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Kullback-Leibler-Quadratic Optimal Control
in a Stochastic Environment

Neil Cammardella1, Ana Bušić2, and Sean Meyn1

Abstract— This paper presents advances in Kullback-Leibler-
Quadratic (KLQ) optimal control: a stochastic control frame-
work for Markovian models. The motivation is distributed
control of large networked systems. The objective function is
composed of a control cost in the form of Kullback-Leibler
divergence plus a quadratic cost on the sequence of marginal
distributions. With this choice of objective function, the optimal
probability distribution of a population of agents over a finite
time horizon is shown to be an exponential tilting of the nominal
probability distribution. The same is true for the controlled
transition matrices that induce the optimal probability distri-
bution.

However, one limitation of the previous work is that ran-
domness can only be introduced via the control policy; all
uncontrolled processes must be modeled as deterministic to
render them immutable under an exponential tilting. In this
work, only the controlled dynamics are subject to tilting,
allowing for more general probabilistic models.

Numerical experiments are conducted in the context of
power networks. The distributed control techniques described
in this paper can transform a large collection of flexible loads
into a ‘virtual battery’ capable of delivering the same grid
services as traditional batteries. Additionally, quality of service
to the load owner is guaranteed, privacy is preserved, and
computation and communication requirements are reduced,
relative to alternative centralized control techniques.

I. INTRODUCTION

The setting of this paper is optimal control of Markov
Decision Processes (MDPs). The state space S and input
space U are assumed to be finite. A finite time horizon is
considered, indexed by {k : 1 ≤ k ≤ K}. The controlled
transition matrix Tk defines the statistics of the state process
S with input process U : Tk(x, s

′) =

P{Sk+1 = s′ | Si, Ui, 0 ≤ i ≤ k; Sk = s, Uk = u}
The policies {ϕk} are assumed to be Markovian: ϕk(u | s) =

P{Uk = u | Si , Ui , 0 ≤ i < k; Sk = s} (1)

As in [1], [2], the Kullback-Leibler-Quadratic (KLQ)
optimization criterion is based on convex functions of the
marginal probability mass functions (pmfs) of the joint state-
input process Xk = (Sk, Uk):

νk(x) = P{Sk = s, Uk = u} , x = (s, u) ∈ X (2)
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where X = S× U is the state-input space.
A sequence {Ck} of cost functions is given, and the control

objective is to obtain the solution to the optimization problem

J∗(ν0) = min
U

K∑
k=1

Ck(νk) (3)

where the minimum is over all randomized policies. Two
classes of constraints are imposed. First, the initial pmf
ν0 for X0 is fixed. Second are the dynamics, which can
be expressed as a sequence of linear constraints on the
marginals:∑

u′

νk(s
′, u′) =

∑
s,u

νk−1(s, u)Tk(x, s
′) , s′ ∈ S (4)

One standard application is variance penalized MDPs. Our
motivation is applications to mean field control as an ap-
proach to distributed control

A. Distributed control

The general optimization problem (3) falls outside of
textbook stochastic control problems. It is inspired by mean-
field game theory [3], [4], [5], [6], [7], [8] (see [9], [10] for
recent surveys), and motivated in particular by applications
to distributed control [11].

The control objective emerges from the approximation of
a particular distributed control problem: a central authority
wishes to shape the aggregate behavior of N ≫ 1 homo-
geneous agents, each modeled by the transition kernel Tk,
with state-input denoted {Xi

k = (Si
k, U

i
k) : 1 ≤ i ≤ N}. The

sequence of empirical distributions is denoted

ν N
k (x) =

1

N
N∑
i=1

I{Si
k = s , U i

k = u}, x = (s, u) ∈ X

The optimization criterion of interest is (3), but with νk
replaced by ν N

k . A mean-field control approximation is
justified by applying the law of large numbers: fix a sequence
of randomized policies {ϕk : 0 ≤ k ≤ K}, and consider N
as a variable. The empirical distribution {ν N

k } converges
as N → ∞ for each k, and the limit satisfies the linear
constraints (4).

