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Charge localization and reentrant superconductivity
in a quasi-ballistic InAs nanowire coupled
to superconductors
J. C. Estrada Saldaña1*, R. Žitko2,3, J. P. Cleuziou1, E. J. H. Lee1†, V. Zannier4, D. Ercolani4,
L. Sorba4, R. Aguado5, S. De Franceschi1‡

A semiconductor nanowire with strong spin-orbit coupling in proximity to a superconductor is predicted to
display Majorana edge states emerging under a properly oriented magnetic field. The experimental inves-
tigation of these exotic states requires assessing the one-dimensional (1D) character of the nanowire and
understanding the superconducting proximity effect in the presence of a magnetic field. Here, we explore
the quasi-ballistic 1D transport regime of an InAs nanowire with Ta contacts. Fine-tuned by means of local
gates, the observed plateaus of approximately quantized conductance hide the presence of a localized elec-
tron, giving rise to a lurking Coulomb blockade effect and Kondo physics. When Ta becomes superconduct-
ing, this local charge causes an unusual, reentrant magnetic field dependence of the supercurrent, which
we ascribe to a 0 - p transition. Our results underline the relevant role of unintentional charge localization in
the few-channel regime where helical subbands and Majorana quasi-particles are expected to arise.

INTRODUCTION
Nanowires (NWs) with strong spin-orbit coupling and induced super-
conductivity have the potential to realize topological superconductivity
(1, 2).Majoranamodes emerge if the one-dimensional (1D) character of
the NW is preserved over micrometer-scale lengths and the chemical
potential is positioned within the helical gap opened by a properly
oriented magnetic field B (3). The Rashba spin-orbit energy in InAs
NWs is, at most, of the order of 100 meV, as deduced from measure-
ments of weak antilocalization (4). Given the modest size of the spin-
orbit energy, the second condition implies that the 1Dconductionmode
supportingMajoranas should be only slightly filled. For this reason, it is
important to explore the properties of semiconductor NWs at low sub-
band filling in the presence of the superconducting proximity effect and
a magnetic field. To this aim, we investigate InAs NWs coupled to
tantalum-based superconducting contacts with a high in-plane crit-
ical field, Bc ∼ 1.8 T.

Conductance quantization is the experimental paradigm of ballistic
1D transport (5). In semiconductor NWs, this phenomenon is better
observed at large magnetic field (6), where backscattering is reduced
and spin degeneracy is lifted, leading to conductance steps of e2/h, where
e is the electron charge and h is the Planck constant. Recently, conduct-
ance quantization was also observed at zero magnetic field, with steps
of 2 e2/h due to twofold spin degeneracy (7–10). In this work, wemake
use of two independently tunable bottom gates to tailor the potential
landscape in the NW channel (10). Proper tuning of the applied gate
voltages results in the creation of a local point contact exhibiting ap-

proximately quantized conductance plateaus in the few-subband re-
gime. We find that unintentional charge localization, while seemingly
suppressed at high magnetic field, becomes apparent at low B in both
normal and superconducting regimes. In the normal state, the spin of
the localized charge is screened by Kondo correlations, which shape the
linear and nonlinear conductance at the onset of the first plateau.

Owing to the large electron g factor in InAs and the relatively large
Bc, we are also able to investigate the superconducting proximity effect
coexisting with a strong spin polarization.We observe a nonmonotonic
behavior of the critical current as a function of B that can be understood
as a Zeeman-driven quantum phase transition from a spin singlet
ground state, with 0-phase-shift Josephson coupling, to a spin-1/2
ground state, with p-phase-shift Josephson coupling. Upon increasing
B, the supercurrent first vanishes at the 0 -p transition and then recovers
once the Zeeman energy is large enough to stabilize the spin-1/2 ground
state. This interpretation is confirmed by theoretical calculations based
on an Anderson-type model coupled to superconducting leads with
strong and gate-dependent tunnel couplings. A reentrant supercurrent
due to the samemechanism is also observed in a second device exhibit-
ing a clear quantum dot behavior and Kondo effect.

