
HAL Id: hal-03541726
https://hal.science/hal-03541726

Submitted on 4 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel integer multiplication
Samuel Vivien

To cite this version:
Samuel Vivien. Parallel integer multiplication. PDP 2022 - 30th Euromicron International
Conference on Parallel, Distributed, and Network-Based Processing, Mar 2022, Valladoid, Spain.
�10.1109/PDP55904.2022.00024�. �hal-03541726�

https://hal.science/hal-03541726
https://hal.archives-ouvertes.fr

Parallel integer multiplication

VIVIEN Samuel∗†

∗ Département d’informatique de l’ÉNS, École normale supérieure,
CNRS, PSL Research University, 45 rue d’Ulm, Paris, France

samuel.vivien@ens.psl.eu
†Université de Lorraine,

CNRS, Inria, LORIA, Nancy, France

January 24, 2022

Abstract—Multiplication is a fundamental step in many algo-
rithms. If the multiplication of two integers of n words has a
complexity of M(n), divisions and squares can be computed in
O(M(n)) as well and the greatest common divisor can be computed
in O(M(n) logn). Thus being able to have a small value for M(n)
is extremely important.

To this day, the best known algorithm for reachable values
is the Schönhage-Strassen algorithm which is implemented by a
few arithmetic libraries. Asymptotically faster algorithms exist,
however no computer is able to hold numbers big enough for
those algorithms to outrun Schönhage-Strassen.

The GNU Multiple Precision (GMP) library has a sequential-
only implementation of Schönhage-Strassen.

However some algorithms contains a step which is a single big
multiplication. Thus when trying to parallelize such an algorithm,
one requires a parallel algorithm for multiplication. An example
of such an algorithm is the batch factorization for Number Field
Sieve. Thus people trying to implement a parallel version of such
algorithms need to find an arithmetic library that implements a
parallel integer multiplication.

An example of such a library is the Flint (Fast LIbrary for
Number Theory) library that contains a parallel implementation of
Schönhage-Strassen. In this article we present an implementation
of Schönhage-Strassen, that reaches a speedup of 20 for the
multiplication of two integers of 107 words of 64 bits using a
Xeon Gold with 32 cores.

I. INTRODUCTION

Multiplication is a major arithmetic operation as many al-
gorithms depend on this operation. Schönhage-Strassen’s algo-
rithm [1, 2] multiplies two integers of size n in O(n · log n ·
log logn) and is to this day the best algorithm known for
integers of reachable sizes. Asymptotically faster algorithms
exist [3], however no computer is able to hold numbers big
enough for those algorithms to outrun Schönhage-Strassen [4].
If M(n) is the cost of multiplying two integers of size n, many
arithmetic operations can be computed in either O(M(n)) or
O(M(n)·log n) such as the greatest common divisor [5], square
root, and division [6].

On the other hand, twenty years ago, the first multicore
processors have been revealed (IBM POWER4). Since then,
such processors have appeared on the market for the general
public and today processors with multiple cores are ubiquitous.
This means that in order to harness the performance of a
computer, parallelization is required.

Some algorithms require a parallel multiplication algorithm
in order to be parallelized efficiently. An example of such an
algorithm is the batch cofactorization for the Number Field
Sieve [7]. This algorithm implemented in CADO-NFS [8]
contains a step which is one huge multiplication. Thus, the
only way to parallelize this step of the algorithm is to have
a parallel algorithm for multiplication. However the literature
on parallel multiplication is sparse. There exist only a few
articles presenting parallel multiplication algorithms for integers
[9] or polynomials [10]. The only known implementations are a
parallel version of Karatsuba [11] and the multiplication routine
from Flint [12].

In this article we present a parallel implementation of
Schönhage-Strassen’s algorithm, based on the sequential im-
plementation of this algorithm from the GMP library. This
implementation is compared to the parallel implementation from
the Flint library in order to assess its performance.

First of all, we present different existing implementations.
This will be followed by a presentation of the modifications
made to the implementation of Schönhage-Strassen in order to
parallelize it. Then the global performances will be presented
followed by a brief conclusion.

II. EXISTING IMPLEMENTATIONS

To this day there exist three implementations of Schönhage-
Strassen’s algorithm in C-libraries. The most notorious one is
in GMP [13]. Another important library implementing it is Flint
[12] that contains a multithreaded multiplication routine.