Section IV focuses on a homogeneous population of
residential refrigerators for the creation of “virtual energy
storage” for power grid applications. The goal is to shape
the power usage of the population of loads. Let Y : X → R+

denote power consumption as a function of state, so that
the average power consumption of the population tracks the
reference signal r, with acceptable error. The temperature of



the ith load at time k is denoted Θi
k, and the power mode

(0 or 1) is denoted M i
k. A typical linear model is given by

Θi
k+1 = Θi

k + α[Θa −Θi
k]− βM i

k (5)

where α > 0, β > 0 and Θa ∈ R denotes ambient
temperature. This is a (deterministic) MDP model with state-
input given by Xi

k = (Θi
k,M

i
k). In this work, our control

design allows for the inclusion of disturbances in the model
(5).

B. Literature review

Our primary motivation is application to distributed con-
trol of power systems, specifically Demand Dispatch. The
term was introduced in the conceptual article [12] to describe
the possibility of distributed intelligence in electric loads,
designed so that the population would help provide supply-
demand balance in the power grid. Contributing to this
science has been a focus of the authors for the past decade
[13], [14], [11], and many others (see [11] for a recent
bibliography).

The goal in much of this prior work is to modify the
behavior of loads so that their aggregate power consumption
tracks the reference signal r that is broadcast by a Balancing
authority (BA), based on distributed control, with local
randomized decision rules. Randomized control techniques
for Demand Dispatch have been proposed in [15], [16], [17],
[18] based on entirely different control architectures.

The following control strategy is common to all of the
approaches described in [14], [11]. It is assumed that a family
of transition matrices {Pζ : ζ ∈ R} is available at each load.
A sequence {ζ0, ζ1, . . . } is broadcast from the BA, based on
measurements of the grid, and at time k an individual load
transitions according to this law:

P{Xk+1 = x′ | Xk = x, ζk = ζ} = Pζ(x, x
′)

The paper [19] re-interprets the control solution of [20] as
a technique to create the family {Pζ} through the solution
to the nonlinear program:

Pζ := max
π,P

{
ζ⟨π,Y ⟩ − K(P∥P 0)

}
, ζ ∈ R , (6)

where K denotes the infinite-horizon relative entropy rate for
two Markov chains:

K(P∥P 0) :=
∑
x,x′

π(x)P (x, x′) log
( P (x, x′)

P 0(x, x′)

)
(7)

in which π is the invariant pmf for P . The maximum in (6)
is over all (π, P ) subject to the invariance constraint πP = π
[19], [21], [11].

The optimal control formulation here is also based on
(7), with similar motivation, but the control approaches
are entirely different. Further discussion is postponed to
Section II-C.

Organization. The remainder of this paper is organized
as follows: Section II contains a description of our con-
trol objective and a characterization of our main result.
Computation of the optimal policy {ϕ∗

k} is described in

Section III. Results from numerical experiments are collected
together in Section IV. Conclusions and directions for future
research are contained in Section V. The appendix contains
abbreviated proofs of some of the results of this paper.
Complete proofs can be found in [22].

II. KULLBACK-LEIBLER-QUADRATIC CONTROL

A. Optimal control formulation

KLQ is designed to balance two objectives:
(i) νk ∼ ν0k , where {ν0k} models nominal behavior.
(ii) ⟨νk,Y⟩ ≈ rk, where {rk} is a reference signal, and
Y : X → R.

A pmf p0 on XK+1 defines the nominal model:

p0(x⃗) = ν00(x0)P
0
0 (x0, x1)P

0
1 (x1, x2) · · · (8)

where x⃗ denotes the elements of XK+1, {P 0
k } are the nom-

inal Markov transition matrices with transition probabilities
P 0
k (x, x

′) := P{Xk+1 = x′ | Xk = x}, and the nominal
marginal pmfs are:

ν0k(xk) =
∑

xi:i ̸=k

p0(x⃗) , x⃗ ∈ XK+1

The nominal transition probabilities are represented as a
product of two conditional pmfs:

P 0
k (x, x

′) = Tk(x, s
′)ϕ0

k+1(u
′ | s′) , x, x′ ∈ X (9)

where {ϕ0
k} denotes the nominal randomized policy. Also,

any randomized policy {ϕk} produces Markov transition
matrices {Pk} with transition probabilities

Pk(x, x
′) = Tk(x, s

′)ϕk+1(u
′ | s′) , x = (s, u) ∈ X (10)

The marginal pmfs evolve according to linear dynamics,
which are shown to be equivalent to (4):

νk = νk−1Pk−1 , 1 ≤ k ≤ K (11)

where the kth marginal νk is interpreted as a d-dimensional
row vector.

