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Abstract. This article defines a family of inference relations which aim at reasoning 
with inconsistent knowledge bases. These inference relations are defined out of 
inconsistency measures. We check under which con-ditions the new inference relations 
satisfy a series of properties for non-monotonic reasoning. We also show that they are 
paraconsistent when the corresponding inconsistency measures satisfy some rationality 
postu-lates. Besides, we show some dependencies and incompatibilities among some 
rationality postulates.
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1 Introduction

Inconsistency measures are intended to provide a measure of how inconsistent a 
knowledge base is. Informally speaking, an inconsistency measure is a function 
which assigns a non-negative real value to a knowledge base with the mean-
ing that larger values indicate a larger inconsistency. As pointed out in Bryson 
Brown’s article [3], an application of inconsistency measures is to induce para-
consistent inference relations, which are able to draw valuable information from 
inconsistent knowledge bases. Although many inconsistency measures have been 
proposed so far, there are few inference relations based on them. A drawback 
of such existing inference relations proposed in [3] is that they are restricted 
to particular inconsistency measures. It would be desirable to find an approach 
that works for a broader set of inconsistency measures of the existing literature. 
To the best of our knowledge, no such general approach exists yet.

It has long been known that a paraconsistent logic, such as LP [11], can 
be used to define an inconsistency measure [4,6,10]. In this article, we inves-
tigate the other way around: How to define a paraconsistent inference relation 
out of a given inconsistency measure. For a discussion on relationships between 
inconsistency measures and paraconsistent consequence, see [3]. Our idea is to 
investigate what happens, under an inconsistency measure I, when supplement-
ing a knowledge base with the negation of a formula. If I would assign a greater
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inconsistency degree to the knowledge base supplemented with the negation of
the formula than to the knowledge base itself, then it would mean somehow that
the knowledge base infers the formula. Regarding such an expected behaviour
also as a sufficient condition, a notion of inference induced from I appears.

A number of rationality postulates for inconsistency measures have been pro-
posed (e.g., [5,9,14]). A survey is provided in [15]. In this article, when an
inconsistency measure satisfies some rationality postulates, we will explore which
properties are satisfied by the inference relation induced from this measure.

Paper Outline. Section 2 introduces the new inference relations induced from
inconsistency measures. Section 3 (resp. Section 4) investigates structural prop-
erties (resp. KLM properties) enjoyed by these relations. Section 5 defines para-
consistency and investigates under which conditions the new inference relations
are paraconsistent. Section 6 shows dependencies and incompatibility for some
rationality postulates. Section 7 concludes and points out future work.

2 Inference Relations from Inconsistency Measures

Before introducing the new inference relations, we present some basic notions.
We consider a countable set of propositional atoms A. We use a, b, c, . . . to denote
atoms. The resulting logical language, using the connectives ¬, ∨, ∧, and, →, is
denoted L. We use Greek letters, ϕ,ψ, . . . to denote formulas of L.

We write K for the set of knowledge bases over L (where a knowledge base
K is a finite set of formulas of L, in symbols: K ⊆fin L). A minimal inconsistent
subset of a knowledge base K is an inconsistent K ′ ⊆ K such that all proper
subsets of K ′ are consistent. The set of minimal inconsistent subsets of K is
denoted by MI(K). The set of atoms occurring in K is denoted by Atoms(K).
An atomic injective substitution for K is an injection σ : Atoms(K) → A. Then
σ(ϕ) is the formula resulting from ϕ by replacing a ∈ Atoms(K) with σ(a)
simultaneously. We extend σ to an injective substitution for K = {ϕ1, . . . , ϕm}
with σ(K) = {σ(ϕ1), . . . , σ(ϕm)}.