RESULTS
We performed standard two-terminal low-temperature conductance
measurements on an InAs NW with Ta superconducting contacts
(device 1), under an externalmagnetic field aligned parallel to the long
axis of the wire, shown in Fig. 1A (data for different angles can be
found in the Supplementary Materials). The profile of the conduction
band was locally tuned by two gates underneath the wire (see inset of
Fig. 1D).

To look for conductance quantization, the device was first character-
ized in the normal state at B = 2.9 T, which is well above Bc; the linear
conductance,G, wasmeasured as a function of voltagesVG2 andVG3 on
gates 2 and 3, respectively (Fig. 1B). All data are corrected for the series
resistance of the measurement circuitry (51.37 kilohms), unless explic-
itly stated. Two conductance plateaus, around 0.9e2/h and 1.8e2/h, can
be identified, which are close to the ideal values for one and two 1D
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modes, i.e., e2/h and 2e2/h, respectively. After a closer look, however, Fig.
1B shows noticeable structures consisting of conductance modula-
tions of up to 20% superimposed on the quantized plateaus. We as-
cribe these modulations to tunneling resonances associated with
quasi-localized states in the NW. These states are expected to have

similar capacitive coupling to gates G2 and G3, hence producing the
predominantly diagonal conductance ridges observed in Fig. 1B. The
amplitude of these additional features varies over the (VG2,VG3)
plane and can vanish at certain regions.

Figure 1C shows three G(VG3) traces taken at different VG2. The
green trace exhibits a clearly visible broad peak structure, causing an
overshoot of the conductance at the onset of the first plateau. This struc-
ture is no longer present in the blue trace, resulting in an essentially flat
conductance plateau. Further increasingVG2 results in a global suppres-
sion of the conductance step (red trace).

From now on, we focus on the intermediate value of VG2, where the
first conductance step shows no spurious resonances, thereby resem-
bling the one expected for the onset of the first 1D conduction mode
in a ballistic point contact. From a comparison with the other traces,
we know that a resonance is lurking in this seemingly ideal plateau. This
underlines the importance of double gate control in revealing the nature
of the observed transport features. Furthermore, charge localization is
apparent in the second plateau where conductance oscillations remain
visible (Fig. 1C). The second plateau extends on a much larger VG3

range, suggesting that conductance is limited by the barrier induced
by VG2.

The first conductance plateau preserves its flat, featureless character
over a large B range. Upon reducing B to 1.4 T (Fig. 1D), the plateau
shrinks with B due to the decreasing Zeeman energy, EZ = ∣ g ∣ mBB,
where mB is the Bohrmagneton and g is the electron g factor in the point
contact, while the conductance remains quantized at 0.9e2/h. The full-
range B dependence is shown in Fig. 2A. At low B, the superconducting
proximity effect causes the divergence of the conductance, simulta-
neously washing out the 0.9e2/h plateau. This behavior can be seen from
G(VG3) traces below 1.4 T (SupplementaryMaterials) but hardly in Fig.
2A. Instead, Fig. 2A shows that, at large B, the 0.9e2/h plateau widens
linearly with B, as highlighted by two dashed lines. The two lines do not
coalesce at B = 0 as expected, if the width of the plateau was simply pro-
portional toEZ. This zero-field splitting is again due to a localized charge
state, most likely the same already identified at B = 2.9 T. The residual
splitting is indicative of a sizable charging energy,U, associated with the
localized state. We find U ∼ 1.3 meV and ∣g ∣ = 11 (Supplementary
Materials). We convert VG3 scale into energy with the help of dI/dV
measurements at finite source-drain bias voltage, V. This standard
procedure (Supplementary Materials) yields a conversion factor of
a = 0.0082 meV/mV.

Localized states are often observed in semiconductor NWs. They
can form (11–13) due to a plethora of confining mechanisms: crystal
defects or impurities in the NW, tunnel barriers at the contacts, and
surface charges. In a gate-defined point contact, where charge density
is substantially lowered and electric field screening is consequently re-
duced, localization is enhanced and Coulomb interaction emerges.
Strongly localized states leading to a few rather sharp Coulomb reso-
nances can be observed in the studied gate-induced constriction near
full charge depletion. They lie outside the (VG2, VG3) field explored in
Fig. 1B (SupplementaryMaterials). The localized state at the onset of the
first conductance plateau has amore subtle nature, and as we have seen,
its presence may go unperceived without a proper control of the
electrostatic landscape.