The two control objectives motivate the cost function
considered in this paper:

Ck(ν) = D(ν, ν0k) +
κ

2

[
⟨ ν,Y ⟩ − rk

]2
in which κ > 0 is a penalty parameter, and D penalizes
deviation from nominal behavior. The finite-horizon optimal
control problem is thus

J∗(ν00) = min

K∑
k=1

[
D(νk, ν

0
k) +

κ

2

[
⟨ νk,Y ⟩ − rk

]2]
(12)

where the initial pmf ν00 is given.
The relative entropy rate (7) will be adopted as the cost

of deviation. Under our assumptions, this reduces to

D(νk, ν
0
k) :=

∑
s,u

νk(s, u) log
(ϕk(u | s)
ϕ0
k(u | s)

)
(13)



The terminology is justified through the following steps.
First, we have seen that any randomized policy gives rise
to a pmf p that is Markovian:

p(x⃗) = ν00(x0)P0(x0, x1)P1(x1, x2) · · ·

where Pk is defined in (10), and the initialization ν00 is
specified. The relative entropy is the mean log-likelihood:

D(p∥p0) =
∑

L(x⃗) p(x⃗) (14)

where L = log(p/p0) is an extended-real-valued function
on XK+1. The expression for Pk in (10) and the analogous
formula for P 0

k using ϕ0
k+1 gives

L(x⃗) = log
( p(x⃗)

p0(x⃗)

)
=

K∑
k=1

log
(ϕk(uk | sk)
ϕ0
k(uk | sk)

)
(15)

Consequently, D(p∥p0) =∑K
k=1 D(νk, ν

0
k).

The optimal control problem (12), subject to the constraint
(11), can be expressed

J∗(ν00) := min
ν,γ

K∑
k=1

D(νk, ν
0
k) +

κ

2

K∑
k=1

γ2
k (16a)

s.t. γk + rk − ⟨ νk,Y ⟩ = 0 (16b)∑
u′

νk(s
′, u′)−

∑
s,u

νk−1(s, u)Tk(x, s
′) = 0 (16c)

Prop. 2.1 asserts that the objective function is convex. It is
also evident that the constraints (16b) and (16c) are linear in
νk; hence, the optimization problem (16) is convex.

Proposition 2.1: The optimization problem (16) is jointly
convex in {νk, γk : 1 ≤ k ≤ K}. Furthermore, the constraint
(16c) is equivalent to (11). ⊓⊔
An abbreviated proof can be found in Appendix A.

B. Dead-beat control

In Section 5 of the book chapter [23] a similar optimal
control formulation is proposed:

min
p

D(p∥p0)

subject to Ep

[
Y(Xk)

]
= rk , 1 ≤ k ≤ K

(17)

Relative entropy is a useful measure of cost of deviation from
nominal behavior because the optimizer has a simple form:
a “tilting” (or “twisting”) of the nominal model [20], [14].
This is motivation for the use of relative entropy in this prior
work, which leads to the solution to (17):

p∗(x⃗) = p0(x⃗) exp
( K∑
k=1

βkY(xk)− Λ(β)
)

in which β ∈ RK are Lagrange multipliers corresponding
to the average power constraints, and Λ(β) a normalizing
constant.

The optimization criterion (17) is a form of dead-beat
control, which might cause concern: is the optimization

problem feasible? are there stability issues, as is well known
for dead-beat control of linear systems?

For the KLQ formulation described in this paper, the
tracking constraint in (17) is replaced by a quadratic loss
function. As κ → ∞ we recover the solution to the dead-
beat control problem (however, our final result is different
than the solution in [23] wherein ν0 is not constrained).

The convex program formulation (16) has many advan-
tages. First, (16) is always feasible, while feasibility of (17)
requires conditions on p0 and r. Theorem 3.1 requires no
assumptions on the model or reference signal. Second is the
value of flexibility in choice of κ, so that we can learn
what is an “expensive” reference signal. It is anticipated
that the penalty parameter κ can be used to make tradeoffs
between tracking performance and robustness to modeling
error: robustness and sensitivity analysis will be a topic of
future research.

C. KLQ and IPD

The finite-horizon version of (6) is also considered in [14],
[21], similar to the KLQ formulation:

pζ := argmax
p

{
ζEp

[ K∑
k=1

Y(xk)
]
−D(p∥p0)

}
. (18)

This and (6) are versions of the Individual Perspective Design
(IPD) [21].