A third important implementation to acknowledge is an
optimized version of GMP’s implementation [14]. From now
on we will refer to this code as GKZ.

Every figure in this article has been done by performing
measures on a node from the cluster grvingt of the Grid’5000
infrastructure [15]. Such a node contains two Intel Xeon Gold
6130 CPUs and 192 GiB of RAM. Each CPU has 16 cores,
leading to 32 cores in total and the capacity to hold 64 threads
when using hyper-threading.

Figure 1 shows that out of the three implementations, GKZ
is the fastest one. But it requires tuning in order to achieve such
a performance resulting in a long overhead time before its first
use on a computer. This figure also shows that Flint’s code is
slightly slower than the one from GMP. But as said before, the

1

2

Figure 1. Time in seconds taken to multiply two integers of n words for GMP
6.2.1, GKZ’s code, and the single threaded version of Flint.

code from the Flint library is multithreaded. Thus we can expect
a better performance when we increase the number of threads.

Figure 2. Speedup obtained when multiplying two integers of n words with
the Flint library using t threads.

On Figure 2 we see that the speedup achieved when using
multiple threads in Flint is rising when the size of integers
increases. When using 32 threads, which means the whole
computing power, it is only for integers of more than 108 words
that the speedup manages to rise above 8. And for such sizes,
the speedup is almost the same for 16, 32 or 64 threads. This
shows that the Flint library restricts the amount of threads for
small integers.

Another parallel implementation of Schönhage-Strassen is
the one presented by Tsz-Wo Sze [16]. However he faced
memory management difficulties because of the architecture of
the computer he used as it had 6GB of RAM per node. Thus
he is only 3 time faster than the performances we measured for
GMP on our computer. This is why our results can hardly be
compared.

III. DESIGN OF A PARALLEL INTEGER MULTIPLICATION

The code described below is a modified version of the original
code used inside the GMP 6.2.1 library. Some details have
been knowingly omitted as they were not modified between the
version of the code presented below and the original version

from GMP. For further details about the original algorithm the
reader should refer to the code inside GMP 6.2.1 and the existing
literature on the subject [1, 2].

The Schönhage-Strassen algorithm is an evaluation-
interpolation algorithm such as Karatsuba’s and Toom-Cook’s
algorithms. This means that they rely on converting the integers
into polynomials, on computing the product of the polynomials
through evaluation and interpolation, and finally on converting
the resulting polynomial back to an integer. This algorithm
computes the result of the multiplication modulo bN +1 where
N and b are detailed below and can be decomposed into 6
steps.
Decomposition: Each integer is rewritten as a vector of N

integers. This vector represents the decomposition in some
base b of the given integer.

Two direct FFTs: Perform a FFT on each vector. This is a
integer FFT, thus we don’t have any problem about the
precision of the result.

Convolution: Compute the pointwise product of the two vec-
tors.

Inverse FFT: Perform an inverse FFT on the vector obtained
at the previous step.

Division: Division of each coefficient by the size of the vector;
this step is usually counted inside the inverse FFT but we
have separated it as those steps are different in term of
implementation.

Evaluation: The vector now represents the polynomial result-
ing from the product of the polynomials computed in step
”decomposition”. Thus evaluating this polynomial in b will
give the result of the integer multiplication.

In algorithm 1 and the following ones, bigInt are numbers of
arbitrary size represented as an array of integers.

Algorithm 1: Multiplication routine
Data: Operand1, Operand2 : bigInt
Result: Out : bigInt
Op1Vector = decompose(Operand1);
Op2Vector = decompose(Operand2);
in place fft(Op1Vector);
in place fft(Op2Vector);
convolution(Op1Vector, Op2Vector);
in place inverse fft(Op1Vector);
division(Op1Vector);
evaluation(Out, Op1Vector);

Those steps are detailed below, some of them being much
more important than others in computing time.

A. Decomposition

In the decomposition step, one needs to decompose each
integer in the base b = 2` into a vector of n-bit coefficients
where n > `. Thus the program just needs to cut the integers
into chunks of ` bits, copy those chunks into the vector and
fill the remaining bits with zeroes. This is done in a for-loop
where iterations are completely independent. One just needs to
distribute the iterations to the threads and the parallelization is
done. However this step raises two problems:

3

• The first problem is when the operands are larger than the
modulo given for the multiplication. In the sequential code,
it is just an Euclidean division, this means that a parallel
subtraction routine had to be implemented (see III-F).

