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Abstract

Within argumentation dynamics, a major strand of research is concerned
with how changing an argumentation framework affects the acceptability of
arguments, and how to modify an argumentation framework in order to guar-
antee that some arguments have a given acceptance status. In this chapter, we
overview the main approaches for enforcement in formal argumentation. We
mainly focus on extension enforcement, i.e., on how to modify an argumenta-
tion framework to ensure that a given set of arguments becomes (part of) an
extension. We present different forms of extension enforcement defined in the
literature, as well as several possibility and impossibility results. The question
of minimal change is also considered, i.e., what is the minimal number of mod-
ifications that must be made to the argumentation framework for enforcing an
extension. Computational complexity and algorithms based on a declarative
approach are discussed. Finally, we briefly describe several notions that do not
directly fit our definition of extension enforcement, but are closely related.
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1 Introduction

At the beginning of the 2010s several problems regarding dynamic aspects of abstract
argumentation have been addressed in the literature [Boella et al., 2009a; Cayrol
et al., 2010; Bisquert et al., 2011; Liao et al., 2011]. One much cited problem among
these is the so-called enforcing problem dealing with changing the acceptability of
certain arguments [Baumann and Brewka, 2010]. Over the years, the problem gained
more and more attention which finally leads to the writing of this chapter. In its
very first version the problem can be briefly summarized as the question whether it is
possible, given a specific type of syntactic changes, to modify a given AF such that a
desired set of arguments becomes (a subset of) an extension. Consider the following
snapshot of a dialogue among agents A and B depicted in Figure 1. Assume it is
A’s turn and her desired set of arguments is E = {a1, a2, a3}. Furthermore, A and
B are discussing under preferred semantics, which selects maximal conflict-free and
self-defending sets of arguments.

a1 a2 a3

b1 b2 b3

c

jkj jkjklll
c b2 b3

d

?

Figure 1: Snapshot of a dialogue

In order to enforce E, agent A may come up with new arguments which interact
with the old ones (for example through introducing an argument d which attacks b2
and b3) and/or question old arguments or attacks between them, respectively (for
example through questioning the self-attack of c). Please note that first, in this
scenario, enforcing is possible and second, that there are at least two different pos-
sibilities to achieve that. This insight leads to a further well-studied issue, namely
the so-called minimal change problem firstly introduced in [Baumann, 2012b]. This
problem is defined as a generalization of the classical enforcing problem since one
is not only interested in whether enforcements are possible, but also in the effort
needed to enforce a set of arguments. One numerical measure which is frequently
used for this effort corresponds to the number of additions or removals of attacks to
reach such an enforcement. The main motivation behind this measure is that adding
or removing an isolated argument does not contribute at all to solving or increasing
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a given conflict, i.e. the conflicting information remains the same. This means,
the decrease or increase of a conflict is directly linked to upcoming or disappearing
attacks and thus, counting attacks only is a reasonable approach. Regarding the
introductory example we obtain a minimal effort of 1 if allowing arbitrary modifica-
tions.

In this chapter we give an overview over main variants of enforcement studied
in the literature. We give a particular focus on strict and non-strict extension
enforcement, whose aim is to modify an AF such that a desired set of arguments
becomes exactly (or part of) an extension, under a semantics. A main distinguishing
factor among the family of operators for extension enforcement is how an AF may be
modified. We highlight here changes corresponding to expansions, i.e., additions of
arguments and attacks such as the addition of argument d above, or local updates,
i.e., modifying only the attack structure such as questioning the self-attack of c, but
also discuss modifications to AFs more broadly, as well. Additionally, we consider
as an instance of a change that does not affect the structure of the framework,
modifications of the chosen semantics, in order to enforce a set of arguments.

We present main formal properties of extension enforcement derived in the lit-
erature, e.g., for impossibility and possibility results, and results for the minimal
change problem of extension enforcement. We further survey results regarding the
complexity of reasoning on enforcement and present algorithms based on declarative
approaches to implement enforcement.

The chapter starts off with recalling formal preliminaries of AFs (Section 2) in-
cluding types of modifications on AFs. The main section on extension enforcement
is Section 3, which first introduces enforcement as a general problem, and focuses
on the extension enforcement variant. In this section, we present expansion-based
extension enforcement and extension enforcement based on locally updating an at-
tack structure without modifying the set of arguments. Further, minimal change,
semantics change, complexity results, and algorithms, are presented. In Section 4
we survey related notions to enforcement, and we close with a discussion of related
works (Section 4.5) and with conclusions (Section 5).

2 Formal Preliminaries

In order to keep the chapter self-contained we review all relevant definitions. We
start with the basic notions of Dung’s abstract argumentation theory [Dung, 1995].
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2.1 Argumentation Frameworks and Semantics

An abstract argumentation framework (AF) is just a directed graph F = (A, R)
where a node a ∈ A is called an argument and a pair (a, b) ∈ R ⊆ A × A is
interpreted as an attack from argument a to argument b. We require that any
AF F = (A, R) possesses arguments from a fixed reference set U , i.e. A ⊆ U .
Moreover, in this chapter we restrict ourselves to finite AFs, i.e. any AF consists of
finitely many arguments and attacks only. Note that this is a common restriction
in the literature although actual and potential infinite AFs play an important role
in practical applications as well as theoretical considerations (cf. [Baroni et al.,
2013; Baumann and Spanring, 2017; Baumann, 2019] for more information). At the
heart of Dung’s abstract argumentation theory are argumentation semantics which
formalize intuition of what should be acceptable in the light of conflicts. Two main
approaches to argumentation semantics can be found, namely so-called extension-
based and labelling-based versions (cf. [Baroni et al., 2018a] for an introduction
and [Baumann, 2018, Sections 2.2, 4.4] for further relations). In this chapter we
concentrate on the former only. Consider the following generic definition. The set
F refers to all considered AFs.

Definition 2.1. A semantics is a total function

σ : F → 22U F = (A, R) �→ σ(F) ⊆ 2A.

A set of arguments E ∈ σ(F) is called a σ-extension. Moreover, we say that
a semantics σ is universally defined if each AF admits at least one extension with
respect to this semantics, i.e. for any F ∈ F , |σ(F)| ≥ 1. Furthermore, a semantics
σ is said to be uniquely defined if always exactly one set of arguments is returned,
i.e. |σ(F)| = 1 for any F ∈ F .

Before presenting the relevant semantics for this chapter we have to introduce
some further notation. Given an AF F = (A, R) and a set E ⊆ A. We use E+

F ,
or simply E+, for {b | (a, b) ∈ R, a ∈ E}. Moreover, E⊕

F , or simply E⊕, is called
the range of E and stands for E+ ∪ E. Analogously, E−

F (or simply E−) stands for
{b | (b, a) ∈ R, a ∈ E}, and E�

F (or simply E�) corresponds to E− ∪E. An argument
a is defended by E (in F) if for each b ∈ A with (b, a) ∈ R, b is attacked by some
c ∈ E. Finally, ΓF : 2A → 2A with I �→ {a ∈ A | a is defended by I} denotes the
so-called characteristic function (of F).

Besides conflict-free and admissible sets (abbreviated by cf and ad) we con-
sider a large number of well-known semantics, namely naive, stage, stable, semi-
stable, complete, preferred, grounded, ideal, and eager semantics (abbreviated by
na, stg, stb, sst, co, pr , gr , id, eg, respectively).
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Definition 2.2. Let F = (A, R) be an AF and E ⊆ A.

1. E ∈ cf (F) iff for no a, b ∈ E, (a, b) ∈ R,

2. E ∈ na(F) iff E is ⊆-maximal in cf (F),

3. E ∈ stg(F) iff E ∈ cf (F) and E⊕ is ⊆-maximal in {I⊕ | I ∈ cf (F)},

4. E ∈ stb(F) iff E ∈ cf (F) and E⊕ = A,

5. E ∈ ad(F) iff E ∈ cf (F) and E ⊆ ΓF (E),

6. E ∈ sst(F) iff E ∈ ad(F) and E⊕ is ⊆-maximal in {I⊕ | I ∈ ad(F)},

7. E ∈ co(F) iff E ∈ cf (F) and E = ΓF (E),

8. E ∈ pr(F) iff E is ⊆-maximal in co(F),

9. E ∈ gr(F) iff E is ⊆-minimal in co(F),

10. E ∈ id(F) iff E is ⊆-maximal in {I | I ∈ ad(F), I ⊆ ⋂ pr(F)},

11. E ∈ eg(F) iff E is ⊆-maximal in {I | I ∈ ad(F), I ⊆ ⋂ sst(F)}.

It has been shown that any of the introduced semantics is universally defined
except the stable one and moreover, grounded, ideal and eager semantics are even
uniquely defined (cf. [Baumann and Spanring, 2015] for an overview). In order to
get familiar with the introduced definitions consider the following example taken
from [Baumann, 2014b].

Example 2.3. Consider the AF F = (A, R) with A = {a, b, c, d, e, f} and R =
{(a, b), (a, d), (b, c), (c, a), (d, d), (e, d), (e, f), (f, e)}. The graphical representation of
F is given below.

cb

a d e f

The evaluation of F w.r.t. the introduced semantics is given in the following
table. The entry “�" in row “σ" and line “E" stands for E ∈ σ(F).
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dstbp dsstp dstgp dprp dadp dcop dgrp didp degp dnap

� � � �

� � � � �

� � �

� �

�

�

�

�

�

�

�

�

∅

{e}

{f}

{a, e}

{b, e}

{c, e}

{a, f}

{b, f}

{c, f}

Table 1: Evaluation table of F

The AF F is an example for a collapse of stable semantics, i.e. stb(F) = ∅. The
non-existence of stable extensions in F implies the occurrence of odd-length cycles
like the 3-cycle [a, b, c, a] or the self-loop [d, d]. More precisely, in case of finite AFs
we have that being odd-cycle free is sufficient for warranting at least one stable
extension [Dung, 1995; Spanring, 2015].

As already indicated in Table 1 there are several well-known subset relations
between the considered semantics. For instance, for any AF F we have, stb(F) ⊆
sst(F) ⊆ pr(F) ⊆ co(F) ⊆ ad(F) and stb(F) ⊆ stg(F) ⊆ na(F).

2.2 Acceptance Modes and Structural Changes

In the following we present several acceptance modes and structural changes, that
is, changes on the structure (addition or removal of arguments and attacks) of the
AF, which can be used to specify a certain type of enforcement.

So-called credulous and sceptical acceptance are the most common reasoning
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types for abstract argumentation semantics. They are usually defined for single
arguments only. We present their definitions for sets of arguments where the classical
single argument acceptance can be obtained by considering the singleton of the
argument in question. Moreover, since a non-universally defined semantics σ may
return no σ-extension for a given AF F we consider so-called non-empty sceptical
reasoning which avoids the (possibly) unintended situation that every argument
is sceptically accepted due to the emptiness of σ(F). A further frequently used
acceptance mode is the requirement to be contained in at least one extension, so-
called covered acceptance1. This notion plays a central role in the field of enforcement
and is located in-between non-empty sceptical and credulous acceptance.

Definition 2.4. Given a semantics σ, an AF F = (A, R) and a set E ⊆ A. We say
that E is

1. credulously accepted w.r.t. σ if E ⊆ ⋃
σ(F),

2. sceptically accepted w.r.t. σ if E ⊆ ⋂
σ(F),

3. non-empty sceptically accepted w.r.t. σ if E ⊆ ⋂
σ(F) and σ(F) 	= ∅,

4. covered accepted w.r.t. σ if there is an E′ ∈ σ(F), s.t. E ⊆ E′.

For convenience we introduce the following unified notation. We write E ∈
cred(F , σ), E ∈ scep(F , σ), E ∈ scep �=∅(F , σ) or E ∈ cov(F , σ) for E is credulously,
sceptically, non-empty sceptically or covered accepted, respectively. Moreover, for
any given reasoning type r we use E ∈ rs(σ,F) to indicate that there is an equality
instead of a subset relation only, e.g. there is an E′ ∈ σ(F), s.t. E = E′ in the case
of covered acceptance (or, said otherwise, E ∈ σ(F)). In this case we say that the
considered set E is strictly accepted. If E is non-empty sceptically accepted w.r.t.
σ then E is covered accepted w.r.t. σ (since E must be part of all σ-extensions and
there is at least one), and the latter implies that E is credulously accepted w.r.t. σ
(since the witness for being covered accepted is a witness for credulous acceptance).