Before discussing the superconducting regime, it is instructive to
examine the normal type behavior at T > Tc. Figure 2B showsG(VG3)
at 4.2 K. The onset of conduction through the first spin-degenerate sub-
band is preceded by a shoulder at ∼e2/h. A shoulder can also be con-
sistently found in a measurement of dI/dV at 15 mK and ∣eV ∣ ≫ D
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Fig. 1. Tuning of the conductance plateau of device 1 and quantum dot model.
(A) Schematics and scanning electron micrograph of device 1. (B) Normal-state (B =
2.9 T) measurement of the linear conductance, G, as a function of VG2 and VG3 (in this
color plot, black corresponds to G > 2e2/h). Near pinch-off, two conductance plateaus
appear at G ≈ 0.9e2/h and 1.8e2/h. (C) G(VG3) curves taken at VG2 = −0.975, −1,
and − 1.05 V [dashed lines in (B)]. (D) Left: G(VG3) curves measured at different
B (VG2 = −1 V). The conductance of the 0.9e2/h plateau remains unchanged within
the explored B range. Right: NRG simulations of G(VG3) at different values of the
Zeeman energy, Ez, normalized to the charging energy U. The experimental and
theoretical curves are shifted horizontally for clarity. Inset: Schematic representa-
tion of a camel-shape, conduction-band profile created by the local gates and the
associated charge localization. (E and F) Representation of the single impurity
Anderson model used to calculate (E) the normal-state conductance in (D), and
(F) the Josephson current in Fig. 3 (E to H).
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(red trace). Here, D = 0.08 meV is the induced superconducting gap
measured by tunnel spectroscopy (Supplementary Materials).

This feature is reminiscent of a Kondo-screened bound state (14)
as similarly observed in quantum point contacts (QPC) defined in a
2D electron gas (15). In that case, the conductance shoulder was
identified with the 0.7 anomaly. The underlying Kondo physics is
also apparent from dI/dV(V) measurements for different B and fixed
VG3 = −1.25 V at the conductance shoulder. The data (Fig. 2C) show
the characteristic Zeeman splitting of a zero-bias Kondo resonance. At
B = 0, the resonance has a zero-bias divergence due to the supercon-
ducting proximity effect. The Kondo effect gives rise to a characteristic
logarithmic suppression of the conductance as a function of tempera-
ture. This aspect could be experimentally assessed but only after an
accidental charge switching event, which changed the electrostatics
of the device (Supplementary Materials).

To confirm our interpretation in terms of a quasi-ballistic QPCwith
a conductance anomaly arising from the screening of a localized
spin-1/2 impurity, we model the device using the following Anderson-
type Hamiltonian

H ¼ dðn� 1Þ þ U=2ðn� 1Þ2 þ EzSz þ∑
ks
ekc

†
kscks

þ∑
ks

V ð1Þð1� nd;�sÞc†ksds þ Vð2Þnd;�sc†ksds þH:c:
� �

þ D∑
k
ðck↑c�k↓ þH:c:Þ ð1Þ

Here,ds and cks are impurity and lead electronoperators, respectively,
where s ∈ {↑, ↓} and k is the crystal momentum, n ¼ ∑sd†sds is the
localized level occupancy operator, d is its energy position (later, we shall
scale d to VG3 for a direct comparison with the experimental data), and
Sz ¼ ðd†↑d↑ � d†↓d↓Þ=2 is the spin operator. The hybridization matrix
elements for transitions between zero and one electrons, V(1), and one
and two electrons, V (2), can be different (14). We parametrize this
asymmetry through x ≡ (V(1) − V(2))/V(1), which is adjusted in our cal-
culations to find the best agreementwith the data. The coupling between
the level and the leads results in a broadening G = p∣V(1)∣2r, where r =
∑kd(w − ek) is the density of states in the leads. Because the localized-state
wavefunction depends on the (spin-dependent) trapping potential, we
allow corrections to the hopping V(1), which are linear in d (and hence
VG3) and B so that G = G0 + G1(c0 + c1d/U + c2EZ/U)