The IPD design (18) has the following alternative inter-
pretation. For a scalar r0 ∈ R, consider the constrained
optimization problem

max
p

{
−D(p∥p0)

}
subject to Ep

[ K∑
k=1

Y(xk)
]
= Kr0 , 1 ≤ k ≤ K

(19)

The dual function φ∗ : R → R is defined by

φ∗(λ) = max
p

{
λEp

[ K∑
k=1

Y(xk)
]
−D(p∥p0)

}
− λKr0

where λ ∈ R is a Lagrange multiplier. It is evident that the
optimizer p∗λ is an IPD solution for each λ. Consequently,
for each ζ, the IPD solution (18) also solves (19) for some
scalar r0(ζ).

Note however that the IPD approach is designed to con-
struct a family of transition matrices {Pζ}. This is then used
in a pure feedback control design in which {ζk} is broadcast
to the loads from the BA. The present work is focused on
feed-forward control.

III. DUALITY

Structure for the solution of (16) will be obtained by
consideration of a dual, in which λ ∈ RK and g ∈ RK×|S|

denote the vectors of Lagrange multipliers for the first and



second set of constraints, respectively. The Lagrangian is thus

L(ν, γ, λ, g) =
K∑

k=1

D(νk, ν
0
k) +

κ

2

K∑
k=1

γ2
k

+

K∑
k=1

λkbk +

K∑
k=1

∑
s′

gk(s
′)ck

(20)

where bk and ck refer to the left-hand-side of equations (16b)
and (16c), respectively. The dual function is the minimum:

φ∗(λ, g) := min
ν,γ

L(ν, γ, λ, g)

and the dual of the optimization problem (16) is defined as
the maximum of the dual function φ∗ over λ and g. We
will see that there is no duality gap, so that for a quadruple
(ν∗, γ∗, λ∗, g∗),

J∗(ν00) = L(ν∗, γ∗, λ∗, g∗) = φ∗(λ∗, g∗) .

In the following subsections we obtain a representation
of the dual function that is suitable for optimization, and in
doing so we obtain a representation for the optimal policy.
Properties of the dual function are contained in Theorem 3.1
and Prop. 3.2 that follow. The statement of these results
requires additional notation: define a function T λ

k : R|S| →
R|S|, for f : S → R, λ ∈ RK , and s ∈ R|S| via T λ

k (f ; s) =

log
(∑

u

ϕ0
k(u | s) exp

(∑
s′

Tk(x, s
′)f(s′) + λkY(s, u)

))
The maximum of the dual function over g is denoted

φ∗(λ) := max
g

ϕ∗(λ, g) = φ∗(λ, gλ)

where gλ is a maximizer:

gλ ∈ argmax
g

ϕ∗(λ, g)

We will show that the sequence of functions gλ is given by
the recursion

gλk = T λ
k (gλk+1) , 1 ≤ k ≤ K , where gλK+1 ≡ 0 (21)

and denote:

Gλ
k(xk−1) =

∑
s

Tuk−1
(sk−1, s)g

λ
k (s) (22)

Theorem 3.1: There exists a maximizer {λ∗
k, g

∗
k : 1 ≤ k ≤

K} for φ∗, and there is no duality gap:

φ∗(λ∗, g∗) = J∗(ν00)

The optimal policy is obtained from {g∗k} via:

ϕ∗
k(u | s) =ϕ0

k(u | s) exp
(∑

s′

Tk(x, s
′)g∗k+1(s

′)

+ λ∗
kY(s, u)− g∗k(s)

)
where g∗k(s) =T λ

k (g∗k+1; s) and g∗K+1 ≡ 0

(23)

⊓⊔
Proposition 3.2: The following hold for the dual of (16):

for each λ ∈ RK ,

(i) A maximizer gλ is given by (21)
(ii) The maximum of the dual function over g is the

concave function

φ∗(λ) = λT r − 1

2κ
∥λ∥2 − ⟨ ν0, Gλ

1 ⟩ (24)

(iii) The function (24) is continuously differentiable, and

∂

∂λk
φ∗(λ) = rk − 1

κ
λk − ⟨ νλk ,Y ⟩ (25)

where {νλk } is the sequence of marginals obtained from
the randomized policy defined in (23), substituting {g∗k}
by {gλk} defined in (i). ⊓⊔

To conclude this section, we provide representations of
the log-likelihood ratio L(x⃗), relative entropy D(pλ∥p0), and
primal objective function,

J(pλ, ν00) :=D(pλ∥p0) + κ

2

K∑
k=1

(
⟨ νλk ,Y ⟩ − rk

)2
(26)

where pλ is the pmf obtained from the randomized policy de-
fined in (23), substituting {g∗k} by {gλk} defined in Prop. 3.2,
part (i).