Let us proceed with the running AF exemplifying several acceptance modes.

Example 2.5 (Example 2.3 cont.). Let σ = stb. Since stb(F) = ∅ we obtain⋃ stb(F) = ∅ and ⋂ stb(F) = U . Hence, any set E ⊆ U is sceptically, but not
non-empty sceptically accepted, i.e. E ∈ scep(F , stb) and E /∈ scep �=∅(F , stb). More-
over, E is neither credulously, nor covered accepted, i.e. E /∈ cred(F , stb) and

1We mention that this notion is sometimes called credulous acceptance [Dunne, 2007, p. 704].
This is due to the fact that that there are at least two options if generalizing credulous acceptance
from arguments to sets of arguments.
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E /∈ cov(F , stb).
Consider now σ = pr. Since pr(F) = {{e}, {f}} we have ⋃ pr(F) = {e, f} and⋂ pr(F) = ∅. Thus, {e, f} is credulously strict but neither sceptically nor non-empty
sceptically accepted, i.e. {e, f} ∈ creds(F , pr), {e, f} /∈ scep(F , pr) and {e, f} /∈
scep �=∅(F , pr). Moreover, {e, f} is not covered accepted whereas {e} and {f} are and
this acceptance is even strict, i.e. {e, f} /∈ cov(F , pr) and {e}, {f} ∈ covs(F , pr).

We now introduce typical structural changes. The most general form of dynamic
scenarios are so-called updates where arguments and attacks can be deleted and
added. If we do not delete any information we call the structural change an expansion
[Baumann and Brewka, 2010; Oikarinen and Woltran, 2011; Baumann, 2012a]. The
following kinds of expansions have received particular attention in the literature.
Normal expansions add new arguments and possibly new attacks which concern at
least one of the fresh arguments. Moreover, local expansions do not introduce any
new arguments but possibly new attacks among the old arguments. Both types
of expansions naturally occur in the context of instantiation-based argumentation
[Besnard and Hunter, 2008; Caminada and Wu, 2011]. For instance, adding a new
piece of information to the underlying knowledge base corresponds to a normal
expansion on the AF level. Furthermore, changing the considered notion of attack
left the constructed arguments untouched and results in a local expansion. Two
further subconcepts of normal expansions are usually considered, so-called strong
and weak expansions. Their names refer to properties of the additional arguments,
namely arguments which are never attacked by former arguments (strong arguments)
and arguments which do not attack former arguments (weak arguments). The former
type typically occurs in a debate if one tries to strengthen the own point of view via
rebutting the opponents arguments. Note that weak expansions seem to be more
an academic exercise than a task with practical relevance with regard to real-world
argumentation. However, they do play a decisive role in the context of splittings
[Baumann, 2011; Baumann et al., 2011; Baroni et al., 2018b].

Consider the formal definition of the discussed types of expansions.

Definition 2.6. An AF G is an expansion of AF F = (A, R) (for short, F 
E G) iff
G = (A ∪ B, R ∪ S) for some (maybe empty) sets B and S, s.t. A∩B = R∩S = ∅.
An expansion is called

1. normal (F 
N G) iff ∀ab ((a, b) ∈ S → a ∈ B ∨ b ∈ B),

2. strong (F 
SG) iff F 
N G and ∀ab ((a, b) ∈ S → ¬(a ∈ A ∧ b ∈ B)),

3. weak (F 
W G) iff F 
N G and ∀ab ((a, b) ∈ S → ¬(a ∈ B ∧ b ∈ A)),
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4. local (F 
LG) iff B = ∅.

Example 2.7. Consider the following simple AF F. The presented AFs FX rep-
resent examples for F 
X FX . This means, FN is a normal expansion of F. Note
that grey-highlighted arguments or attacks represent added information.

aF : b aFE : b

c d

aFN : b

c d

aFS : b

c d

aFW : b

c d

aFL : b

Figure 2: Different kinds of expansions

The natural counter-parts to expansions are so-called deletions where no fur-
ther arguments and attacks are added [Boella et al., 2009a; Bisquert et al., 2011;
Baumann, 2014a]. We consider two sub-classes of deletions representing the inverse
operations to normal and local expansions, namely normal and local deletions. Nor-
mal deletions retract arguments and their corresponding attacks. Such a kind of
structural change occurs in the instantiation-based context if we delete information
from the underlying knowledge base. Changing to a more restrictive notion of attack
corresponds to a local deletion where only attacks are discarded.

In order to present the precise formal meaning of deletions we have to introduce
some operations on directed graphs first. First, we use F � H for the pointwise
union of two AFs. In Definition 2.8, such an union is used in order to represent the
addition of information (encoded in H ) to an initial AF (F). Secondly, the restriction
of F = (A, R) to a set B ⊆ A abbreviated as F |B is given via (B, R ∩ (B × B)).

Definition 2.8. Given an AF F = (A, R), a set of arguments B and a set of attacks
S as well as a further AF H. The AF

G = (F \ [B, S]) �H :=
(
(A, R \ S)|A\B

)
�H

is called an update of F (for short, F �U G). An update is called a

1. deletion (F �D G) iff H = (∅, ∅),
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2. normal deletion (F �ND G) iff F �D G and S = ∅,
3. local deletion (F �LD G) iff F �D G and B = ∅.
Let us take a closer look at the definition of G = (F \ [B, S]) � H . The AF

H plays the role of added information, i.e. it contains new arguments and attacks.
Consequently, for all kind of deletions we have H = (∅, ∅) which leaves us with
G = F \ [B, S]. The set B contains arguments which have to be deleted. Since
attacks depend on arguments, we have to delete the attacks which involve arguments
from B too. This operation is formally captured by the restriction of F to A \ B.
Furthermore, the set S contains particular attacks which have to be deleted. This
means, the pair [B, S] does not necessarily have to be an AF. Therefore we use [B, S]
instead of (B, S). If clear from context we use B and S instead of [B, ∅] or [∅, S], i.e.
we simply write F \B as well as F \S for normal or local deletions, respectively. Note
that the different kinds of expansion presented in Definition 2.6 can be captured by
setting B = S = ∅. Deletions and expansions are dual concepts: F 
E G if and
only iff G �D F , and similarly for the normal or local versions.

Example 2.9. The AF F represents the initial situation. An update as well as
arbitrary, normal or local deletion of it are given by FU , FD, FND and FLD. Grey-
highlighted arguments or attacks represent added information in contrast to dotted
arguments and attacks which represent deleted objects.2 More formally, in accor-
dance with Definition 2.8 we have that FU = (F \ [B, S]) � H, FD = F \ [B, S],
FND = F \ B, FLD = F \ S where the set of arguments B = {c}, the set of attacks
S = {(b, a)} and the AF H = ({b, d, e, f}, {(d, b), (e, f), (f, d)}).

aF : b

c d

aFU : b

c d

e

f

aFD : b

c d

aFND : b

c d

aFLD : b

c d

Figure 3: An update and different kinds of deletions

2This convention will be used throughout the whole chapter.
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3 Enforcement

3.1 The General Setup

The starting point of any extension enforcement case is:

• an AF F ,

• a semantics σ,

• a certain desired set of arguments E, together with

• a reasoning, acceptance mode r, e.g. credulous, sceptical, non-empty sceptical,
covered, with a strict or non-strict goal achievement (cf. Section 2.2).

In addition, parameters indicating the way of achieving the enforcement can be
specified, namely:

• allowed types of structural changes like update, expansion and deletion (cf.
Section 2.2),

• allowed types of semantic changes, if any (cf. Section 3.2.4), and

• whether these changes would have to be minimal, and in which sense (cf.
Section 3.2.3).

For illustrative purposes let us assume that r stands for credulous acceptance.
Consequently, enforcement is needed if and only if E is not credulously accepted
w.r.t. σ in F , i.e. E /∈ cred(F , σ). This is why we often speak of the desired set of ar-
guments E since we want to fix the defect of non-acceptance. In order to achieve this
goal we have two main options, namely structural changes and/or semantic changes.
More precisely, we are looking for changes of AFs, from F to G, and/or semantics,
from σ to τ , s.t. E is credulously accepted w.r.t. τ in G, i.e. E ∈ cred(G, τ). The
way of how to perform the structural change is fixed in advance. For instance, one
may require that only local expansions of F are allowed, i.e. F 
L G. The same
applies to the semantic change. One may allow changes to any kind of semantics
or to admissibility-based ones only. Another option would be to completely forbid
semantic changes, i.e. τ = σ. In the following definition, we call a modification type
M ⊆ F × F a relation such that (F ,G) ∈ M iff, when F is an initial AF, then G
is a possible result of modifying F . For instance, M = 
L means that only local
expansions are authorized.

Consider the following formal definition of an enforcement.
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Definition 3.1. Given two AFs F and G, two semantics σ and τ , a modification
type M ⊆ F × F , a set of argument E, and a reasoning mode r. A pair (G, τ) is
called an (F , σ, M, r)-enforcement of E if

1. (F ,G) ∈ M and

2. E ∈ r(G, τ).

Moreover, we call G the τ -enforcing AF and we say that E is τ -enforced by G.

The different kinds of expansions and deletions presented in Definitions 2.6, 2.8
are captured by setting M ∈ {
E , 
N , 
S , 
W , 
L, �U , �D, �ND, �LD}. Note that
F 
N G can be equivalently rewritten as (F ,G) ∈ 
N since 
N is formally a binary
relation over F , i.e. 
N ⊆ F × F . Whenever F , σ, M and r are clear from context
we simply speak of enforcements of E. If the set in question is strictly accepted
we speak about a strict enforcement (for instance, r = covs), otherwise non-strict
(for instance, r = cov). Moreover, we distinguish between conservative (σ = τ)
and liberal enforcements (σ 	= τ). The latter may be interpreted as a change of
proof standard or paradigm shift. Imagine a judicial proceeding. Here it is vitally
important whether you are accused on the base of criminal or civil law. The required
evidence is different and hence the acceptable sets of arguments differ.

Consider the following two examples taken from [Baumann and Brewka, 2010].

Example 3.2 (liberal, strict). Given F as presented below, σ = stb, M = �U ,
r = covs and the desired set E = {a1, a3}.

a1 a2 a3 a4 a5

Since stb(F) = {{a1, a4}} we have E /∈ covs(stb,F). How to enforce E? De-
fine an enforcement (G, τ) of E with F = G and τ = pr. Note that pr(G) =
{{a1, a3}, {a1, a4}} justifies the claim because E ∈ covs(G, pr) holds. The consid-
ered enforcement is strict and liberal and F is the pr-enforcing AF.

Example 3.3 (conservative, non-strict). Given σ = gr, M = 
S, r = cov, E =
{a2} and F = ({a1, a2, a3} , {(a1, a2), (a2, a1), (a2, a3)}) as presented below.

a1 a2 a3b1
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Note that gr(F) = {∅}. Hence, E /∈ cov(gr ,F). In this example we allow
strong expansions only. Is it possible to enforce E? The answer is “yes". Consider
the enforcement (G, τ) of E with G defined as depicted above and τ = σ. Since
gr(G) = {{b1, a2}} we deduce E ∈ cov(G, gr). The considered enforcement is non-
strict and conservative and G is the gr-enforcing AF.

3.2 Extension Enforcement with Structural Change

We start with a review of one of the most prominent enforcement operators in the
literature, named extension enforcement [Baumann and Brewka, 2010; Baumann,
2012b; Coste-Marquis et al., 2015; Doutre and Mailly, 2017b; Wallner et al., 2017;
Haret et al., 2018]. Extension enforcement refers to a family of enforcement operators
that all deal with covered acceptance, i.e., the enforcement goal is to modify a given
AF such that a desired set of arguments becomes an extension, or becomes part of
an extension, under a semantics. Both strict and non-strict variants were studied.

The main distinguishing aspect of various extension enforcement operations is
what kind of modification type is permitted. Concretely, we look at extension en-
forcement allowing only expansions (Section 3.2.1), permitting only local modifica-
tions (Section 3.2.2), i.e., changing the attack structure, restricting change to be
minimal (Section 3.2.3), and changing semantics (Section 3.2.4).