• The second problem is more complex. The author has
observed that adding a synchronization barrier after the
creation of the threads did in fact speed up the computa-
tion. The most probable reason for this difference is that
accessing memory, while the memory mapping is being
modified, slows down the whole computation drasticaly.

In algorithm 2 and the other parallel steps, we suppose in
the pseudo code that nbThreads divides every number we want
in order to simplify the presented code. Full case handling is
available in the code available at the end of the paper.

Algorithm 2: Parallel decomposition
Data: Number : bigInt; l, n, vectorSize, threadId,

nbThreads : int
Result: Vector : bigInt array
modulo = 2l * vectorSize + 1;
compute remainder(Number, modulo);
chunckSize = vectorSize / nbThreads;
for i = chunckSize × threadId to chunckSize ×

(threadId + 1) - 1 do
Vector[i] = [Number[i × b], ..., Number[(i + 1) × b

- 1], 0, ..., 0];

Figure 3. Speedup for the decomposition step when multiplying two integers
of n words.

On Figure 3 we can see that the decomposition reaches a
speedup of 12 for integers of more than 107 words with 32
threads. We could have hoped for a better performance but this
is a memory intensive step, thus the limits also come from the
capability of the cache to bring all the data to the processing
unit. Another interesting thing we can see on this figure is that
the performance with 64 threads is worse than with 32 threads.
In other words, using hyper-threading decreases the computation
power. This is not surprising as many multi-threaded linear
algebra libraries advise against using hyper-threading.

B. FFTs
The three FFTs (two direct and one inverse) are very impor-

tant steps because they take a large part in the total computation

time. Different approaches have been tested to parallelize the
FFTs.

Currently the code inside GMP is a recursive implementation
of Cooley-Tukey’s FFT [17]. The first approach we followed
was to rewrite the recursive function with a loop. However,
this worsened the performances by a factor 1.5. This was the
consequence of an increase in the amount of cache misses.

There exists other FFT algorithms that are easier to parallelize
and reduce the amount of cache misses such as the one presented
by Bailey [18]. This algorithm considers the vector as a matrix
and computes FFTs on each of the rows of the matrix, transposes
it and computes FFTs on each row once again. Bayley’s
algorithm [18] was designed for matrices with floating-point
coefficients, which take a few machine words, whereas here
we have integer coefficients with hundreds or thousands of
machine words. Vectors of such coefficients exceed the cache
size, leading to much more cache miss than expected. And this
algorithm requires transposing matrices which is quite difficult
to parallelize and creates lots of cache misses. As we did not
need the FFT to return an ordered FFT but only to be able to
invert it, the choice has been made to remove the transposition
step from Bailey’s algorithm. This method gave the best results
out of all the methods tested.

Two optimizations were also added in order to improve the
performance. Each thread was bound to a CPU core in order to
reduce thread migration. Also, each direct FFT is computed on
a single CPU leading to the two direct FFTs happening at the
same time.

Figure 4. Speedup for the direct FFT step when multiplying two integers of n
words.

However as we can see on Figure 4 the performance decreases
for huge integers. This comes from the fact that the transposition
step existed for a reason. It was there to reduce the number of
cache misses. Thus removing this step increases the amount of
cache misses for the sub-FFTs. The impact of them increases
with the size of the integers. However the speedup goes above
20 for integers of 2 · 106 words and stays above 10 for integers
of less than 108 words when using 32 threads. This is good
because FFTs take a big part of the global computation time
and achieving good performance on this part leads to better
global performance.

4

Figure 5. Speedup for the inverse FFT step when multiplying two integers of
n words.

C. Convolution

The convolution is also a very important step as it takes
roughly as much time as the 3 FFTs combined in the single-
threaded version.

This step is only iterating on the vectors to compute the
pointwise products. Thus we just need to cut the vectors into
equal shares of consecutive indices and give each thread its
share in order to parallelize this step.

Algorithm 3: Parallel convolution
Data: OutV, InV : bigInt vectors; vectorSize, threadId,

nbThreads, modulo : int
chunckSize = vectorSize / nbThreads;
for i = chunckSize × threadId to chunckSize ×

(threadId + 1) - 1 do
mpn_mul_mod(OutV[i], InV[i], modulo);

Due to its simplicity and the size of the data, the paralleliza-
tion went smoothly and the performance followed. This step
achieves good speedups that remain stable for sizes between
105 and 109 words as shown on Figure 6.