2. Physically, the B
dependence can be expected from the influence of the magnetic field on
the orbital motion and confinement of electrons. We introduced this
broadening term to explicitly demonstrate, by comparing with the data,
that the conductance through a correlated quantum dot can mimic
plateaus of nearly quantized conductance. Our theory supports our
physical interpretation. The parametrization for transport in the normal
state qualitatively reproduces the experimental phenomenology in the
superconducting state, as shown below. The last term in Eq. 1 accounts
for superconducting pairing. The model was solved using the numerical
renormalization group (NRG)method (16, 17). AboveG/U= 0.4, charge
quantization due to Coulomb blockade is lost, as determined from the
charge susceptibility (Supplementary Materials). In the experiment, the
first conductance plateau and the corresponding supercurrent data de-
scribed below always occur for G/U < 0.4.

In the normal regime (D = 0), the parameters are severely con-
strained even if only qualitative features of the conductance are to be
reproduced for different T and B. At B = 0, Kondo correlations at finite
T enhance the conductance to a value below the unitary limit producing
a conductance shoulder at d∼ 0, as experimentally observed atT=4.2K
(Fig. 2B). At finite B, the shoulder evolves into a plateau at 0.9e2/h. The
results of the NRG calculations reproduce remarkably well the experi-
mental trend, as shown in Fig. 1D. In particular, the calculated conduct-
ance at the spin-resolved plateau remains constant despite the large
variation of Ez/U. The B-dependent term (proportional to c2), even if
small against the gate-dependent term (proportional to c1), is essential.
Without it, the plateau would evolve into a local minimum, as we actu-
ally find experimentally when B is applied perpendicularly to the NW
under the same gate configuration (Supplementary Materials).

We now address the superconducting proximity effect. Figure 3
(A to D) shows supercurrent measurements as a function ofVG3 at dif-
ferent values of B. Except for Fig. 3A, showing switching and retrapping
currents directlymeasured atB = 0, the other panels display critical cur-
rent, jc(VG3), traces obtained from fitting themeasured dI/dV(V) curves
to the so-called resistively and capacitively shunted junctionmodel (de-
tails on themeasurement and fittingmethodology are given in the Sup-
plementary Materials). Fitting is necessary because increasing Bmakes
the junction overdamped with a Josephson energy comparable to the
thermal energy and no zero-resistance branch. While the normal con-
ductance increases monotonically with VG3 [see the superimposed
G(VG3) trace in Fig. 3A], jc does not, in contrast to the Ambegaokar-
Baratoff relation, for which jc ∼ GD. At B = 0, the switching currents
(closely related to jc) are slightly peaked in correspondence with the
Kondo regime.Upon increasingB, jc(VG3) develops aminimumaround
VG3 = −1.25 V (Fig. 3B) and gets fully suppressed for B = 0.75 T (Fig.
3C) before reemerging at higher B (Fig. 3D).
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Fig. 2. Zeeman splitting of the plateau and associated Kondo feature. (A) Color
plot of G(B, VG3) (black corresponds to G > 2e2/h) for device 1. The Zeeman-split
conductance steps at higher B (onset marked by dashed lines) display a residual
zero-field splitting set by U. (B) Zero B, normal-state conductance as a function of
VG3. G(VG3) at 4.2 K, well above Tc (blue trace). Differential conductance, dI/dV, at
15 mK and V = 0.35 mV, i.e., well above the superconducting gap (red trace). Both
curves display a shoulder at the position of the arrow. The blue-shaded region
highlights the VG3 range in which the supercurrent regime is studied (Fig. 3).
(C) dI/dV(V) at different B (T = 15 mK) and fixed VG3 at the conductance shoulder.
The split Kondo peaks are indicated by vertical green arrows. Their splitting is
consistent with the simultaneously shown 2EZ spacing calculated using ∣g ∣ = 11.
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DISCUSSION
The behavior shown here can be explained using our model. The phase
diagrams in Fig. 3 (E to H) show an open region where jc > 0
(corresponding to a spin-singlet ground state) and a closed region
where jc < 0 (corresponding to a spin-1/2 ground state). The sign rever-
sal reflects a p phase shift in the current-phase Josephson relation.