3.2.1 Expansion-based enforcement

In this section we consider conservative (non-)strict enforcements w.r.t. covered
reasoning mode under different forms of expansions. More precisely, for a given
AF F = (A, R), a semantics σ and a desired set of arguments E ⊆ A we look
at pairs (G, σ) being (F , σ, M, cov) enforcements of E. We allow M ∈ {
E , 
N ,

S , 
W }, i.e. arbitrary, normal, strong, and weak expansions are considered. In the
following, for the sake of brevity, we do not explicitly mention the covered acceptance
mode as well as the conservativeness.

We have already seen a case of non-strict extension enforcement under strong
expansions in Example 3.3. We now exemplify some properties of extension enforce-
ment under expansions.

Example 3.4. Let us consider an AF F = (A, R) with A = {a, b, c, d} and an attack
relation as shown in Figure 4. Say we want to enforce E = {b, d} to be part of an
admissible extension in a non-strict manner, and allowing arbitrary expansions. An
AF G that ad-enforces these constraints is shown, as well, in Figure 4. That is,
expanding by two arguments e and f and adding attacks (b, f), (f, d), and (e, c)
results in {e, b, d} ∈ ad(G), and thus E is non-strictly enforced to be part of an
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admissible extension by G. Note that adding the single attack (d, c) only wouldn’t
do the job since we are interested in non-strict enforcements. However, there are
many more ways to non-strictly enforce the desired set E. We encourage the reader
to find other witnessing ad-enforcing expansions.

a b c d

e

f

Figure 4: AF and expanded AF from Example 3.4

The preceding example illustrates the existence of enforcements. However, in
general, desired enforcements might not exist. Consider the following example.

Example 3.5. Consider again the AF F = (A, R) of Figure 4. We illustrate now
three different sources for the impossibility of enforcements.

1. Assume we aim to strictly ad-enforce E = {b, d} under normal expansions.
While non-strict enforcement of E was possible (cf. Example 3.4), strict en-
forcement is impossible under normal expansions. The intuition is that {b, d}
is not admissible in the original AF F (the attack from c to d is not defended)
and this fact remains true in any normal expansion G of F . The reason is
simply that any new attack in G involves at least one new argument and thus,
E can not defend d in G. However, E can be strictly enforced when allowing
arbitrary expansions, e.g. adding a defending attack (b, c) is an option.

2. Another reason for impossibility of enforcement occurs when considering en-
forcement of sets like {a, b} under any semantics σ that preserves conflict-
freeness, i.e. σ ⊆ cf . The reason is that {a, b} is conflicting in F and thus, it
remains conflicting regardless the considered type of expansion.

3. Even if the set E to be enforced is conflict-free and defends all its elements,
enforcement is, under specific semantics, not always possible. Consider the
aim to strictly co-enforce E = {c} under weak expansions. In F the singleton
E is not complete since it defends a and a /∈ E. Now, weak expansions do not
raise new attacks onto existing arguments which implies that former defense

14



Enforcement in Formal Argumentation

relations survive. Thus, for any weak expansion G of F we have E still defends
a preventing it from being complete in G.

The previous observations have been firstly formalized in [Baumann and Brewka,
2010, Proposition 1] and later considered further in [Coste-Marquis et al., 2015,
Proposition 1]. In the following we recall some results and generalize them to other
semantics considered in this article.

Proposition 3.6. Given an AF F = (A, R) and E ⊆ A.

• If E 	∈ ad(F ) and σ ⊆ ad, then there is no AF G strictly σ-enforcing E under
normal expansions.

• If E /∈ cf (F ) and σ ⊆ cf , then there is no AF G (non-)strictly σ-enforcing E
under arbitrary expansions.

• If E does not contain all defended arguments in F and σ ⊆ co , then there is
no AF G that strictly σ-enforcing E under weak expansions.

• If σ ∈ {ad, cf ,na, stb} and E /∈ σ(F ), then there is no AF G strictly σ-
enforcing E under normal expansions.

Despite several cases being impossible to enforce, there are interesting conditions
under which an enforcement is always possible. As an illustration, consider the
following example.

Example 3.7. Say we desire to non-strictly ad-enforce E = {b, d} under strong
expansions. This means, we want E to be a strict subset of an admissible extension
of the expanded framework. An example AF G ad-enforcing {b, d} is shown in
Figure 5. Here the new argument e is added which defends both b and d. Since
{e} is admissible in G we obtain via the famous Fundamental Lemma [Dung, 1995,
Lemma 10] that {e, b, d} is admissible as desired.

a b c d

e

Figure 5: AF from Example 3.7

The observation from the example was generalized to further semantics [Bau-
mann and Brewka, 2010, Theorem 4]. The main construction method is to extend
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the initial framework with a new argument which attacks all undesired arguments.
We extend the already proven theorem to all semantics considered in this article.

Theorem 3.8. Given an AF F, a desired set E ∈ cf (F) and a semantics σ ∈
{ad, stb, pr , co, gr , id sst, eg,na, stg}. There is a strong expansion G of F non-strictly
σ-enforcing E.

Since strong expansions are particular cases of normal expansions as well as
arbitrary expansions, we may state the following corollary.

Corollary 3.9. Given an AF F, a desired set E ∈ cf (F) and a semantics σ ∈
{ad, stb, pr , co, gr , id sst, eg,na, stg}. There are arbitrary as well as normal expan-
sions G of F non-strictly σ-enforcing E.

What about local expansions? Is it possible to (non-)strictly enforce a desired
set E with local manipulations only? For most of the existing semantics we may act
as follows: given the conflict-freeness of E we attack all remaining arguments first
(this is sufficient for σ ∈ {ad, stb, pr , co, sst,na, stg}) and secondly, add self-loops to
the remaining arguments (we additionally cover σ ∈ {id, eg}).
Theorem 3.10. Given an AF F, a desired set E ∈ cf (F) and a semantics σ ∈
{ad, stb, pr , co, id sst, eg,na, stg}. There is a local expansion G of F strictly σ-
enforcing E.

Note that grounded semantics is not included since it requires unattacked argu-
ments which can not be “produced" with the help of local expansions. However, if
there is an unattacked argument in the desired set E, then this unattacked argument
can be used to attack all the arguments outside the directed set, leading to the strict
gr-enforcement of E. Any unattacked argument in the AF can have a similar role
for non-strict enforcement.

Theorem 3.11. Given an AF F and a desired set E ∈ cf (F), if there is an
unattacked argument a ∈ E (respectively a ∈ A), then there is a local expansion
G of F strictly (respectively non-strictly) enforcing E under the grounded seman-
tics.

Let us turn now to a different aspect of enforcing, namely how exactly existing σ-
extensions may change when expanding an AF. In general, the change is very much
non-monotone: this means, arguments accepted earlier may become unaccepted,
others become accepted; the number of extensions may shrink or increase, depending
on the new arguments. For instance, it is easy to verify that we obtain a total
collapse of stable extensions if we revise an AF by adding a self-defeating argument.
Nevertheless, there are a few exceptions as illustrated in the following example taken
from [Baumann, 2014b, Example 3.11]
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Example 3.12. Consider the weak expansion G of F as depicted below. In Exam-
ple 2.3 we already observed that pr(F) = {{e}, {f}} = {E1, E2}.

cb

a d e f n m

For the weak expansion G we find pr(G) = {E1 ∪ {n}, E1 ∪ {m}, E2 ∪ {m}}.
Consequently, the following interrelations hold:

1. the number of extensions increased

2. every old belief set is contained in a new one

3. every new belief set is the union of an old one and a new argument

The previous example contrasts with the general observation that adding new
arguments and attacks may change the outcome of an AF in a nonmonotonic fashion.
Such a behaviour allows for reusing already computed extensions and has useful
implications w.r.t. justification states. The following theorem [Baumann, 2014b,
Theorem 3.2] shows that the class of weak expansions and semantics satisfying the
directionality principle guarantee monotonic evolvements. Roughly speaking, the
directionality criterion captures the idea that the evaluation of a certain argument
should only be affected by its attackers and the attackers of its attackers and so on
[Baroni and Giacomin, 2007].

Theorem 3.13. Given an AF F = (A, R) and a semantics σ satisfying direction-
ality, then for all weak expansions G = (B, S) of F we have:

1. |σ(F)| ≤ |σ(G)|, (cardinality)

2. ∀E ∈ σ(F) ∃E′ ∈ σ(G) ∃C ⊆ B \ A, s.t. E′ = E ∪ C and (subset)

3. ∀E′ ∈ σ(G) ∃E ∈ σ(F) ∃C ⊆ B \ A, s.t. E′ = E ∪ C. (representation)

It is well-known that admissible, complete, preferred, grounded and ideal se-
mantics satisfy directionality (cf. [van der Torre and Vesic, 2017] for an overview).
Having the above theorem at hand we obtain the following relations regarding ac-
ceptance modes stating that credulously, sceptically as well as covered accepted sets
persist.
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Proposition 3.14. Given an AF F = (A, R) and σ ∈ {ad, co, pr , gr , id}. For any
weak expansions G of F we have:

• cred(F, σ) ⊆ cred(G, σ),

• scep(F, σ) ⊆ scep(G, σ) and

• cov(F , ad) ⊆ cov(G, ad)

3.2.2 Attack-based enforcement: Argument-fixed and Local Expansion-
based Enforcement

We now turn to extension enforcement under a different kind of modifications to
a given AF. In contrast to the previous section on expansion-based enforcement
where expansion of the set of arguments and attacks, under certain conditions, was
presented, we here look at changes that do not modify the set of arguments, but
exclusively focus on updates of the attack structure.

Definition 3.15. Let F = (A, R) be an AF. We say that G is a local update of F,
denoted by F �L G, if there is an AF G ′ such that F 
L G ′ and G ′ �LD G.

In words, an AF G = (AG , RG) is a local update of F = (AF , RF ) if there is
an intermediate AF G ′ = (AG′ , RG′) that is a local expansion of F (i.e., AG′ = AF
and RF ⊆ RG′) and G is a local deletion of G ′ (i.e., AG′ = AG and RG′ ⊇ RG).
Put differently, G is a local update of F if the set of arguments stays the same, i.e.,
AG = AF , and the attack structure was changed arbitrarily: RG = (RF \ R) ∪ R′

for some R, R′ ⊆ AF × AF .
In this section we consider extension enforcement under local updates [Coste-

Marquis et al., 2015]. An intuition of a local update is that the arguments are
unmodified, but some new attacks are revealed (e.g., in presence of new informa-
tion), and some attacks are disputed and discarded (e.g., due to the defeasibility of
attacks). Modifying the attacks between existing arguments can also be seen as an
update of the preferences between arguments [Amgoud and Cayrol, 2002].3

Example 3.16. Let us look at the same AF F from the preceding section that we
used to exemplify expansion-based enforcement. We recall this AF in Figure 6a.

We begin with looking at enforcement of the set {b, d}. Say, we desire to have this
set of arguments being part of an admissible extension. In F the set {b, d} is conflict-
free but not admissible: the attack from c onto both b and d is not countered. A local

3Recall that in preference-based argumentation, the “success" of an attack (a, b) depends on the
fact that b is not preferred to a.
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a b c d a b c d

a b c d a b c d

(a) (b)

(c) (d)

Figure 6: Enforcement by local updates

update, in fact a local expansion, that enforces {b, d} to be part of an admissible
extension is shown in Figure 6b. An attack from b to c suffices to have {b, d} defend
both b and d.

A different case is exhibited by aiming to have {a, b} being admissible: this set
neither is conflict-free nor defends its arguments. A possible local update is shown in
Figure 6c that enforces {a, b} to be exactly an admissible extension, i.e., realizes strict
extension enforcement under local updates and admissibility. Here, the conflicts
between a and b are removed, to ensure conflict-freeness, and the attack from b to c
is added, to ensure defense.

Finally, consider strict enforcement of {c} under complete semantics. The set
{c} is admissible, yet defends a in F. A possible local update (local expansion) is
shown in Figure 6d. Here one attack from c to a ensures that {c} does not defend
a.

Inspection of the preceding example reveals that several impossible cases, when
requiring certain expansions (see previous section), are, in fact, possible under local
updates. This is no coincidence: enforcement under local updates is possible for all
main semantics of AFs: if E 	= ∅ is to be enforced, for a given AF F = (A, R) there
is the (trivial) local update G = (A, R′) with R′ = {(a, b) | a ∈ E, b ∈ A \ E} (i.e.,
in G, every argument in E is non-attacked, and every argument in A \ E is attacked
by all arguments in E). We have E ∈ gr(G), and since the graph structure of G is
acyclic4, most semantics coincide with the grounded semantics.