Figure 6. Speedup for the convolution step when multiplying two integers of
n words.

Here again we see that hyper-threading is not of much help
for huge sizes. However for this step, hyper-threading does not

have a negative impact on performance.

D. Division

As the computation is done modulo bN +1, division is only a
multiplication by the inverse. Thus, in this step, every coefficient
of the output vector is multiplied by a power of two. However
a problem arises, as this multiplication by a power of two has
not been implemented in place.

In the sequential version of the code, the solution is to
send each coefficient on the previous coefficient, when the first
one was sent to an additional memory address. For the multi-
threaded code it has been chosen that each thread would have
its own additional memory and that every division will be done
from the vector to the additional memory, before being copied
back to the vector.

This approach allows to prevent allocating any additional
memory as other parts of the code also need the same amount
of additional memory (the size of a single coefficient) while the
time trade-of caused by the additional copy was small because
all the data is already inside the closest cache thanks to the
operations that happened just before.

Figure 7. Speedup for the division step when multiplying two integers of n
words.

On Figure 7 we can see that the division step reaches a
speedup of 13 with 32 threads and as we have already noticed
before, hyper-threading worsens performance. We can also see
that for small integers, reducing the number of threads might
improve performance. Some tuning might be useful for this step,
in order to use more efficiently the amount of threads available.

E. Evaluation

The next step of the multiplication is the evaluation of the
polynomial. In other words, every coefficient from the vector
needs to be added to the result. Every coefficient takes at most
2`+ log2 K bits where K is the dimension of the vector. This
upper bound comes from the formulation when computing the
product of two polynomials. If we cut the resulting number into
chunks of ` bits, we can see that each coefficient can take up to
2 chunks and a few additional bits. Thus, this step might cause
many data races if not handled well.

The best approach to minimize the amount of mutexes in
this part of the computation is to copy as many data as possible

5

inside the vector without creating any possible collisions (to
avoid using locks). Afterward, a sequential or quasi-sequential
code takes care of the carries. On the one hand one does not
know where a carry will stop, thus the code requires lots of locks
to guarantee its correctness. On the other hand, probabilities
show that carries have a short life-time expectancy. Thus the
impact of having a sequential carry propagation code is small
on the overall performance except in a few worst case scenarios.

For this step, two different approaches are possible:
• The first one is currently used inside the code described

in this article. It consists of cutting the coefficients into
multiple pieces.

1) One copies the first 2` bits of each odd-indexed
coefficient into the result.

2) One adds the last log2 K bits of each odd-indexed
coefficient to the next coefficient (whose index is
even), except for the last coefficient whose exceeding
bits are added to the result.

3) Now one adds the first 2` bits of each even-indexed
coefficient to the result and adds the carry to the
exceeding bits of the coefficient.

4) Sequentially add exceeding bits left in the even-
indexed coefficients.

The idea behind this approach is that the exceeding bits
are usually one machine word only, when each coefficient
takes around a thousand words for operands of 107 words.
Thus the last part of this step is much faster than the other
ones. However, as shown on Figure 8, the performance for
this approach is much worse than the ones from the other
steps, reaching a speedup of only 6-7 with 32 threads.

Figure 8. Speedup for the evaluation step when multiplying two integers of n
words.

As on Figure 7, we see on Figure 8 that for small integers
it would be useful to limit the number of threads in order
to achieve better performance. We can clearly see that for
integers of 2 · 105 words, using 8 threads is better than
using 32 threads which achieves the same performance as
a single thread!
However, this step does not take as much time as the
FFTs and the convolution. When multiplying two integers
of 108 words each, this step only uses 3% of the overall
computation time. Thus efforts were concentrated on more
time-consuming steps.

• The second approach was thought to be better than the first
one.
The idea was to split the vectors in equal share and that
each thread computes the evaluation step on his share
before adding the overlapping parts at the end.
However even if this approach was more efficient theorit-
ically we didn’t managed to observe any gain.