Corollary 3.3: The following hold for all {λk, g
λ
k : 1 ≤

k ≤ K}:
(i) The log-likelihood ratio can be expressed:

L(x⃗) =

K∑
k=1

{∆k(xk−1, sk) + λkY(xk)} −Gλ
1 (x0) (27)

where for each k (recalling xk = (sk, uk)),

∆k(xk−1, sk) = Gλ
k(xk−1)− gλk (sk) (28)

(ii) The relative entropy is given by

D(pλ∥p0) =
K∑

k=1

λk⟨ νλk ,Y ⟩ − ⟨ ν0, Gλ
1 ⟩ (29)

(iii) The value of the primal is J(pλ, ν00) =

−⟨ ν0, Gλ
1 ⟩+

K∑
k=1

(
λk⟨ νλk ,Y ⟩+ κ

2

(
⟨ νλk ,Y ⟩ − rk

)2)
⊓⊔

The stochastic process {∆k(Xk−1, Sk)} is a martingale
difference sequence; it vanishes when nature is deterministic,
reducing to the solution obtained in [1], [2].

IV. NUMERICAL EXPERIMENTS

Numerical experiments are conducted in the context of
Demand Dispatch. The goal here is to modify the behavior of
flexible loads such that their aggregate power consumption
tracks a reference signal {rk} that is broadcast by a BA.
Previous work has demonstrated the potential for pool pumps
[14], HVAC systems [13], water heaters [24], and refrigera-
tors [25] to provide grid services. The following numerical
experiments demonstrate distributed control of a collection
of homogeneous residential refrigerators.



A. Algorithms

We have found in examples that using gradient ascent on
the dual function curve may be slow to converge, likely due
to a large “overshoot” when applying standard first-order
methods [1]. In the numerical results that follow we opt
for proximal gradient methods [26]. Monte Carlo methods
have also been used to estimate λ∗. This is motivated by
the representation of the gradient in terms of the first-order
statistics of the random variable {Y(X)} when X ∼ νλk :

Ek[Y(X)] =
∑
xk∈X

νλk (xk)Y(xk) = ⟨ νλk ,Y ⟩ (30)

Lemma 4.1 follows from (25) combined with (30):
Lemma 4.1: For any λ ∈ RK and 1 ≤ k ≤ K,

∂

∂λk
φ∗(λ) = rk − 1

κ
λk − Ek[Y(X)] , X ∼ νλk . (31)

⊓⊔

B. Designing the nominal model

The nominal model is carefully designed to ensure the
uncontrolled dynamics remain unchanged. The state-input
space is the cartesian product of two state-input spaces:
X = Xn × Xu, where Xn contains the uncontrollable com-
ponents and Xu contains the the controllable components.
The nominal state transition matrices (9) that define the
nominal model (8) are products of Tk, which represents
the uncontrollable components, and ϕ0, which represents the
nominal control policy. In order to satisfy this decomposition,
the state at time k for a refrigerator is defined to be

Sk = (θk, θk−1, Uk−1) (32)

where θk ∈ R denotes the temperature inside the refrigerator
and Uk ∈ {0, 1} is the power mode. The uncontrollable
component Tk can not be modified and is derived from
the linear model (5), with the addition of disturbances to
represent randomness from nature. The nominal policy ϕ0

k

is designed to approximate the deterministic control that is
standard for a refrigerator [11].
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Fig. 1. 20 million refrigerators tracking a feasible signal

C. Designing the Experiment

The output process as a function of the state is defined to
be the power consumption of a single refrigerator

Y(x) = uϱ , x = (s, u) ∈ X .

where ϱ is its rated power consumption. In the plots shown
below, the expected power consumption ⟨νk,Y⟩ and the ref-
erence signal rk are multiplied by the number of refrigerators
N to show the aggregate response. The reference signal
is obtained from the solution to a separate optimization
problem [27] which was designed to calculate optimal power
trajectories for distinct classes of flexible loads. These power
trajectories are optimal with respect to minimizing peaks
and ramps in net load while satisfying quality of service
constraints such as maintaining a given temperature range
inside a refrigerator.

