardella | Balancing California's grid without batteries[END_REF].

(ii) Applying the definition of relative entropy as the mean log-likelihood, and noticing that

E p λ ∆ k (X k-1 , S k ) = 0 for 1 ≤ k ≤ K, results in ⃗ x p λ (⃗ x)L(⃗ x) = ⃗ x p λ (⃗ x) K k=1 λ k Y(x k ) -G λ 1 (x 0 ) = K k=1 x k xi,i̸ =k p λ (⃗ x)λ k Y(x k ) - x0 xi,i̸ =0 p λ (⃗ x)G λ 1 (x 0 ) = K k=1 λ k ⟨ ν λ k , Y ⟩ -⟨ ν 0 , G λ 1 ⟩
(iii) Substitution of ( 29) into (26) results in (3).

Fig. 1 .

 1 Fig. 1. 20 million refrigerators tracking a feasible signal

Fig. 2 .

 2 Fig. 2. 7 million refrigerators tracking an infeasible signal
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