This observation is formalized next [Coste-Marquis et al., 2015, Proposition 4].

Proposition 3.17. Let F = (A, R) be an AF and E ⊆ A be a non-empty set of
4In the case of finite AFs, acyclicity corresponds to the well-foundedness property defined by

[Dung, 1995], which implies the coincidence of grounded, stable, preferred and complete semantics.
We also refer the reader to [Baroni et al., 2018a] for more details on this topic.
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arguments. There exists a local update G that enforces E (non-)strictly to be (part
of) a σ-extension, for all σ considered in this chapter.

Obviously, when E = ∅, it can always be non-strictly enforced with local updates,
since E is included in any set of arguments. It is also the case that E can be strictly
enforced with local update.5 Indeed, for a given AF F = (A, R) we can define the
(trivial) local update G = (A, R′) with R′ = {(a, a) | a ∈ A} (i.e., in G, every
argument is self-attacking). In this case, the empty set is the only conflict-free set,
and thus the only extension for most semantics.

We have seen that enforcing a set of arguments with local updates is possible
in general. Both the addition and the removal of attacks are necessary for this
results. Indeed, if only local expansions are possible (i.e. removing attacks is not
permitted), then a conflicting set E cannot be enforced under any semantics that
requires conflict-freeness. Similarly, local deletions are not sufficient for strictly
enforcing a set of arguments in all cases. As a matter of example, let us consider
again the AF F = (A, R) given at Figure 6a. The set {c} cannot be enforced as
a stable extensions by only deleting attacks: initially {c}⊕ = {b, c, d} 	= A, and
removing attacks cannot add arguments to the range of {c}.

3.2.3 Extension Enforcement and Minimal Change

Minimal change is an important topic in other domains of artificial intelligence,
like belief change [Alchourrón et al., 1985; Katsuno and Mendelzon, 1992]. In the
context of extension enforcement, the question asked is “how much effort will it cost
to perform the enforcement?". This effort is defined by [Baumann, 2012b] as the
number of attacks that are modified (i.e. either added or removed). Formally,

Definition 3.18. Given F = (A, R) and G = (A′, R′), the distance between F and
G is d(F ,G) = |(R \ R′) ∪ (R′ \ R)|.

In general, there may be several ways to enforce an extension, even for a fixed
type of modification. In that case, minimal change enforcement consists in choosing
one result that minimizes the distance d between the initial AF and the new one.

Example 3.19. Figure 7 presents two examples of strong expansions of an AF
F = (A, R), with A = {a, b, c, d, e} and R = {(b, a), (c, a), (d, b), (d, c), (e, d)}. This
AF has a single stable extension: stb(F) = {{b, c, e}}. Both expansions succeed
in non-strictly enforcing the set {a} as a stable extension. However, we observe a

5Except for the stable semantics, since the empty set can never be a stable extension of a
non-empty AF.
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difference in the number of attacks that have been added. The first one, F1 (on the
left side), adds two attacks, one from the new argument f1 to c, and another one
from f2 to b; it has a single stable extension stb(F1) = {{a, e, f1, f2}}. The second
expansion, F2 (on the right side), adds a single attack (f3, e), and it also has a single
stable extension: stb(F2) = {{a, d, f3}}. With d(F ,F1) = 2 and d(F ,F2) = 1, F2
seems to be a more desirable result.

ab

cde f1

f2F1 = ab

cde

f3F2 =

Figure 7: An example of (non-)minimal change

The question of minimal change in enforcement is studied in [Baumann, 2012b].
More specifically, it concerns the minimal change in non-strict enforcement based on
normal expansions, as well as the special cases of strong and weak expansions. To
do so, he defines the notion of characteristic of a set of arguments S, with respect
to an AF F and a modification type M ⊆ F × F . This characteristic corresponds
to the minimal distance between F and an AF G such that S is included in an
extension of G, and G is a possible result for the enforcement (i.e. (F ,G) ∈ M).
Strict enforcement can be considered as well [Doutre and Mailly, 2017b].

Definition 3.20. Given a semantics σ, a modification type M ⊆ F ×F , x ∈ {s, ns}
meaning strict or non-strict, and an AF F = (A, R), the (σ, M, x)-characteristic of
a set S ⊆ A is:

NF ,x
σ,M (S) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if x = s, S ∈ σ(F)
0 if x = ns, ∃S′ ∈ σ(F) s.t. S ⊆ S′

k if k = min({d(F ,G) | (F ,G) ∈ M, NG,x
σ,M (S) = 0})

+∞ otherwise

Intuitively, the characteristic of a set of arguments S is 0 if this set is already
(included in) an extension, k if k is the minimal distance between the initial AF and
some AF that enforces S, and +∞ if S cannot be enforced (under the the specified
semantics and modification type).

Then, [Baumann, 2012b] introduces the notion of value function, that gives a
constructive definition of how to compute the characteristic in a finite number of
steps, based on properties of the initial AF. We use V F ,x

σ,M (S) to denote this value
function.
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We start with the case of non-strict enforcement under weak expansion. Bau-
mann shows that for most semantics, either the set S is already included in an
extension, or it is impossible to enforce it with a weak expansion [Baumann, 2012b,
Theorem 6]. Formally,

Proposition 3.21. For σ ∈ {stb, ad} a semantics, F = (A, R) and AF and S ⊆ A a
set of arguments, the value function for non-strict enforcement under weak expansion
and the semantics σ is

V F ,ns
σ,�W

(S) =
{

0 if ∃S′ ∈ σ(F) s.t. S ⊆ S′

+∞ otherwise

Then, NF ,ns
stb,�W

(S) = V F ,ns
stb,�W

(S) and NF ,ns
σ,�W

(S) = V F ,ns
ad,�W

(S) for σ ∈ {ad, co, pr}.
Now, we turn to (non-strict) enforcement under strong expansion., i.e. we focus

on defining V F ,ns
σ,�S

(S). This case is slightly more involved than the previous one, and
it requires additional definitions.

Definition 3.22. Given F = (A, R) an AF and X ∈ cf (F),

• ad(F , X) = X� \ X⊕;

• stb(F , X) = A \ X⊕.

Intuitively, these sets correspond to the arguments that should be defeated in
order to make X an admissible (respectively stable) extension of F . They can
be used to define the value function for enforcement under strong expansion, for
σ ∈ {stb, ad}. Interestingly, these value functions can be used also for enforcing
a set of arguments under normal expansion or general expansions, as stated by
[Baumann, 2012b, Theorem 9].

Proposition 3.23. For σ ∈ {stb, ad} a semantics, F = (A, R) and AF and S ⊆
A a set of arguments, the value function for non-strict enforcement under strong
expansion and the semantics σ is

V F ,ns
σ,�S

(S) = min({|σ(F , S′)| | S ⊆ S′ and S′ ∈ cf (F)})

Then, NF ,ns
stb,M (S) = V F ,ns

stb,�S
(S) and NF ,ns

σ,M (S) = V F ,ns
σ,�S

(S) hold for σ ∈ {ad, co,
pr} and M ∈ {
E , 
N , 
S}.

This means that authorizing more kinds of modifications than the addition of
strong arguments is useless regarding the issue of minimal change.

Then, an interesting result [Baumann, 2012b, Proposition 11] states that en-
forcement is always possible if arbitrary updates are permitted, i.e. attacks can also
be deleted (contrary to expansions, where attacks can only be added).
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Proposition 3.24. For σ ∈ {stb, sst, pr , co, ad} and any F = (A, R),

NF ,ns
σ,U (S) ≤ |R ∩ (S × S)| + |A \ S|

Intuitively, it says that we can enforce S as (a subset of) an extension by making
it conflict-free (i.e. removing the attacks in R∩(S×S)) and attacking every argument
that is not in S (i.e. adding attacks from fresh arguments to arguments in A\S). This
finite upper bound guarantees that non-strict enforcement under arbitrary updates
is always possible. But a more precise evaluation of the characteristics is given by
this value function [Baumann, 2012b, Theorem 12]:

Proposition 3.25. For σ ∈ {stb, ad} a semantics, F = (A, R) and AF and S ⊆ A
a set of arguments, the value function for non-strict enforcement under arbitrary
updates and the semantics σ is

V F ,ns
σ,U (S) = min({|R ∩ (S′ × S′)| + |σ(F , S′)| | S ⊆ S′ ⊆ A}

with ad(F , S′) and stb(F , S′) as in Definition 3.22. Then, NF ,ns
stb,U (S) = V F ,ns

stb,U (S)
and NF ,ns

σ,U (S) = V F ,ns
σ,U (S) hold for σ ∈ {pr , co, ad}.

Finally, [Doutre and Mailly, 2017b] presents characteristics for enforcement under
local updates, i.e. when the set of arguments has to remain the same, but attacks
between them can be added or deleted. The results are reminiscent of the ones
described in this section.

3.2.4 Semantics-based Enforcement

Extension enforcement is usually defined as an operation where the target semantics
is given as an input. We call it conservative enforcement when the target semantics
is the same as the initial semantics, and liberal enforcement otherwise. On the con-
trary, [Doutre and Mailly, 2017b] proposes to generalize enforcement, by enhancing
operators with a set Σ of possible target semantics. Then, the chosen semantics
is the one that allows to enforce the set of arguments with minimal change on the
graph. More formally:

Definition 3.26. For F = (A, R) an AF, S ⊆ A the set of arguments to be enforced
and Σ a set of semantics, a strict (resp. non-strict) enforcement of S in F under a
given modification type M ⊆ F × F , is a pair (G, σ′) such that

1. (F ,G) ∈ M ;

2. σ′ ∈ Σ and S ∈ σ′(G) (resp. S ⊆ S′ ∈ σ′(G));
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3. ∀σ′′ ∈ Σ, V F ,x
σ′,M (S) ≤ V F ,x

σ′′,M (S) (with x ∈ {s, ns}).

This means that the new semantics is chosen in a way that guarantees that the
change on the graph is minimal. Since the characteristics can be the same for several
semantics σ′, additional criteria can be used in order to select the new semantics,
like the distance between σ′ and the initial semantics σ [Doutre and Mailly, 2017a].

Finally, we already mentioned that [Baumann and Brewka, 2010, Section 3.1]
discusses the tool of changing semantics in order to enforce a desired set. The
authors presented two involved impossibility theorems specifying properties of initial
extensions and desired sets, initial and target semantics as well as the considered type
of structural change. Regarding the semantic change we have that possible target
semantics were restricted to semantics satisfying well-known abstract criteria like
admissibility or reinstatement (cf. [van der Torre and Vesic, 2017] for an exhaustive
overview). The mentioned theorems show either limitations for exchanging accepted
arguments with formerly unaccepted ones (under normal expansions) or limitations
for eliminating arguments of existing extensions (under weak expansions).

3.3 Complexity and Algorithms

We review complexity of enforcement problems, in particular expansion-based en-
forcement, and enforcement based on local updates [Wallner et al., 2017; Coste-
Marquis et al., 2015].

In several cases enforcement is, computationally speaking, straightforward if the
task consists in checking whether there exists a modified AF that enforces a set
of arguments under certain parameters. For instance, extension enforcement under
normal expansions for admissible semantics is always possible if the set E to enforce
is conflict-free in the given AF (see Section 3.2.1). That is why we look at extension
enforcement that aims at minimizing the change induced by an enforcing AF. Con-
cretely, given an AF F = (A, R) we aim at finding an enforcing AF G = (A′, R′)
such that the distance d(F ,G) between them is minimal (see Definition 3.18).

Another important aspect for expansion-based enforcement is how many argu-
ments shall be added. That is, if G = (A′, R′) is an expansion of F = (A, R), how
to confine |A′| − |A|? This is important from a computational perspective, since
allowing for unbounded expansions may complicate computation. We consider here
only bounded expansions.

We define the computational problems next, for extension enforcement under
bounded expansions and local updates. For local updates no bound is needed, since
if the number of arguments |A| does not change, the number of modifications to R
is bounded quadratically by |A|.
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For studying complexity of problems that are inherently optimization problems,
such as enforcement when the goal is to find an enforcing AF with a minimum
number of modifications to the attack structure, there are several ways to formally
approach such problems. One standard way to reveal inherent complexities of opti-
mization problems is to consider a natural decision variant: for a given integer k ≥ 0,
we ask whether there is an enforcing AF with at most k many modifications. We
note that another way to study complexity of optimization problems is to consider
functional problems instead of decision problems, which is an approach that may
give more detailed complexity results (see, e.g., [Krentel, 1988]). However currently
no such analysis was carried out for enforcement.