Because of correlated hopping (x ≠ 0), the phase boundary has the
shape of a skewed arc. At B = 0 (Fig. 3E), for odd charge (−0.5≲ d/U≲
0.5), strong (weak) coupling tends to stabilize a singlet (doublet) ground

state (18–25). The singlet has a predominantly Bardeen-Cooper-
Schrieffer character for D ≫ GS ≫ U and a predominantly Kondo
character for GS > D. The Zeeman effect is antagonistic to both of these
many-body phenomena, thereby reducing the singlet binding energy
and making the spin-1/2 domain grow with B (Fig. 3, F to H) (26), in
agreement with the experiment (see additional jc data in the Supple-
mentary Materials).

These phase diagrams can account for the unusual, nonmonotonic
B dependence of jc observed experimentally. The white lines in Fig. 3
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(E to H) denote the G(d, EZ) trajectory followed in the experimental
sweeps, as deduced from normal-state fit parameters. As the doublet
region of the phase diagram grows with EZ, its phase boundary
approaches the G(d, EZ) trajectory, leading to a suppression of jc in
the region of closest proximity. At EZ/U = 0.37, the phase boundary
reaches the G(d, EZ) trajectory, and jc is correspondingly suppressed
due to a competition between 0- and p-junction behavior. For larger
EZ, the G(d, EZ) trajectory crosses the spin-1/2 region, where the system
acquires a clear p-junction behavior characterized by negative jc.

Qualitatively, the observed gate dependence of Ic may also result
from the opening of a helical gap due to Zeeman and spin-orbit inter-
action, as a gate voltage could potentially tune the chemical potential in
and out of the helical gap in a hypothetical picture of noninteracting
subbands (27). However, this interpretation is incompatible with our
other observations in the same device.

In device 1, the charge localization responsible for the observed re-
entrant supercurrent was hidden by the seemingly ballistic transport.
To further support the proposed physical picture, we performed a
similar experimental study on a second device (device 2) displaying
a quantum dot transport regime with clear Coulomb blockade oscilla-
tions. Device 2, shown in Fig. 4A, consists of an InAsNWcontacted by
superconducting Ta electrodes. Figure 4B shows a map of G as a
function of back-gate voltage, Vbg, and side-gate voltage Vsg. We ob-
serve a Coulomb blockade pattern characteristic of single-dot transport
with alternating large/small peak spacing, corresponding to even/odd
occupation, respectively. We focus on the odd charge state indicated
by a black arrow. The Coulomb peaks of this shell are renormalized
by Vsg, a sign of G tuning.

Before describing the supercurrent behavior, we briefly charac-
terize the normal-state regime by raising T above Tc ≈ 0.7 K. Figure

4C shows a plot of the charge stability diagram taken at Vsg = 1 V,
which exhibits the typical Coulomb diamonds of a high-impedance
quantum dot. At odd filling (spin-1/2 ground state), we observe a
zero-bias conductance ridge due to the Kondo effect. At finite
magnetic field, the Kondo resonance splits due to Zeeman effect,
as shown in Fig. 4D.

After corroborating the presence of the Kondo effect, we explored
the B evolution of Ic at different Vsg. In Fig. 4E, we show fitted Ic(Vbg)
curves obtained fromone of these series ofmeasurements atVsg =−1V.
The curves display maxima in correspondence to the normal-state
Coulomb peaks. As B is increased, these split apart due to Zeeman
effect. Also, and more remarkably, a nonmonotonic behavior is ob-
served in the Kondo valley, where Ic goes from 0.2 nA at B = 0.2 T to
nearly zero at B* = 0.3 T and then reenters at B = 0.5 T with a value of
≈ 0.1 nA. In our model, this is interpreted as a Zeeman-induced 0→
p transition from the destabilization of the Kondo singlet due to B-
induced spin polarization. In Fig. 4F, we show the dependence of the
crossover field at half-filling, B*, on Vsg, as extracted from the B evo-
lution of Ic at otherVsg values. As also predicted by our theory, lowering
G (by increasingVsg) reduces B* all the way down to zero (B* = 0means
that the junction is already at the p phase at B = 0).