To simulate prediction error, the reference signal is created
by adding random noise to the optimal power trajectory. Data
from the California Independent System Operator (CAISO)
show that hour-ahead predictions are fairly accurate, which
inspires our use of model predictive control (MPC): fix two
time periods T0 and T , where T0 ≪ T ; we choose T0 = 1
hour and T = 12 hours. At the initial time t0, the marginal
pmf ν0 is estimated, the reference signal is predicted over
the time window [t0, t0 + T ], where its value at time t0
is observed and has zero prediction error, and a solution
is computed over the time window [t0, t0 + T ]. Then, the
solution is implemented, but restricted to the smaller time
window [t0, t0 + T0]. At time t0 + T0, the marginal pmf
is estimated, the reference signal is predicted over the time
window [t0 + T0, t0 + T0 + T ], where its value at time
t0 + T0 is observed and has zero prediction error, a solution
is computed over [t0 + T0, t0 + T0 + T ], and the process
continues.

Truth Pred. N〈νk,Y〉
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Fig. 2. 7 million refrigerators tracking an infeasible signal

D. Results

The first experiment, shown in Fig. 1, depicts an ideal
case, where the reference signal is feasible, with respect to
satisfying strict temperature bounds for each refrigerator. The
variance of the prediction error is chosen to match the vari-
ance of the prediction error in hour-ahead forecasts observed
by CAISO on February 25, 2021 [28]. The reference signal is
an optimal power trajectory for 20 million refrigerators on a
typical sunny day in California. Notice how the refrigerators
are asked to consume more during the day when solar output
is high and to ramp down during the evening peak. Tracking
is nearly perfect in this ideal case.

The second experiment, shown in Fig. 2, depicts a case
where the reference signal is made infeasible by reducing
the number of participating loads to 7 million. Satisfying the
energy requirements of this signal would require refrigerators



to violate their temperature bounds. This is not possible
since quality of service is guaranteed with our distributed
control control architecture, where switching decisions are
still made at the load level [1]. Notice how the collective
power consumption is gracefully truncated at the peak and
valley of the reference signal while tracking remains nearly
perfect at all other times.

V. CONCLUSIONS

A Lagrangian decomposition separates the finite-horizon
optimal control problem into K separate convex programs,
one for each time step. By applying a few well-known
concepts from information theory, the optimal policy at
each time step is found to be an exponential tilting of
the nominal policy. The main novelty is to allow for more
general Markovian models. Numerical experiments demon-
strate the usefulness of this distributed control technique in
a power system setting: a collection of flexible loads can
be controlled such that their aggregate power consumption
tracks a reference signal.

Plans for future research include:
(i) Evaluate robustness and sensitivity
(ii) Investigate techniques to reduce computation
(iii) Extend this stochastic KLQ formulation into a

continuous-time setting and search for more effective
relaxation techniques; initial work may be found in [29].
(iv) Consider other cost functions, e.g., the Wasserstein

distance.
(v) Investigate the relationship between optimality and

coupling of the pmfs, and the implications to control
design.
(vi) Careful design of a terminal cost function may result

in better performance for smaller time horizons [30].

APPENDIX

This appendix contains abbreviated proofs of some of the
results of this paper. Complete proofs of every result can be
found in [22].

A. Proof of Prop. 2.1

Proof: Clearly, (16) is convex in γk, a quadratic
function of νk. Convexity in νk is established by constructing
a sub-gradient for D(νk, ν

0
k): the function

gµ,k(s, u) = log
( µ(s, u)

ν0k(s, u)

)
− log

( µ̂(s)

ν̂0k(s)

)
, (33)

satisfies the sub-gradient property

D(νk, ν
0
k) ≥ D(µ, ν0k) + ⟨ νk − µ, gµ,k ⟩ (34)

where µ̂(s) =
∑

u′ µ(s, u′) and ν̂k(s) =
∑

u′ νk(s, u
′).

Hence, (16) is jointly convex in νk and γk since it is a sum
of convex functions.

The equivalence claim is proven by multiplying both sides
of (16c) by ϕk(u

′ | s′), yielding

P{Xk = x′} =
∑
x

P{Xk−1 = x}P{Xk = x′ | Xk−1 = x}

which is identical to (11). The proof of the implication (11)
=⇒ (16c) is similar. A complete proof can be found in [22].