F. Chinese Remainder

The Schönhage-Strassen algorithm is a modular multipli-
cation algorithm as it returns the result of the multiplication
modulo bN +1 where N is the size of the vectors. The Chinese
Remainder Theorem says that if we know the result of the
multiplication for different coprime moduli we can deduce the
result of the multiplication modulo the product of the moduli.
This means that we can change one large multiplication into
multiple smaller ones. This adds a last step to the multiplication
routine, called Chinese Remainder, whose effect is to reunite the
results on various rings into the overall result. Inside GMP there
exist two implementations for this Chinese Remainder step: a
default version and an older one that can be reactivated.

Let M be an integer larger than the sum of the sizes of the
operands.

• By default the multiplication routine used for big integers
is mpn_mul_nussbaumer (in GMP 6.2.1) which com-
putes the results of the multiplication modulo 2M/2 + 1,
2M/4 + 1 and so on, until the modulo is small enough for
another algorithm to outrun Schönhage-Strassen. Then the
result is computed via a series of Chinese Remainder steps.

• The original version of the code can be enabled by the flag
--enable-old-fft-full when configuring GMP.
This version computes multiplications modulo 23M/5 + 1
and 22M/5 + 1. Then the result is computed via a single
Chinese Remainder step.

Both codes call the same function afterward that computes
the product of the two operands with the given modulo. Thus
the previous work of parallelization works for both at the same
time. But experiments have shown that small multiplications are
much harder to parallelize as shown in previous figures. Thus the
code used for the performances shown in this article is using
the original version of the code. This choice also allowed a
much easier parallelization of the Chinese Remainder step of
the computation since only two rings were used.

However, the Chinese Remainder step is still quite a tricky
step because it does not contain any loop, and every arithmetic
operation uses the same piece of data. Thus, everything has to
be done sequentially. The only way to improve the performance
of this part of the computation when increasing the number of
threads is to implement a parallel version of the basic arithmetic
functions used in this step. Thus the following operation have
been multi-threaded:
Copy: This one was easy to implement, each thread calls the

normal copy routine on its part of the number.
We also have a routine mpn_copy_n(out, in, size) that
copy an integer of size machine words starting at address
in into the integer starting at address out.

Logical shift right of s bits (with s smaller than a word size):
This operation requires synchronization between the

6

Algorithm 4: Parallel copy
Data: Out, In : bigInt; size, threadId, nbThreads : int
chunckSize = size / nbThreads;
mpn_copy_n(Out + threadId × chunckSize, In +

threadId × chunckSize, chunckSize);

threads. First of all, every thread stores the s smallest bits
of the share of the next thread. Then, when everybody is
done computing this, every thread calls the normal logical
shift right routine on its part of the number. And finally
each thread places the saved bits from the first step to the
s highest bits of its share.

Algorithm 5: Parallel logical shift right (rshift)
Data: Out, In : bigInt; size, s, threadId, nbThreads : int
Result: OutLimb : shifted out bits if threadId is 0, 0

otherwise
chunckSize = size / nbThreads;
saved = (2s − 1) & In[chunckSize × (threadId + 1)];
if threadId = 0 then

OutLimb = (2s − 1) & In[0];
else

OutLimb = 0;
sync();
mpn_rshift(Out + threadId × chunckSize, In +

threadId × chunckSize, chunckSize, s);
Out[r * chunckSize - 1] = Out[r * chunckSize - 1] |

(saved ×2word size−s)

Addition: This operation also requires synchronization, but at
the end. First, every thread calls the normal addition routine
on his share. Then, when every thread completed its task,
it adds to the result the potential carry that came from the
previous chunk.

Algorithm 6: Parallel addition
Data: Out, In : bigInt; size, s, threadId, nbThreads : int
Result: OutCarry : int
chunckSize = size / nbThreads;
carry = mpn_add_n(Out + threadId × chunckSize, In

+ threadId × chunckSize, chunckSize);
OutCarry = 0;
sync();
mutex lock();
OutCarry += mpn_incr(Out + (threadId + 1) ×

chunckSize, OutCarry, size - (threadId + 1) ×
chunckSize);

mutex unlock();

Subtraction: The approach for this operation could have been
similar to the one for the addition but it has been done
differently with an approach closer to the one for the logical
shift right.
First of all, each thread computes the incoming borrow
of its share. This means that if its share is from the n-th
word to the m-th word, it compares the two numbers given
in input restricted to their n first words to see whether the

result of the subtraction is negative or not in order to predict
a potential incoming borrow.
Once this is done for every thread, they can all compute the
subtraction on their share using a GMP routine computing
subtraction with a given carry.