We conclude that, evenwhen seemingly absent, charge localization
may play a crucial role in the transport properties of semiconductor
NWs. In the superconducting regime, charge localization gives rise to a
strong nonmonotonic behavior of the Josephson current as a function
of B due to a Zeeman-induced 0 - p phase transition. Our findings
are relevant to experiments aiming at detecting Majorana modes in
Josephson junction geometries based on depleted NWs under
strong Zeeman fields (28–30). The anomalous B-field dependence
of the critical current, owing to the presence of Majoranas in the
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Fig. 4. Reproduction of reentrant supercurrent data in a closed quantum dot. (A) Schematics of device 2. (B) Color plot of G(Vbg, Vsg) for device 2. The data include
the contribution of the series resistance (RS = 51.37 kilohms) in the measurement circuit. White color corresponds to a nondissipative superconducting regime
where G = 1/RS. (C) Stability diagram, dI/dV(Vbg, V), measured at the position of the red line in (B) at T = 0.75 K, i.e., just above Tc. A Kondo ridge at odd filling is
indicated by an arrow. (D) Zeeman splitting of the Kondo resonance in the normal state taken in the middle of this Kondo ridge at 0.1-T increments. The traces are
vertically shifted by −0.025e2/h for clarity. (E) B evolution of fitted Ic(Vbg) at the blue line in (B) and for different B (no offset). In the Kondo valley, Ic shows a reentrant
behavior, vanishing at a crossover field B* ≈ 0.3 T and reemerging for B > B*, heralding a ground-state transition from a Kondo singlet to a spin-split doublet. (F) Crossover
field, B*, versus Vsg as extracted from the B evolution of Ic at the corresponding linecuts in (B). The error bars are determined by the 0.1-T increment in B, as in (E).
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junction (31–33), may be masked by the localization effects and the
Kondo physics discussed here.

MATERIALS AND METHODS
Device 1, shown in Fig. 1A, was fabricated from a single 65-nm-
diameter InAs NW grown by chemical beam epitaxy (34). The NW
was deposited on a bed of narrow gate electrodes covered by 12 nm of
HfO2. Successively, Ta (60 nm)/Al (15 nm) source and drain contacts
with a spacing of 280 nm were defined by electron-beam (e-beam)
lithography and subsequent e-beam evaporation. The latter was pre-
ceded by a gentle in situ Ar etching to remove the native oxide of the
NW. The Ta/Al contacts were measured to be superconducting below
a critical temperature, Tc ∼ 0.8 K, which is consistent with values re-
ported for Ta in the crystalline b phase [Tc = 0.67 to 0.9 K (35)].

Device 2, shown in Fig. 4A, was fabricated from the same batch of
InAs NWs as device 1. A 70-nm-diameter InAs NWwas deposited on
a single local back gate covered by 10 nm of HfO2. Although the con-
tacting procedure of the NWwas similar to device 1, a Nb (5 nm)/Ta
(80 nm) bilayer was used instead. The reasoning behind the inclusion of
a thin Nb underlayer was the promotion of the high-Tc a phase; how-
ever, the convoluted superconducting gapwas found to be as reduced as
without Nb and Tc = 0.7 K. A side gate separated by 300 nm of vacuum
was defined at the same moment as the contacts. B was applied at an
11° angle with respect to the long axis of the NW.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/7/eaav1235/DC1
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Section S2. Resonances before the conductance plateau
Section S3. Superconductivity-induced enhancement of the linear conductancebelowB=1.4 T and
residual B = 0 splitting
Section S4. Many-subband regime
Section S5. Dependence of the linear conductance on the magnetic field when aligned
perpendicular to the axis of the NW
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Section S8. Method for fitting the supercurrent
Section S9. Evolution jc near the 0−p transition
Section S10. Comparison between experimental and theoretical jc
Section S11. Superconducting gap
Section S12. NRG calculations
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supercurrent enhancement of the linear conductance, and determination of U.
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Fig. S3. Absence of plateau for a magnetic field perpendicular to the NW.
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Fig. S9. Superconducting gap and its magnetic field dependence.
Fig. S10. Smearing of charge quantization with G.
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