B. Relative entropy and duality

The proofs of Theorem 3.1 and Prop. 3.2 make use of
the following four lemmas. The first is based on a well
known result regarding relative entropy. For any function
h : XK+1 → R denote

Ł0(h) := sup
p

{
⟨p, h⟩ −D(p∥p0)

}
(35)

Lemma 1.1 (Convex dual of relative entropy): For each
p0 and function h : XK+1 → R, the (possibly infinite) value
of (35) coincides with the log moment generating function:

Ł0(h) = log⟨ p0, eh ⟩
Moreover, provided Ł0(h) < ∞, the supremum in (35) is
uniquely attained with p∗ = p0 exp(h− Ł0(h)). That is, the
log-likelihood L∗ = log(dp∗/dp0) is given by

L∗(x⃗) = h(x⃗)− Λ0(h)

⊓⊔
Lemma 1.2: The dual function can be expressed

φ∗(λ, g) =λT r − 1

2κ
∥λ∥2 − ⟨ ν0, Gλ

1 ⟩

+

K∑
k=1

min
s

[
gk(s)− T λ

k (gk+1; s)
] (36)

where gK+1 ≡ 0. ⊓⊔
Proof: First, substitute νk(s, u) = ν̂k(s)ϕk(u | s)

in the Lagrangian (20) so that its minimization requires
obtaining each of the K minimizers {νλ,gk : νλ,gk (s, u) =

ν̂λ,gk (s)ϕλ,g
k (u | s)}. It follows from Lemma 1.1 that the

minimizers are given by

ϕλ,g
k (u | s) =ϕ0

k(u | s) exp
(∑

s′

Tk(x, s
′)gk+1(s

′)

+ λkY(s, u)− Λk(s)
) (37)

with Λk(s) = T λ
k (gk+1; s).

Lemma 1.1 also gives the value:

argmin
ϕk

L = −T λ
k (gk+1; s) (38)

resulting in minν L(ν, γ, λ, g) =
K∑

k=1

(κ
2
γ2
k + λkγk + λkrk

)
−
∑
s,u

ν00(s, u)G
λ
1 (s, u)

+

K∑
k=1

min
ν̂k

⟨ ν̂k, gk − T λ
k (gk+1) ⟩

(39)

Next, observe that the minimizer ν̂λ,gk is obtained when the
support of each ν̂k satisfies

supp
(
ν̂k(s)

)
⊆ argmin

s

[
gk(s)− T λ

k (gk+1; s)
]



so that

min
s

[
gk(s)− T λ

k (gk+1; s)
]
= ⟨ ν̂λ,gk , gk − T λ

k (gk+1) ⟩

Also, the minimizer γλ
k is

γλ
k = − 1

κ
λk (40)

Substituting the minimizers {νλ,gk , γλ
k } into (39) results in

(36).

C. Duality

Lemma 1.3: The maximum of the dual function over g is

φ∗(λ) :=max
g

φ∗(λ, g) = λT r̂− 1

2κ
∥λ∥2 − ⟨ ν0, Gλ

1 ⟩ (41)

with Gλ
1 (s, u) =

∑
s′ Tk(x, s

′)gλ1 (s
′). A maximizer gλ is

given by the recursive formula:

gλk = T λ
k (gλk+1) , 1 ≤ k ≤ K , where gλK+1 ≡ 0 , (42)

⊓⊔
Proof: Adding a constant to any of the (g1, g2, . . . , gK)

does not change the value of L or φ∗ (this follows from (21)),
so without loss of generality we assume, for each k,

min
s

[
gk(s)− T λ

k (gk+1; s)
]
= 0 (43)

and consequently

gk ≥ T λ
k (gk+1) for each k . (44)

Thus, in view of (36), φ∗(λ) =

λT r− 1

2κ
∥λ∥2−min

g1

∑
s,u

ν00(s, u)
∑
s′

Tk(x, s
′)g1(s

′) , (45)

where the minimum is subject to the constraint (44). Next,
observe that T λ

k is a monotone operator, so that for each
k ≤ K,

gk ≥ T λ
k ◦ T λ

k+1 ◦ · · · ◦ T λ
K(gK+1)

.
= gλk , where gK+1 ≡ 0

Based on the expression (45), we now show that the maxi-
mum argmaxg ϕ

∗(λ, g) is obtained by choosing each gk to
reach this lower bound, giving (42). Indeed, gλ1 achieves the
minimum in (45), since gλ1 ≤ g1 for any g1 for which (44)
holds. This result along with (43) yields (41).