The parallelization of the above operations allows to improve
the performance of the Chinese Remainder step. However this
code requires much more synchronization than the previous
steps. This might be the reason why the performance on small
integers is so bad when using many threads as shown on
Figure 9.

Figure 9. Speedup for the Chinese Remainder step when multiplying two
integers of n words.

When working on this part of the code, the author noticed
that binding each thread to a specific core had a huge impact1

on the time required by the threads to wake up after a barrier.
Even if Figure 9 shows that this part of the code still requires

some work to be efficient when using many threads, it is nice to
notice that the speedup with 2 or 4 threads is already optimal.

A last solution to improve performance is to reduce the
number of threads used for smaller integers because having
too many threads degrades the performance. For example, we
clearly see on Figure 9 that for integers of less that 106 words,
using 8 threads is much better than using 32. The need of
reducing the number of threads for small integers could already
be seen on Figure 8.

IV. ASSESSING THE GLOBAL PERFORMANCE

Figure 10 shows a chronogram of the multiplication between
two integers of 107 words each. Each of the 32 horizontal stripes
represents a thread and the upper stripe represents the part of
the code currently running. A white rectangle means that the
thread is idle while a colored rectangle means that the thread is
currently active. The goal of this graph is to detect sequential
parts of the code that have a significant impact on the overall
performance. This graph also permits to detect parallel parts of
the code that take a significant part of the overall computation
time. In the highest line, the two blue parts represent the two
calls of the Schönhage-Strassen algorithm (modulo 23M/5 + 1

1There exists a factor 10 for the time required by this step between the
binded and the non-binded versions when multiplying two integers of 107 to
108 words.

7

0 20 40 60 80 100
Percentage of the computation time

0

5

10

15

20

25

30

Th
re

ad
's

ID

Decomposition
FFTs
Convolution
Division
Evaluation (1st part)
Borrow propagation
Chinese Remainder

Figure 10. Chronogram of the multiplication of two integers of 107 words with
32 threads.

first and 22M/5 + 1 afterward) and the pink part is the Chinese
Remainder step.

This chronogram helps us see different informations about
the performance. First of all, we clearly see that the evaluation
step might require some additional work as the yellow part uses
only a single core.

We can also see that the workload for convolution (black)
is well distributed as we do not see much white at the end,
meaning that we do not have threads finishing this part before
others. The optimum would be for the whole graph to look like
that.

On the other hand, some work should maybe be done in the
decomposition and the FFTs, by distributing the workload better
in order to prevent one thread being idle while the others are
still working.

We can also see from the evaluation and the Chinese Re-
mainder steps that adding too many barriers for synchronizing
the threads has a negative effect on performance as we can see
many white parts at the end of the chronogram.

Now that we have an idea of the performance of the different
steps of the multiplication we look at the performance of the
whole computation.

Figure 11. Global speedup when multiplying two integers of n words.

Figure 11 represents the time taken between the multiplication
routine with 1 thread divided by the time for t threads for various

sizes. It shows and confirms different things about the code.
• First of all we can see that the speedup almost reaches a

value of 20 with 32 threads when given two integers of
107 words in input. Even if only a few steps reached a
ratio above 15, this confirms that concentrating efforts on
the convolution and the FFTs is important.

• The impact of the FFTs is once again confirmed by the
decrease in speedup with integers of more than 2 · 107
words. A decrease that is a direct consequence of Figure 4.

• As already seen on every figure shown above, hyper-
threading has a negative impact on the performance.

• The speedup is quite small for integers of less than 106

words. In fact restricting the number of threads used could
even improve the performance. For example we can see on
Figure 9 that the Chinese Remainder step would benefit
greatly of using a smaller number of threads.

One last thing to acknowledge is that every measure was
done without any other program running. Thus, the measures
done with a single thread had the advantage of having the whole
computer for themselves when threads had to share the L3 cache
with one another when the program was run with 32 threads.

However all the modifications made to achieve such perfor-
mances came with a cost. The single-threaded computation time
has increased by 10% compared to the GMP sequential version.

Another indicator than the speedup would be to compare the
performance of this new code with the Flint library.

Figure 12. Time taken to multiply two integers of n words with Flint divided
by the time for our code for different amounts of threads.