First, we define a decision problem for extension enforcement under bounded
expansions.

Extension enforcement under bounded expansions
Instance: an AF F = (A, R), E ⊆ A, set A′, integer k ≥ 0, and a semantics
σ.
Question: Does there exist an expansion G = (A ∪ A′, R′) of F such that
∃E′ ∈ σ(G) with E ⊆ E′ and d(F ,G) ≤ k?

In more words, given an AF F , a set E ⊆ A of arguments to enforce, a set of
arguments A′, an integer k ≥ 0 and a semantics σ, the task is to decide whether
there exists an expansion G of F that enforces E non-strictly under σ, and, more-
over, makes at most k many modifications to the attack structure. Note that the
expansion G is bounded in the sense that the expanded arguments are already given
beforehand, i.e., G has A ∪ A′ as its arguments. The above definition gives a de-
cision problem for non-strict enforcement. As before, we define strict enforcement
analogously by replacing ∃E′ ∈ σ(G) and E ⊆ E′ with E ∈ σ(G).

Next, we look at a decision problem variant for extension enforcement under
local updates.

Extension enforcement under local updates
Instance: an AF F = (A, R), E ⊆ A, integer k ≥ 0, and a semantics σ.
Question: Does there exist a local update G = (A, R′) of F such that ∃E′ ∈
σ(G) with E ⊆ E′ and d(F ,G) ≤ k?

Strict enforcement is again defined as above.
We consider as fragments of these two enforcement problems those sub problems

where a semantics is fixed, i.e., extension enforcement under bounded expansions
(local updates) under a specific semantics σ, instead of having σ as part of the
instance.
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Finally, before delving into complexity results from the literature, we provide
background on complexity classes used here, and related problems useful to under-
standing complexity of enforcement. For thorough introductions to computational
complexity see, e.g., [Arora and Barak, 2009; Papadimitriou, 2007]. We assume that
the reader is familiar with concepts like complexity classes, reductions, complete-
ness, and oracles. Complexity class P is composed of all decision problems which
can be decided in polynomial time by a deterministic algorithm. Class NP contains
all decision problems that can be decided by a non-deterministic polynomial time
algorithm. Class coNP contains all problems that are complementary to a problem
in NP. Class ΣP

2 contains all decision problems which can be decided via a non-
deterministic polynomial time algorithm that can access an NP oracle. Class ΠP

2
contains all problems that are complementary to some problem in ΣP

2 .
Two reasoning tasks on AFs in a static, i.e., non-dynamic setting, are useful to

understand the complexity of enforcement. The first one is usually referred to as
the Verification problem.

Verification
Instance: an AF F = (A, R), E ⊆ A, and a semantics σ.
Question: Does E ∈ σ(F) hold?

That is, the task is to check whether a given set E is a σ-extension. Another
useful problem is credulous acceptance of arguments in AFs.

Credulous acceptance
Instance: an AF F = (A, R), a ∈ A, and a semantics σ.
Question: Does {a} ∈ cred(F , σ) hold?

In words, an argument is credulously accepted in case there is a σ-extension of
a given AF that contains the queried argument.

Complexity of verification and credulous acceptance was established; we sum-
marize complexity results for the main semantics in Table 2.

3.3.1 Complexity of Enforcement

We illustrate two ways of showing complexity bounds that turn out to be tight in
many, but not all, cases.

For an upper bound (i.e. membership in a complexity class), consider the fol-
lowing non-deterministic algorithm (sketch) given an AF F , a set E to enforce, and
a semantics σ:

1. non-deterministically construct an AF G = (A′, R′) that is a bounded expan-
sion (or local update) of F ;
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semantics σ verification credulous acceptance
cf in P in P
ad in P NP-complete
co in P NP-complete
stb in P NP-complete
pr coNP-complete NP-complete

Table 2: Complexity of verification and credulous reasoning in AFs (for an overview
see [Dvořák and Dunne, 2018])

2. non-deterministically construct an E′ ⊆ A′ (for non-strict enforcement only);
and

3. verify whether E′ ∈ σ(G) and E ⊆ E′ (for non-strict enforcement) or E ∈ σ(G)
(for strict enforcement).

In case the last step succeeds, then it holds that G enforces E to be a σ-extensions
(non-)strictly. As can be seen from this algorithm sketch, a complexity upper bound
can be derived from the complexity of the verification problem under σ. Take σ = ad,
i.e., the verification problem under admissibility which is polynomial-time decidable.
It follows that extension enforcement under bounded expansions (resp. local updates)
is in NP under admissibility. The reason is that the above algorithm sketch directly
witnesses membership in NP: one (resp. two) non-deterministic construction(s) and
a check in polynomial time show membership for σ = ad. In the non-deterministic
construction of the above algorithm the bound on the expansion is crucial, otherwise
a non-bounded, and thus potentially non-polynomially bounded, structure would be
constructed. However, this does not imply that enforcement under non-bounded
expansions requires large expansions.

There is a similar approach to show lower bounds. Here we distinguish more
between strict and non-strict variants. In particular, extension enforcement under
bounded expansions (resp. local updates) and σ is C-hard

• if verification under σ is C-hard and the enforcement variant is strict; or

• if credulous acceptance under σ is C-hard and the enforcement variant is non-
strict.

The underlying reason is as follows. One can reduce the verification problem to strict
extension enforcement and the credulous acceptance problem to non-strict extension
enforcement.
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For the verification problem under σ, i.e., given an AF F and a set E, consider
the extension strict enforcement problem under σ with F , E, and k = 0 as input
(and A′ = ∅ for expansion-based). Then we are not allowed to make modifications
to F , and, therefore, F enforces E to be a σ-extension iff E ∈ σ(F) iff this is a
positive instance of the verification problem.

Similarly, the credulous acceptance problem under σ, with F and an argument
a as input, is reduced to an instance of non-strict extension enforcement with input
F , E = {a}, and k = 0 (and again A′ = ∅). It follows that F enforces E non-strictly
if there is an E′ ⊇ E with E′ ∈ σ(F), implying a positive instance of the credulous
acceptance problem.

In several cases the two approaches to show upper and lower bounds yield tight
bounds. However, there are notable exceptions.

Let us look first at results obtained for enforcement under bounded expansions,
see Table 3. In this case only the non-strict variant was studied [Wallner et al.,
2017]. It can be observed that the complexity of this enforcement variant matches
complexity of credulous reasoning in static AFs, i.e., the above approaches to show
complexity bounds directly result in tight bounds. We remark that complexity of
enforcement under conflict-free sets was not presented in [Wallner et al., 2017], how-
ever it can be straightforwardly obtained: if the set is conflict-free then enforcement
is trivial (and can be checked in polynomial time by scanning the input AF), other-
wise, if the given set to enforce is conflicting, no expansion can remove such conflicts,
and enforcement is impossible. Since (by definition) any conflict-free set is included
in some naive extension, this result also holds for σ = na.

semantics σ non-strict
cf in P
na in P
ad NP-c
co NP-c
stb NP-c
pr NP-c

Table 3: Complexity of non-strict extension enforcement under bounded expansions
[Wallner et al., 2017]

Let us turn to complexity of enforcement under local update [Wallner et al., 2017;
Coste-Marquis et al., 2015], summarized in Table 4. We see that complexity of non-
strict enforcement, again, has the same complexity as credulous reasoning in static
AFs, except for grounded semantics. Before discussing grounded semantics, let us
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turn to strict enforcement first.

semantics σ strict non-strict
cf in P in P
na in P in P
ad in P NP-c
co NP-c NP-c
gr NP-c NP-c
stb in P NP-c
pr ΣP

2 -c NP-c
sst ΣP

2 -c ΣP
2 -c

stg coNP-hard and in ΣP
2 ΣP

2 -c

Table 4: Complexity of extension enforcement under local updates [Wallner et al.,
2017; Coste-Marquis et al., 2015]

To some extend surprising are the results for strict extension enforcement, which
diverge from non-strict enforcement. For instance, for both admissible and stable
semantics strict extension enforcement under local expansions is decidable in poly-
nomial time. The underlying reason is that if E is to be an admissible set (a stable
extension), then all conflicts inside the set have to be removed, and each attack
from outside countered (each argument outside attacked). The latter means that
one can choose an argument inside E to counter non-attacked attackers (to achieve
defense) or remove the incoming attack. In both cases, it is sufficient to make at
least one modification, however one modification is sufficient: adding an attack to
counter an attacker (removing an incoming attack might not be sufficient if there are
more incoming attacks). For stable semantics, similarly, one attack on unattacked
arguments outside E is both necessary and sufficient, only the origin in E is flexi-
ble. Overall, this procedure sketches a polynomial-time deterministic algorithm (one
can impose an ordering on arguments to make the choice of attacking arguments
deterministic).

Finally, let us look at grounded semantics, for which NP-completeness was es-
tablished for both non-strict and strict extension enforcement under local updates
and complete semantics for the strict variant. Recall that both verification and
credulous acceptance under grounded semantics is in P, and also verification for
complete semantics is in P (Table 2). This means, the lower bounds established
by the algorithms above do not result in tight bounds. The intuition behind this
“complexity jump” for the strict variant under complete and grounded semantics is
that when enforcing some set of arguments E to be complete, one has to be careful
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about what E defends. That is, enforcing E to be admissible is not the underlying
reason for NP hardness, but to avoid having arguments defended that one desires
to avoid being defended (as specified by strict enforcement, nothing outside the set
E may be defended by E). In brief, addition or removal of attacks can make E
admissible, but implying further arguments being defended. Finding an optimal as-
signment that accomplishes both having E admissible and nothing outside E being
defended by E faces non-deterministic choices. However, the hardness construction
to show NP-hardness is somewhat involved.

Finally, for grounded semantics and non-strict enforcement, the intuition for NP-
completeness is a bit more direct: there could be a place in the AF to modify such
that the grounded extension is significantly expanded and includes the desired E.
However, choosing an adequate place in such a way is not direct to find.

Further semantics have been analyzed in [Wallner et al., 2017].

3.3.2 Declarative Algorithms

Main approaches to compute optimal enforcing for AFs rely on declarative pro-
gramming paradigms based on constraints, in particular maximum Satisfiability
(MaxSAT) [Morgado et al., 2013], answer set programming (ASP) [Niemelä, 1999;
Gelfond and Lifschitz, 1988], and pseudo Boolean optimization (particularly integer
linear programming [Sierksma and Zwols, 2015]).

We present here some of the main ideas for algorithmic approaches to extension
enforcement, focusing on the MaxSAT approach [Wallner et al., 2017]. Enforcement
via pseudo Boolean optimization is presented in [Coste-Marquis et al., 2015], and via
ASP in [Niskanen et al., 2018]. Systems using the MaxSAT approach are presented
in [Niskanen et al., 2016b; Coste-Marquis et al., 2015]. We present here encodings
and an algorithm for some semantics, for further semantics and details we refer to
the original papers.

We briefly recall background on MaxSAT. A literal is either a positive Boolean
variable x or a negated Boolean variable ¬x. A clause is a disjunction of literals
l1 ∨ · · · ∨ ln and a propositional formula is in conjunctive normal form (CNF) if the
formula π = c1 ∧ · · · ∧ cm is a conjunction of clauses. Whenever convenient, we will
view clauses as a set of literals and a formula in CNF as a set of clauses.

A truth assignment τ assigns either true (1) or false (0) to the Boolean variables.
As usual, a truth assignment τ satisfies a variable x if τ(x) = 1. Satisfaction
is extended in the usual way to compound formulas, e.g., τ satisfies a literal l if
τ(x) = 1 and l = x or τ(x) = 0 and l = ¬x. A clause is satisfied by τ if at least one
literal of the clause is satisfied, and a formula in CNF is satisfied if each clause is
satisfied.
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An instance of the partial MaxSAT problem is a pair φ = (φh, φs) with both
φh and φs Boolean formulas in CNF (sets of clauses). The former is the set of
hard clauses, while the latter is the set of soft clauses. A truth assignment τ is a
solution to the partial MaxSAT instance if τ satisfies φh (the hard clauses). The
cost of τ w.r.t. the instance φ is cost(φ, τ) =

∑
c∈φs

1− τ(c), i.e., the number of soft
clauses not satisfied. A solution τ to φ is optimal if there is no solution τ ′ to φ with
cost(φ, τ ′) < cost(φ, τ). We refer to partial MaxSAT simply as MaxSAT.