Lemma 1.4: The maximizers {gλk} have at most linear
growth in ∥λ∥:

|gλk (s)| ≤ ∥Y∥∞
K∑
i=k

|λi| ≤
√
K∥Y∥∞∥λ∥ (46)

⊓⊔
Proof: The proof is by induction, starting with the base

case k = K. Then, we assume the hypothesis is true for
k ≤ K and show it holds for k − 1.

Next, we present a proof of Theorem 3.1.

Proof: We prove the existence of a maximizer λ∗

by showing that ϕ∗(λ) is an anti-coercive function, i.e.,
ϕ∗(λ) → −∞ as ∥λ∥ → ∞. By Lemma 1.4,

φ∗(λ) = λT r − 1

2κ
∥λ∥2 −

∑
s,u

ν00(s, u)
∑
s′

Tk(x, s
′)gλ1 (s

′)

≤ ∥λ∥∥r∥ − 1

2κ
∥λ∥2 +max

s′
|gλ1 (s′)|

≤ ∥λ∥∥r∥ − 1

2κ
∥λ∥2 +

√
K∥Y∥∞∥λ∥

Since ϕ∗(λ) is upper-bounded by an anti-coercive function,
ϕ∗(λ) itself is an anti-coercive function. Thus a maximizer
λ∗ exists, and (λ∗, g∗) = (λ∗, gλ

∗
) by (42).

The primal is a convex program, as established in
Prop. 2.1. To show that there is no duality gap it is suffi-
cient that Slater’s condition holds [31, Section 5.3.2]. This
condition holds: the relative interior of the constraint-set for
the primal is non-empty since it contains {ν0k}. Optimality
of (23) is established by substituting g∗k+1 into (37) and by
making the substitution g∗k = T λ

k (g∗k+1) implied by (42).
Next, we present a proof of Prop. 3.2.

Proof: This proof has three parts:

(i) (21) is proven by Lemma 1.3.
(ii) (24) is proven by Lemma 1.3.
(iii) The representation of the derivative in part (iii) is

standard (e.g., Section 5.6 of [31]), but we provide the
proof for completeness. The representation (20) implies
that φ∗ is concave in (λ, g), since it is the infimum of
linear functions. This representation also gives a formula
for a derivative:

∂

∂λk
φ∗(λ, g) = rk − 1

κ
λk − ⟨ νλ,gk ,Y ⟩

where νλ,gk is any optimizer in (39). Using φ∗(λ) =
φ∗(λ, gλ) then gives

∂

∂λk
φ∗(λ) = rk−

1

κ
λk−⟨ νλk ,Y ⟩+ ∂

∂g
φ∗ (λ, gλ) · ∂

∂λk
gλ

The first order condition for optimality gives
∂
∂gφ

∗ (λ, gλ) = 0, which completes the proof of the
representation. It is evident that φ∗ is continuously
differentiable since νλk is continuously differentiable for
each k by construction.

Next, we present a proof of Corollary 3.3.
Proof: This proof has three parts:

(i) Application of (15) and (23) results in the log-
likelihood ratio:

L(x⃗) =

K∑
k=1

(∑
s

Tk(xk, s)g
λ
k+1(s) + λkY(xk)− gλk (sk)

)
=

K∑
k=1

(
Gλ

k+1(xk) + λkY(xk)− gλk (sk)
)



where the second identity follows from the definition (22).
We have from the definitions, Gλ

K+1 ≡ 0, which results in

L(x⃗) = −Gλ
1 (x0)+

K∑
k=1

(
Gλ

k(xk−1)+λkY(xk)−gλk (sk)
)

This combined with (28) yields (27).
(ii) Applying the definition of relative entropy

as the mean log-likelihood, and noticing that
Epλ

[
∆k(Xk−1, Sk)

]
= 0 for 1 ≤ k ≤ K, results

in
∑

x⃗ p
λ(x⃗)L(x⃗) =∑

x⃗

pλ(x⃗)

(
K∑

k=1

λkY(xk)−Gλ
1 (x0)

)

=

K∑
k=1

∑
xk

∑
xi,i̸=k

pλ(x⃗)λkY(xk)−
∑
x0

∑
xi,i̸=0

pλ(x⃗)Gλ
1 (x0)

=

K∑
k=1

λk⟨ νλk ,Y ⟩ − ⟨ ν0, Gλ
1 ⟩

(iii) Substitution of (29) into (26) results in (3).
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