As we can see on Figure 13, our code completely outruns
Flint for integers from 105 to 108 for more than 16 threads.
However the ratio above 5 for integers of around 106 words
decreases toward a mere 1.5 for 109 words. This decrease is
due to two effects that we have already seen before: the increase
of the speedup with the size of the integers for Flint shown on
Figure 2 and the decrease of speedup for our code that comes
from the performance of the FFT on big sizes as shown on
Figure 4.

V. CONCLUSION

In this article we have seen how it is possible to modify
the existing multiplication code inside GMP in order to reach
outstanding parallel performance. This code is a proof of

8

Figure 13. Time taken to multiply two integers of n words with our code.

concept that greater parallel performance can be reached for
integer multiplication. While some work is still required in
order to improve the portability of the code, performance can
be improved even more.

The code is downloadable at https://github.com/samsa1/
integer-para-mul

ACKNOWLEDGEMENT

The author would like to thank Emmanuel THOMÉ and Paul
ZIMMERMANN for their guidance and the rest of Caramba team
at LORIA for hosting him on the internship that led to this paper.

REFERENCES

[1] A. Schönhage and V. Strassen. “Schnelle Multiplikation
großer Zahlen”. In: Computing 7 (1971), pp. 281–292.
DOI: 10.1007/BF02242355. URL: https://doi.org/10.1007/
BF02242355.

[2] Richard Brent and Paul Zimmermann. Modern Computer
Arithmetic. Ed. by Cambridge University Press. 2010.

[3] David Harvey and Joris Van Der Hoeven. “Integer multi-
plication in time O(n log n)”. In: Annals of Mathematics
193 (2021), pp. 563–617. DOI: https://doi.org/10.4007/
annals.2021.193.2.4. URL: https://hal.archives-ouvertes.
fr/hal-02070778.

[4] Christoph Lüders. “Implementation of the DKSS Algo-
rithm for Multiplication of Large Numbers”. In: Proceed-
ings of the 2015 ACM on International Symposium on
Symbolic and Algebraic Computation. ISSAC ’15. Bath,
United Kingdom: Association for Computing Machinery,
2015, pp. 267–274. ISBN: 9781450334358. DOI: 10.1145/
2755996.2756643. URL: https://doi.org/10.1145/2755996.
2756643.

[5] Damien Stehlé and Paul Zimmermann. “A Binary Recur-
sive Gcd Algorithm”. In: Algorithmic Number Theory, 6th
International Symposium, ANTS-VI, Burlington, VT, USA,
June 13-18, 2004, Proceedings. Vol. 3076. June 2004,
pp. 411–425. ISBN: 978-3-540-22156-2. DOI: 10.1007/
978-3-540-24847-7 31.

[6] Daniel J. Bernstein. “Fast multiplication and its applica-
tions”. In: (2004). URL: http : / / cr. yp . to / papers . html #
multapps.

[7] Daniel J. Bernstein. “How To Find Small Factors Of
Integers”. In: (2000). URL: cr.yp.to/factorization.html.

[8] The CADO-NFS Development Team. CADO-NFS, An
Implementation of the Number Field Sieve Algorithm.
Release 2.3.0. 2017. URL: http://cado-nfs.gforge.inria.fr/.

[9] Viktor Bunimov and Manfred Schimmler. “Efficient Par-
allel Multiplication Algorithm for Large Integers”. In:
Euro-Par 2003 Parallel Processing. Ed. by Harald Kosch,
László Böszörményi, and Hermann Hellwagner. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2003, pp. 923–
928. ISBN: 978-3-540-45209-6.

[10] Changbo Chen et al. “Parallel Integer Polynomial Multi-
plication”. In: SYNASC 2016 - 18th International Sympo-
sium on Symbolic and Numeric Algorithms for Scientific
Computing. Timisoara, Romania, Sept. 2016, pp. 72–80.
DOI: 10 . 1109 / SYNASC . 2016 . 024. URL: https : / / hal .
archives-ouvertes.fr/hal-01520021.

[11] Tudor Jebelean. “Using the parallel Karatsuba algo-
rithm for long integer multiplication and division”. In:
vol. 1300. Apr. 2006, pp. 1169–1172. ISBN: 978-3-540-
63440-9. DOI: 10.1007/BFb0002869.