We focus on an illustration of a MaxSAT approach to extension enforcement
on the variant with local updates. Encoding extension enforcement under local
updates can be achieved by encoding an AF, possible modifications, and semantics
in MaxSAT. Before delving into encoding this enforcement variant, we recall an
encoding of admissible semantics of static AFs similar as in [Besnard and Doutre,
2004]. Given an AF F = (A, R) we define

φcf (F) =
∧

(a,b)∈R

¬a ∨ ¬b.

We use here arguments as Boolean variables and vice versa. Satisfying truth assign-
ments of this formula correspond directly to conflict-free sets of F in the way that
E ∈ cf (F) iff τ(x) = 1 for x ∈ E and τ(y) = 0 if y /∈ E satisfies φcf . Admissibility
can be encoded as follows:

φad(F) = φcf (F) ∧
∧

a∈A

(a → (
∧

(b,a)∈R

(
∨

(c,b)∈R

c)))

In words, if an argument a is in an admissible set (true in a satisfying assignment)
then for each attacker b at least one defender c must be part of the admissible set
(true in the assignment), as well, which directly captures the definition of admissi-
bility.

Non-strict extension enforcement under local updates can be encoded by in-
cluding variables for attacks. We first focus on how to encode constraints for the
semantics, which we encode as hard clauses φh. For notation, for the encodings
of conflict-free sets and admissible extensions above we used φ, for enforcement
formulas we use ψ.

ψcf (F) =
∧

a,b∈A

(ra,b → (¬a ∨ ¬b))

In words, a new variable ra,b for each pair of arguments a, b is introduced denoting
whether there is an attack from a to b. That is, a truth assignment includes now an
assignment on the attacks, as well.
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Moving on to enforcement under admissibility, which we encode as

ψad(F) = ψcf (F) ∧
∧

a,b∈A

((a ∧ rb,a) →
∨

c∈A

(c ∧ rc,b)).

That is, if a is assigned to be true and there is an attack (b, a), then this attack has
to be defended against, by some c and the corresponding attack (c, b).

Let F = (A, R), E ⊆ A be given as an instance of the non-strict extension
enforcement problem under local updates and admissibility. Defining a MaxSAT
instance

φ = (ψad ∧
∧

a∈E

a, φs(F))

with
φs(F) =

∧
(a,b)∈R

ra,b ∧
∧

(a,b)/∈R,a,b∈A

¬ra,b

results in optimal truth assignments τ to φ corresponding to AFs locally updated
from an original AF F = (A, R) with a minimum number of modifications that
enforce S to be part of an admissible set. To see this, any solution to φ satisfies
the hard clauses, implying that a truth assignment satisfying ψad ∧ ∧

a∈E a assigns
to true all variables (arguments) in E and possibly more arguments, and further
assigns some of the attacks to be true (present in a modified AF) such that the
argument variables assigned to true form an admissible set, thus enforcing E.

For strict extension enforcement under local updates, more variables can be fixed,
since the set E to be enforced must be exactly a σ-extension, not just be part of
one. That is, we can focus on variables only for attacks, since the other variables
can be fixed (true for argument variables in E and false otherwise, i.e.

∧
a �∈E ¬a can

be added to the hard part of the MaxSAT instance).
For instance, strict enforcement under conflict-free sets can be encoded as follows.

ψs
cf (F) =

∧
a,b∈E

¬ra,b

In more words, there cannot be any attack in the set S to be enforced, all other
attacks remain unconstrained for conflict-free sets. Admissible extensions can be
encoded by

ψs
ad(F) = ψs

cf (F) ∧
∧

a∈E

∧
b∈A\E

(ra,b →
∨

c∈E

rc,b).

The MaxSAT instance is complete by setting

φ = (ψs
ad(F) ∧

∧
a∈E

a ∧
∧

a∈A\E

¬a, φs(F)).
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We proceed to algorithmic approaches for problems “beyond NP”, e.g., strict ex-
tension enforcement under local updates and preferred semantics. One approach to
such complex problems is to develop an algorithm that uses SAT solvers as subpro-
cedures, and possibly calls a SAT solver multiple times (i.e., an iterative SAT-based
procedure). We present an approach based (inspired by) the well-known CEGAR
approach [Clarke et al., 2004; Clarke et al., 2003] approach, where CEGAR stands
for counterexample guided abstraction refinement. We remark that the term CE-
GAR is not used unambigously in the literature, and in some communities the term
may refer to different concepts. Here, a CEGAR based algorithm works on an ab-
straction (approximation) of a solution space from which iteratively candidates are
drawn. Importantly, due to the approximation, some solutions may be spurious. A
SAT call determines whether a candidate is a solution or a spurious solution. In the
latter case, the spurious solution is a “counterexample” which is used to refine the
approximated solution space (removing as many as possible of the spurious solutions
from the space) and a next candidate is produced, until a solution is reached.

For strict extension enforcement under local updates and preferred semantics,
the solution space is approximated by considering initially strict extension enforce-
ment under local updates and admissible or complete semantics. It holds that if
an AF G enforces a set S strictly under preferred semantics, then G also enforces
S strictly under admissible or complete semantics (since a preferred extension is
complete and admissible). However, importantly, optimality is not guaranteed this
way: an optimal solution to strict extension enforcement under local updates and
preferred semantics might not be an optimal solution AF for admissible or complete
semantics (since less modifications might be sufficient for admissible or complete se-
mantics, but not for preferred semantics). Nevertheless, strict extension enforcement
under complete or admissible semantics can act as an approximation. We focus for
illustration on admissible semantics here.

The CEGAR-style algorithm is presented as Algorithm 1. When the loop is
entered the first time, the MaxSAT call returns an optimal solution for strict exten-
sion enforcement under local updates and admissible semantics. To check whether
the AF extractable from the truth assignment τ is a solution also under preferred
semantics, we call a SAT solver to determine whether S is a preferred extension
in the candidate AF. If so, we return this AF. Otherwise, we found a counterex-
ample and the abstraction is refined. For correctness of the overall algorithm, it is
important that a refinement does not remove (all) optimal solutions AFs for strict
enforcement under local updates and preferred semantics. We refine here by re-
moving the solution found in the MaxSAT call, i.e., by removing exactly τ from
consideration when looking for the next candidate. This is a straightforward re-
finement. More sophisticated refinements are possible, but require care when de-
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Algorithm 1 Strict extension enforcement under local updates and preferred se-
mantics

1: ϕh ← ψ′
ad(F)

2: ϕs ← ∧
(a,b)∈R ra,b ∧ ∧

(a,b)/∈R,a,b∈A ¬ra,b

3: while true do
4: τ ← MaxSAT(ϕh, ϕs)
5: result ← SAT(Check(τ, S))
6: if result = unsatisfiable then return τ
7: else φh ← φh ∧ Refine(τ)
8: end while

signing them (e.g., in order not to violate correctness) [Niskanen and Järvisalo,
2020]. For instance, in some cases refinements can be based on foundational re-
sults whether changes on AFs induce changes on semantics [Boella et al., 2009b;
Boella et al., 2009a].

The definitions for Algorithm 1 are as follows. From a truth assignment τ we
can extract an AF by Extract(A, τ) = (A, R) with R = {(a, b) | τ(ra,b) = 1}. The
formula

Check(τ, E) = φad(F ′) ∧
∧

a∈S

a ∧
∨

b∈A\S

b

can be used for checking whether an admissible extension E is a preferred extension
of the modified AF: we guess a superset and check admissibility by the above sub
formulas. Refinement is specified via

Refine(τ) =
∨

(a,b)∈R′
¬ra,b ∨

∨
(a,b)∈(A×A)\R′

ra,b.

In words, we exclude in a subsequent search for a solution candidate exactly the
currently found candidate AF.

Example 3.27. Consider the AF F from Figure 8(a). That is, we have a chain
of attacked arguments from a to b to c, and c attacks both d and e. Further, f is
unattacked and does not attack an argument. The unique preferred extension of F is
{a, c, f}. Say we want to strictly enforce {b, f} to be exactly a preferred extension,
and use Algorithm 1 in order to achieve that. Initially, we solve, via MaxSAT,
strict enforcement under admissible semantics to have {b, f} being admissible. Say
the result is as shown in Figure 8(b), i.e., an attack from f to a is added, resulting
in {b, d, e, f} being the unique preferred extension, and {b, f} being admissible. As
the SAT solver call in the algorithm verifies, this AF candidate is not a solution,
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Figure 8: Example candidate AFs for Algorithm 1

since, e.g., {b, d, e, f} is an admissible superset of {b, f}, implying that {b, f} is
not preferred. We exclude, via the refinement step, this candidate AF, and call the
MaxSAT solver again. Note that the hard clauses refute the previous candidate AF
(i.e., any truth assignment simulating that AF does not satisfy the hard clauses).

In the next steps of the algorithm, all AFs that enforce {b, f} to be admissible
are checked which make at most one modification (in the above simple refinement).
After that it is verified that no modified AF with at most one modification (local
update) achieves the strict enforcement under preferred semantics.

For two possible modifications, say the MaxSAT call returns an assignment cor-
responding to the AF in Figure 8(c). Due to the definition of the MaxSAT instance,
we know that {b, f} is admissible in this candidate AF, which is like the previous
one, except for removal of the attack from b to c. Here {b, f} is again admissible,
and the unique preferred extension is {b, c, f}, which is again verified not to be a
solution. After checking all AFs that enforce {b, f} to be admissible with at most one
modification, the algorithm proceeds to at most three modifications, where a possible
solution can be found, as illustrated in Figure 8(d).
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4 Related Notions to Enforcement

In this section, we overview several notions that are closely related to the enforcement
setting described previously.

4.1 Update Using Logical Translations

YALLA (Yet Another Logic Language for Argumentation) [de Saint-Cyr et al., 2016]
is a first-order logical language that allows to describe argumentation frameworks
and their semantics. Then, operations related to enforcement can be defined through
belief change theory, especially belief update [Katsuno and Mendelzon, 1991].

Let us briefly describe the syntax and semantics of YALLA formulas. It is
assumed that argumentation frameworks are built from a given universe FU =
(AU , RU ). This means that for any AF F = (A, R), A ⊆ AU and R ⊆ RU ∩ (A × A).
We write k = |AU | the number of arguments in the universe. A YALLA formula (or
more precisely, YALLAU ) is a well-formed first order logic formula such that:

• the set of constant symbols is Vconst = {c⊥, c1, . . . , cp} where p = 2k − 1;

• the set of function symbols is Vfunc = {union2};
• the set of predicate symbols is Vpred = {on1, �2, ⊆2}.

The semantics of YALLA is defined through a structure associated with an AF
F = (A, R) built on the universe FU . The domain of this structure is D = 2AU , and
it is associated with an interpretation such that:

• the constant symbol c⊥ is associated with the empty set; each constant symbol
ci (i ∈ {1, . . . , 2k − 1}) is associated with a different non-empty element of D;

• the union function symbol is associated with the binary set-theoretic union
over D;

• the on predicate symbol is associated to the characterization function of subsets
of A, i.e. on(S) is true if and only if S ⊆ A;

• the predicate symbol � is associated with the set-attack relation induced by
R, i.e. S1 � S2 if and only if S1 ⊆ A, S2 ⊆ A, and ∃a1 ∈ S1, a2 ∈ S2 such that
(a1, a2) ∈ R;

• the predicate symbol ⊆ is associated with the classical inclusion relation over
D.
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Some axioms are added to the theory in order to guarantee the meaning of the
YALLA formulas. For instance, if a set S1 is included in A, then any subset of S1
is included in A as well: this is formalized by ∀x, y, (on(x) ∧ y ⊆ x) ⇒ on(y). A full
description of the YALLA axioms is out of the scope of this chapter; we refer the
interested reader to [de Saint-Cyr et al., 2016] for more details on this topic.

An argumentation framework F = (A, R) can be described with the formula

ΦF = on(A) ∧
∧

x∈AU \A

¬ on({x}) ∧
∧

(x,y)∈R

({x} � {y}) ∧
∧

(x,y)∈RU \R

¬({x} � {y})

Then, the principles underlying extension-based semantics can also be encoded
as YALLA formulas. Given the structure associated with an AF F = (A, R),

• the term t is conflict-free if the formula Φcf
t = on(t) ∧ ¬({t} � {t}) is valid;

• the term t1 defends the term t2, denoted by t1 ��t2, if the formula
∀t3, ((singl(t3)∧ t3 � t2) → (t1 � t3)) is valid, where singl(t) is a formula that is
valid if t is a singleton.

The combination of these formulas allows to characterize the admissible sets (i.e. the
terms that satisfy of Φad

t = Φcf
t ∧(t��t)). This is the basics of YALLA encoding for the

classical Dung’s semantics. Additional constraints in the formulas yield encodings
Φσ

t for the other semantics.
Then, belief update rationality postulates and operators [Katsuno and Mendel-

zon, 1991] are adapted to take into account the universe FU = (AU , RU ). A set
of authorized transitions (corresponding to what we call a modification type) is
T ⊆ ΓU × ΓU , where ΓU is the set of all AFs built on the universe FU . Then,
roughly speaking, an update operator �T is such that, if φ is a YALLA formula
characterizing an AF F , then for any formula α, φ �T α characterizes an AF G such
that (F ,G) ∈ T .6

Finally, enforcing an extension in an AF F can be achieved by updating the
formula ΦF :

ΦF �T Φσ
ci

characterizes the AFs that enforce Si in F , under the modification type T and the
semantics σ, where ci is the YALLA constant symbol that corresponds to the set of
arguments Si, and Φσ

t is valid if and only if the term t corresponds to a σ-extension
(similarly to the way Φcf

t , described previously, characterizes conflict-free sets).

6This is actually slightly more subtle than that, since YALLA formulas can characterize sets of
AFs.
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Another logic-based approach is that of [Doutre et al., 2014], which proposes to
translate the argumentation framework and the semantics into logic, to perform the
enforcement. In this case, the Dynamic Logic of Propositional Assignments (DL-
PA) by [Balbiani et al., 2013], is used to represent update operators as executable
programs. The piece of information which causes the update is a formula about
acceptance statuses, which should be satisfied by at least one extension of the result
(credulous enforcement of the formula) or by each extension of the result (sceptical
enforcement of the formula). Forbus’ update operator is used to change minimally
the attack relation such that the extensions of the new argumentation framework
comply with the expected enforcement. An extension of [Doutre et al., 2014] is
proposed by [Doutre et al., 2017], which considers also addition and removal of
arguments, and by applying the framework to an access control case. Then, [Doutre
et al., 2019] generalizes the previous two approaches.

Let us mention that these kinds of approaches based on a belief update opera-
tion allow richer forms of enforcement, since complex information about the sets of
arguments and the attacks in the AFs can be described. Also, other kinds of be-
lief change operations (e.g. belief revision [Katsuno and Mendelzon, 1992] or belief
contraction [Caridroit et al., 2017]) could be defined in these contexts. We refer
the interested reader to [Doutre and Mailly, 2018] for more details on the relation
between belief change and argumentation.

4.2 Status Enforcement

Status enforcement [Niskanen et al., 2016a] is defined as an operator where two
sets of arguments are provided as input, that must be respectively positively and
negatively enforced. This operation does not fit the framework described previously,
since it is supposed that there is only one set of arguments given in input, that
must have exactly one acceptance status with respect to some reasoning mode (see
Definition 3.1).

Formally, given an AF F = (A, R), P and N two subsets of A such that P ∩N =
∅, and σ a semantics,

• the AF G = (A, R′) is a credulous status enforcement of (P, N) in F with
respect to σ if P ⊆ ⋃

σ(G) and N ∩ ⋃
σ(G) = ∅;

• the AF G = (A, R′) is a sceptical status enforcement of (P, N) in F with
respect to σ if P ⊆ ⋂

σ(G) and N ∩ ⋂
σ(G) = ∅.

In words, status enforcement consists in finding G such that every argument in P
is credulously (respectively sceptically) accepted in G, and every argument in N is
not credulously (respectively sceptically) accepted in G.
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N = ∅ N unrestricted
semantics σ credulous sceptical credulous sceptical

cf in P trivial in P trivial
ad NP-c trivial ΣP

2 -c trivial
co NP-c NP-c ΣP

2 -c NP-c
gr NP-c NP-c NP-c NP-c
stb NP-c ΣP

2 -c ΣP
2 -c ΣP

2 -c
pr NP-c ΣP

3 -c ΣP
2 -c ΣP

3 -c

Table 5: Complexity of status enforcement

Complexity issues for optimal status enforcement, i.e. finding G such that
d(F ,G) = |(R\R′)∪(R′ \R)| is minimal, have been investigated by [Niskanen et al.,
2016a]. Similarly to complexity for optimal extension enforcement (Section 3.3), the
complexity results concern a decision problem related to the optimization problem
under consideration.

Credulous status enforcement
Instance: an AF F = (A, R), P ⊆ A and N ⊆ A s.t. P ∩ N = ∅, integer
k ≥ 0, and a semantics σ.
Question: Does there exist an AF G = (A, R′) such that P ⊆ ⋃

σ(G) and
N ∩ ⋃

σ(G) = ∅ and d(F ,G) ≤ k?

Sceptical status enforcement
Instance: an AF F = (A, R), P ⊆ A and N ⊆ A s.t. P ∩ N = ∅, integer
k ≥ 0, and a semantics σ.
Question: Does there exist an AF G = (A, R′) such that P ⊆ ⋂

σ(G) and
N ∩ ⋂

σ(G) = ∅ and d(F ,G) ≤ k?

Two cases are considered: the general case, and the restricted case where N = ∅
(i.e. only positive arguments must be enforced). Table 5 presents the complexity of
these problems for various semantics.

MaxSAT and CEGAR based algorithms in the same spirit as algorithms for
extension enforcement (Section 3.3.2) are also provided.

4.3 Control Argumentation Frameworks

Now we introduce a concept that can be interpreted as a variant of enforcement under
uncertain information. Control Argumentation Frameworks (CAFs) [Dimopoulos
et al., 2018] are AFs where arguments and attacks are split in three distinct parts:
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• the fixed part is made of arguments and attacks that are unquestionably in
the system;

• the uncertain part is made of arguments and attacks that may belong to the
system, as well as “undirected" attacks: in this case there is for sure a conflict
between arguments, but the actual direction is uncertain;

• the control part is made of arguments and attacks that may be used by the
agent.

The sets of fixed, uncertain and control arguments are disjoint, as well as the various
sets of attacks. Roughly speaking, the fixed part corresponds to certain knowledge,
i.e., elements that cannot be influenced neither by the agent nor by its environ-
ment (we use “environment" in a wide sense, it also includes other agents). On the
contrary, the uncertain part models the agent’s knowledge (and beliefs) about the
environment (and the other agents); in realistic scenarios, this knowledge is by na-
ture uncertain. Finally, the control part corresponds to the agent’s possible actions.
When the agent selects a subset of the control arguments and attacks (called a con-
figuration), then it defines a configured CAF, that is the same CAF where the control
arguments (and the associated attacks) that have not been selected have been re-
moved. The uncertain part of the CAF induces a set of completions, i.e. classical
AFs that are compatible with the knowledge encoded in the CAF. This notion is
borrowed from Incomplete Argumentation Frameworks [Coste-Marquis et al., 2007;
Baumeister et al., 2018a; Baumeister et al., 2018b].

The notion of controllability of a CAF, with respect to a given target set of
arguments, is directly related to enforcement. This target is defined as a subset of
the fixed arguments, that is expected to belong to each (or some) extension of each
completion. The agent needs to find a configuration that reaches this target. Let us
exemplify these concepts.

Example 4.1. Figure 9 describes a CAF, where the set of fixed arguments is
{f1, f2, f3, f4, f5}, the only uncertain argument is u (dashed square argument), and
the control arguments are {c1, c2, c3} (bold square arguments). The plain arrows rep-
resent fixed attacks (e.g. (f2, f1) is fixed); the dotted arrow (f5, f1) means that it is
uncertain whether f5 actually attacks f1 or not; the symmetric dashed arrow (u, f4)
means that there is for sure a conflict between u and f4, but the actual direction is
uncertain (it could be (u, f4), or (f4, u), or both at the same time). Finally, the bold
arrows represent control attacks, they are related to the control arguments that can
be selected by the agent.

We suppose that the target T = {f1} must belong to each stable extension. With-
out control arguments, this is not possible: there are, for instance, completions where
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f5 attacks f1, and in this case f1 is not defended. However, with the configuration
{c1, c3}, f1 will be defended against every possible threat coming from the uncertain
part: c1 defends f1 against f5, and c3 defends f1 against u (that is an undirect
threat, since u may defeat f4, making then f2 and f3 acceptable). Similarly, {c2}
is a valid configuration, since it allows to guarantee that {f1} is included in every
stable extension of every completion.

f1 f2

f3 f4

f5

u

c1

c2

c3

Figure 9: An example of control argumentation framework

Controlling a CAF can be seen as enforcing (non-strictly) an extension in pres-
ence of uncertainty. Intuitively, for an AF F = (A, R) and a set of arguments E to
be enforced through strong expansion, we can define a CAF that is controllable with
respect to E if and only if it is possible to enforce E in F . Indeed, the arguments
A and attacks R correspond to the fixed part of the CAF, while the uncertain part
is empty. Then, for each a ∈ A, a control argument ca with a control attack (ca, a)
is added. If E can be enforced in F , then the CAF is controllable (where the con-
figuration to be chosen consists in the set of control arguments that do not attack
E). On the opposite, if E cannot be enforced through a strong expansion, then the
CAF is not controllable: indeed, the CAF configured by a control configuration is a
strong expansion of F , thus E cannot be accepted in this configured CAF. We give
a simple example of this transformation.

Example 4.2. Let F = (A, R) be the AF given at Figure 10a. We consider the
grounded semantics: gr(F) = {∅}. Let E1 = {a} be a set of arguments to be
(non-strictly) enforced through a strong expansion. This enforcement is possible:
for instance, the AF G that is a strong expansion of F where a new argument
attacks b yields the expected result. Such an AF G corresponds to the CAF (given at
Figure 10b) after it has been configured by {cb} (i.e. the argument ca and the attack
(ca, a) are removed). So we observe that this CAF is controllable with respect to E1
and the grounded semantics. On the opposite, E2 = {a, b} cannot be enforced in F
with strong enforcement (since it is not conflict-free), and similarly there is no way
to configure the CAF with respect to E2 and the grounded semantics.
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a b ca a b cb

(a) (b)

Figure 10: Transforming an AF into a CAF

In the previous example, we show how non-strict enforcement under strong ex-
pansion can seen as controlling a CAF. But more generally, since control arguments
can attack each others, non-strict enforcement under a normal expansion can also
be “translated" in controlling a CAF. On the opposite, configuring a CAF for con-
trolling a target T can be interpreted as enforcing T in all the completions of the
CAF with the same normal expansion (where the added arguments and attacks are
chosen in the control part).

Let us also briefly mention that detailed complexity results and algorithms for
reasoning with CAFs have been provided in [Niskanen et al., 2020], and [Mailly,
2020] defines a weaker form of controllability, that relies on one completion instead
of the whole set.

Applying CAFs to Automated Negotiation Let us briefly described how en-
forcement (or more precisely, CAFs) has been used in a context of automated nego-
tiation [Dimopoulos et al., 2019]. The idea is to represent the (uncertain) knowledge
of an agent about her opponent with a CAF. Indeed, negotiation has more chance
to reach an agreement if agents have some knowledge about each other; however it
is unrealistic to consider that opponent modelling can be done without incomplete
or uncertain information. The theory of a negotiating agent is thus made of two
parts: a classical AF that represents the agent’s personal knowledge, and a CAF
that represents her knowledge about her opponent.