[12] William HART and Flint development team.
Flint (Fast Library for Number Theory).
Version c1acfda772b20a55c525ec5418bf934dc34f5e45.
July 2021. URL: https://github.com/wbhart/flint2.

[13] T. Granlund and the GMP development team. GNU
MP : The GNU Multiple Precision Arithmetic Library.
Version 6.2.1. 2020. URL: http://gmplib.org/.

[14] Pierrick Gaudry, Alexander Kruppa, and Paul Zimmer-
mann. “A GMP-based implementation of Schönhage-
Strassen’s large integer multiplication algorithm”. In:
ISSAC 2007. Ed. by C. W. Brown. Proceedings of the
2007 international symposium on Symbolic and algebraic
computation. Waterloo, Ontario, Canada: ACM Press,
July 2007, pp. 167–174. DOI: 10.1145/1277548.1277572.
URL: https://hal.inria.fr/inria-00126462.

[15] Daniel Balouek et al. “Adding Virtualization Capabilities
to the Grid’5000 Testbed”. In: Cloud Computing and
Services Science. Ed. by Ivan I. Ivanov et al. Vol. 367.
Communications in Computer and Information Science.
Springer International Publishing, 2013, pp. 3–20. ISBN:
978-3-319-04518-4. DOI: 10 .1007 /978- 3- 319- 04519-
1\ 1.

[16] Tsz-Wo Sze. “SchöNhage-Strassen Algorithm with
MapReduce for Multiplying Terabit Integers”. In: Pro-
ceedings of the 2011 International Workshop on
Symbolic-Numeric Computation. SNC ’11. San Jose,
California: Association for Computing Machinery, 2012,
pp. 54–62. ISBN: 9781450305150. DOI: 10 . 1145 /
2331684.2331693. URL: https://doi.org/10.1145/2331684.
2331693.

[17] James W. Cooley and John W. Tukey. “An Algorithm for
the Machine Calculation of Complex Fourier Series”. In:
Mathematics of Computation 19.90 (1965), pp. 297–301.
URL: http://www.jstor.org/stable/2003354.

[18] David Bailey. “FFTs in External or Hierarchical Mem-
ory.” In: vol. 4. Jan. 1989, pp. 211–224. DOI: 10.1007/
BF00162341.

https://github.com/samsa1/integer-para-mul
https://github.com/samsa1/integer-para-mul
https://doi.org/10.1007/BF02242355
https://doi.org/10.1007/BF02242355
https://doi.org/10.1007/BF02242355
https://doi.org/https://doi.org/10.4007/annals.2021.193.2.4
https://doi.org/https://doi.org/10.4007/annals.2021.193.2.4
https://hal.archives-ouvertes.fr/hal-02070778
https://hal.archives-ouvertes.fr/hal-02070778
https://doi.org/10.1145/2755996.2756643
https://doi.org/10.1145/2755996.2756643
https://doi.org/10.1145/2755996.2756643
https://doi.org/10.1145/2755996.2756643
https://doi.org/10.1007/978-3-540-24847-7_31
https://doi.org/10.1007/978-3-540-24847-7_31
http://cr.yp.to/papers.html#multapps
http://cr.yp.to/papers.html#multapps
cr.yp.to/factorization.html
http://cado-nfs.gforge.inria.fr/
https://doi.org/10.1109/SYNASC.2016.024
https://hal.archives-ouvertes.fr/hal-01520021
https://hal.archives-ouvertes.fr/hal-01520021
https://doi.org/10.1007/BFb0002869
https://github.com/wbhart/flint2
http://gmplib.org/
https://doi.org/10.1145/1277548.1277572
https://hal.inria.fr/inria-00126462
https://doi.org/10.1007/978-3-319-04519-1_1
https://doi.org/10.1007/978-3-319-04519-1_1
https://doi.org/10.1145/2331684.2331693
https://doi.org/10.1145/2331684.2331693
https://doi.org/10.1145/2331684.2331693
https://doi.org/10.1145/2331684.2331693
http://www.jstor.org/stable/2003354
https://doi.org/10.1007/BF00162341
https://doi.org/10.1007/BF00162341

	Introduction
	Existing Implementations
	Design of a parallel integer multiplication
	Decomposition
	FFTs
	Convolution
	Division
	Evaluation
	Chinese Remainder

	Assessing the global performance
	Conclusion