It is supposed that agents negotiate about a set of (mutually exclusive) offers
O. Each offer may be supported, in AF1 (the personal knowledge of agent 1), by
0, 1 or several practical arguments, i.e. arguments whose conclusions correspond to
actions or decisions. The other arguments are epistemic arguments, they support
knowledge and beliefs. The knowledge of agent 1 about agent 2 is represented in
CAF 2

1 . The fixed and uncertain parts are supposed to be built from the actual AF
of agent 2: the assumption is made that there can be uncertainty (represented in
the CAF), ignorance (some arguments or attacks of agent 2 may not appear in the
CAF at all), but no mistake (there is no attacks or arguments that appear in CAF 2

1
but not in the personal AF of agent 2). Finally, the control part of CAF 2

1 is made
of arguments and attacks chosen in AF1, that are supposed to be used by agent 1
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in order to make its target accepted. Similarly, AF2 is the personal knowledge of
agent 2, and CAF 1

2 represents the (uncertain) knowledge of agent 2 about agent 1.
Each agent selects its preferred offer o ∈ O according to its personal knowledge:

o has to be supported by a practical argument that is accepted in AF1; if several
offers can be chosen, an assumption is made that the agent has a preference ranking
over offers. When the preferred offer o of agent 1 is chosen, she uses her knowledge
about agent 2 in order to persuade her to accept o: agent 1 searches for a practical
argument in CAF 2

1 that supports o. If such an argument a exists, then three options
are possible:

• if a is accepted in each completion of CAF 2
1 without using any control argu-

ments, then agent 1 makes an offer to agent 2 (offer o, supported by argument
a);

• otherwise, if a is accepted with the use of some control arguments c1, . . . ,
ck, then agent 1 can again make an offer (offer o, supported by argument a,
that is accepted because of c1, . . . , ck);

• in the last case, a is not accepted even with control arguments, then agent 1
searches for another argument that supports offer o in CAF 2

1 .

In the first two cases, if agent 2 accepts the argument a (with, or without control
arguments), then the negotiation is a success: offer o is accepted. Otherwise, agent
2 gives to agent 1 the reasons why she rejects a (for instance, she knows some
arguments that agent 1 does not know). If agent 1 knows other arguments that
support o in CAF 2

1 , the process is repeated. Otherwise, this is the end of the round:
agents switch their roles, and now agent 2 will choose her preferred offer o′, and use
her CAF in order to persuade agent 1 to accept o′.

The whole process goes on, until either the agents agree on some offer (in that
case, the negotiation is a success), or they do not have available offers (the negotia-
tion fails).

Let us illustrate the process, with an example borrowed from [Dimopoulos et al.,
2019].

Example 4.3. Figure 11 describes the negotiation theories of two agents. More
precisely, the AFs AF1 and AF2 (respectively Figure 11a and Figure 11c) corre-
spond to the personal knowledge of (respectively) agent 1 and agent 2, while CAF 2

1
(Figure 11b) represents the (uncertain) knowledge of agent 1 about agent 2, and
vice-versa for CAF 1

2 (Figure 11d). We suppose that both agents use the stable se-
mantics for reasoning, and that there is one offer o, that is supported by arguments
x and y. Before starting the negotiation, agent 1 has no reason to accept the offer
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x
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e
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(a) (b)

(c) (d)

Figure 11: Initial theories of agents 1 and 2

o (since its supporting argument x is rejected in AF1), while agent 2 accepts o since
y is accepted in AF2. If agent 1 starts the negotiation, she has no offer to propose
(since there is no accepted argument in AF1 that supports some offer), so the token
has to go to agent 2.

Agent 2 can make an offer. The goal of agent 2 is to persuade agent 1 to accept
the offer o, using arguments that agent 1 already knows. This means that she needs
to make agent 1 modify her AF in order to accept x (since x is the only argument
that supports the offer o in CAF 1

2 ). This persuasion phase goes first through a
step that do not use the control part of the CAF: if x is accepted in the CAF with
no control argument, agent 2 can send to agent 1 the message “offer o, supported
by the accepted argument x". In the present example, this is not the case: there
are completions where x is rejected (for instance, the ones where the attack (b, x)
exists). So, in the next step, agent 2 searches for a control configuration that allows
to make x accepted in each completion. Here, the configuration is the full set of
control arguments {d, f}. Agent 2 can then send the message “offer o, supported by
the argument x, that is accepted because d attacks b and f attacks e".

Receiving this message triggers some updates in agent 1’s knowledge. First, she
can add the arguments d and f (as well as the attacks (d, b) and (f, e)) in CAF 2

1 .
Moreover, while argent b was initially uncertain in the CAF, it can now become
a fixed argument: since agent 2 sends a message about the argument b, it certainly
means that agent 2 knows this argument. Then, agent 1 can also add these arguments
and attacks in her AF. The updated AF1 and CAF 2

1 are shown at Figure 12. Since
in the update AF1, the argument x is accepted, agent 1 can stop the negotiation by
accepting the offer o.
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Let us suppose that agent 1 has, e.g., some argument i attacking d, then instead
of accepting the offer o, she sends the message “reject the offer, because i attacks d".
Then agent 2 updates her CAF, and the process continues as illustrated previously
until reaching the negotiation success (if some offer can be accepted by both agents) or
failure (if no offer can be accepted by both agents, even when exchanging arguments
for defending them).

x

b

e

kd f

y e

bd f

(a) (b)

Figure 12: The updated theory of agent 1

Experiments [Dimopoulos et al., 2019] have shown that control arguments and
attacks help to increase the agreement rate, even when the percentage of uncertainty
in CAFs is high.

4.4 Enforcement under Constraints

We have already seen several approaches to enforcement, and variants to enforce-
ment. Common to many approaches are restrictions on the allowed modifications,
such as allowing only expansions, local updates, other types of modifications, or
defining allowed modifications via formulas, such as in YALLA.

More broadly, one can impose constraints on enforcements. Such constraints
can have many different shapes or forms (expansions, deletions, specification as a
formula, etc.). In general, constraints can be very useful for applications of enforce-
ment operators. Going into a slightly different direction from before in this chapter,
consider the following example.

Example 4.4. Say we have knowledge about two arguments a and b, and we wish
to enforce non-acceptability of a, e.g., because argument a counters a desirable argu-
ment. An expansion by c and attack (c, a) does the trick. However, say, in addition,
that a is a sub argument of argument b, when inspecting the contents of the argu-
ments. In such a case it seems adequate to require that c attacks the super argument
of a, as well, i.e., we want also to add the attack (c, b).

As suggested by the example, in some situations we may be faced with circum-
stances that may require specific expansions, or rather ruling out certain expansions.
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For instance, only considering those expansions that satisfy the condition that if an
attack from some argument onto a is added, so must the same attacker also attack
b.

Such conditions are not directly captured by the main types of modifications rep-
resented in this chapter, but can be incorporated into enforcement, as well. In [Wall-
ner, 2020], several families of constraints are considered, and the survey [Doutre and
Mailly, 2018] discusses constraints of dynamics in argumentation, in general. We
refer the reader for details to these papers, but highlight a particular type of con-
straint: implications of presence of arguments and attacks. By allowing constraints
that take the form of implications, e.g., of the form mentioned above for attacks, one
can specify that attacks on sub arguments must “propagate” to super arguments,
which is present in many instances of formal approaches to structured argumenta-
tion [Cyras et al., 2018; Modgil and Prakken, 2018].

4.5 Other related works

Beside extension enforcement, adding or removing arguments or attacks to an AF
can be seen as another form of enforcement, on the structure of the AF. This relates
to dynamic aspects of argumentation. As already mentioned, [Boella et al., 2009a;
Cayrol et al., 2010] are among the first approaches that studied the changes implied
by such structural enforcements. Other similar approaches are detailed by [Doutre
and Mailly, 2018].

In [Ulbricht and Baumann, 2019] the authors studied the question of how to
repair an AF if nothing is credulously/sceptically accepted. More precisely, the
main aim is to restore consistency via removing certain (minimal) sets of arguments
or attacks. Note that enforcing a certain non-empty set can be seen as a special kind
of repairing given that we are faced with no credulously accepted arguments. The
notion of C-restricted semantics [Baumann et al., 2019] is related to enforcement
too. It can be shown that a set of arguments is a C-restricted extension if and only
if it can be (non-strictly) enforced with a restricted form of expansion.

Normal expansions of AFs have been used for other purposes related to enforce-
ment. For instance, [Booth et al., 2013] describes a framework where an agent’s
knowledge is represented by an AF F and a propositional formula φ that repre-
sents an integrity constraint about the complete labellings of the AF. The agent’s
knowledge is said to be inconsistent if none of the complete labellings satisfies the
constraint. Two approaches are proposed for restoring consistency. The first one is a
direct use of a normal expansion: the authors have proven that there exists a normal
expansion of F that is consistent with φ (under some minimal assumption about the
consistency of φ). The second approach also uses normal expansion, but only after
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a first step that consists in revising [Katsuno and Mendelzon, 1992] the complete
labellings of F by φ, in order to compute the so-called fallback beliefs of the agent.
Then, a normal expansion allows to obtain a new AF that is consistent with the
fallback beliefs. Contrary to the first approach (based only on an expansion), this
one guarantees that the agent’s complete labellings are as close as possible to the
initial complete labellings.

Quite recently, the inverse problem to extension enforcement was studied, namely
the problem of extension removal [Baumann and Brewka, 2019]. That is: given an
AF F and a set of extensions E , identify an AF H that is as close as possible to F but
has none of the extensions in E . In the same way as enforcement shifts revision to the
level of extensions, extension removal shifts contraction to the level of extensions.

The approach by [Dunne et al., 2015] aims at checking if a set E of sets of
arguments can be the set of extensions of any argumentation framework F with
respect to a given semantics σ. This property is named realizability of E with respect
to σ. Realizability can be seen as a form of enforcement, where a set of extensions
has to be enforced, and all the necessary structural changes on the argumentation
framework (nothing is known about beforehand) can be done to achieve this.

A further related approach to enforcement is that of learning AFs or synthesis
of AFs [Riveret and Governatori, 2016; Riveret, 2016; Niskanen et al., 2019]. In
brief, the aim is to construct an AF from certain information available. Different
from deterministic logical approaches that construct an AF from a knowledge base
(see structured argumentation approaches, e.g., in [Baroni et al., 2018b]), in AF
learning or synthesis the information available might not uniquely determine an AF.
In the AF synthesis problem [Niskanen et al., 2019], for instance, information about
the semantics is given, and the task is to construct an AF that as best as possible
matches the given semantic information. In this way, AF synthesis is related to
realizability (see above), as well.

5 Conclusion

This chapter has offered an overview of the notion of enforcement in abstract, formal
argumentation. A focus has been done on extension enforcement, on its general
characterization, and on how it can be achieved: the various changes that can be
applied to the structure of the argumentation framework, and/or to the semantics,
considering that these changes should be minimal. Results about the complexity
of enforcement, and algorithms, showing the feasibility of this approach, have also
been presented.

If a general context and a number of specific approaches have been described,
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many additional proposals exist and keep on being proposed, showing the liveliness
of the field. Applications of these formal approaches have also been outlined, and
they should be developed in the future.

Regarding future work, several lines of research appear intriguing. Regarding
formal foundations, we surveyed the state of the art, yet several directions are open,
such as considering further argumentation semantics and their effect on possibility,
impossibility, or (computational) cost of (optimal) enforcement. Moreover, different
types of modifications can be considered as well, reflecting different updates on the
given argumentation.

Beyond Dung’s classical argumentation framework, the notion of enforcement
can be defined and applied to any enriched argumentation framework, such as
value-based argumentation frameworks (see Chapter 5 [Atkinson and Bench-Capon,
2021]), or frameworks with higher-order bipolar interactions (see Chapter 1 [Cayrol
et al., 2021]), or with quantitative additions like probabilistic argumentation (see
Chapter 7 [Hunter et al., 2021]). The notion can also be extended to semantics
other than extension-based, for instance their labelling-based counterparts [Cami-
nada, 2006], or ranking-based semantics [Bonzon et al., 2016].

Chapter 4 [Baumeister et al., 2021] studies (among other notions) Incomplete
Argumentation Frameworks (IAFs), that are strongly related to CAFs described
in this Chapter. Moreover, the possibility of enforcing a set of arguments can be
intuitively associated with the notion of possible acceptance in IAFs.

Enforcement is also related to the notion of dialogue (see Chapter 9 [Black et al.,
2021]), where it can be put in practice, and to that of strategic argumentation (see
Chapter 10 [Governatori et al., 2021]). To go further, an empirical cognitive study
of enforcement might be conducted, as it has been done for other argumentation
notions (see Chapter 14 [Cerutti et al., 2021]).
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