Moreover, we write |= for the consequence relation of classical logic. As we
write ⊥ for falsum, the notation K |= ⊥ means that K is inconsistent. Logical
equivalence is denoted ≡, i.e., ϕ ≡ ψ means that ϕ |= ψ and ψ |= ϕ hold.
K ≡ K ′ stands for K |= ∧

K ′ and K ′ |= ∧
K. Lastly, a formula ϕ is free for

K iff for every consistent subset K ′ of K, K ′ ∪ {ϕ} 
|= ⊥. A formula ϕ is safe
for K iff Atoms(ϕ) ∩ Atoms(K) = ∅ and ϕ is free for K.

Definition 1 (Inconsistency measure). A function I : K → R
∞
≥0 is an

inconsistency measure [2] if it satisfies the following two conditions:

Consistency Null: I(K) = 0 iff K 
|= ⊥.
Variant Equality: If σ is an injective substitution then I(K) = I(σ(K)).

For example, the drastic inconsistency measure Id is a trivial measure that
distinguish only between consistent and inconsistent sets of formulas, formally,



Id(K) = 0 if K is consistent and 1 if K is inconsistent. IMI counts the number
of minimal inconsistent subsets, formally, IMI(K) = |MI(K)|.

We are now in the position to define an inference relation induced from an
inconsistency measure, according to the intuition introduced in Sect. 1. That is,
we are about to define K � ϕ as I(K ∪ {¬ϕ}) > I(K). However, we slightly
amend this in the actual definition below because we must take care of the special
case ¬ϕ ∈ K (which obviously gives I(K ∪ {¬ϕ}) = I(K) no matter what).

Definition 2 (Induced inference relations). Let I be an inconsistency mea-
sure. For any K ∈ K, the inference relation � induced from I is given by

K � ϕ iff I(K ∪ {¬ϕ}) > I(K\{¬ϕ}).

Lemma 1. Let I be an inconsistency measure.

K � ϕ iff

{
I(K ∪ {¬ϕ}) > I(K) if ¬ϕ 
∈ K

I(K) > I(K\{¬ϕ}) if ¬ϕ ∈ K

Lemma 2. K � ϕ iff K\{¬ϕ} � ϕ.

It is desirable that for any consistent knowledge base, � gives the same
consequences as classical logic. The following theorem guarantees this.

Theorem 1. Let I be an inconsistency measure. For all consistent K ∈ K,
K � ϕ iff K |= ϕ.

Proof. Take a consistent knowledge base K. (⇒) Suppose K � ϕ. By Defini-
tion 2, I(K ∪ {¬ϕ}) > I(K\{¬ϕ}). It is the case that I(K\{¬ϕ}) = 0, due
to Consistency Null and the consistency of K\{¬ϕ}. Hence I(K ∪ {¬ϕ}) > 0.
By Consistency Null, I(K ∪ {¬ϕ}) > 0 iff K ∪ {¬ϕ} is inconsistent. There-
fore, K |= ϕ. (⇐) Suppose K |= ϕ. Then K ∪ {¬ϕ} is inconsistent. Apply-
ing Consistency Null yields I(K ∪ {¬ϕ}) > 0 and I(K\{¬ϕ}) = 0. Hence,
I(K ∪ {¬ϕ}) > I(K\{¬ϕ}). That is, K � ϕ by Definition 2.

Before proceeding, we must pay special attention to a rationality postulate
called Free-Formula Independence [2], which can be written in two ways:

Set Union version: If ϕ is free for K then I(K ∪ {ϕ}) = I(K).
Set Difference version: If ϕ is free for K then I(K) = I(K\{ϕ}).

Lemma 3. The two versions of Free-formula Independence are equivalent.

Proof. The first case is ϕ ∈ K. We start to prove that set union version entails
set difference version. Assume that ϕ is free for K. Then ϕ is also free for K\{ϕ}.
By set union version, I((K\{ϕ})∪{ϕ}) = I(K\{ϕ}). That is, I(K) = I(K\{ϕ})
due to the assumption ϕ ∈ K. The converse is obvious as I(K ∪ {ϕ}) = I(K)
always holds due to the assumption ϕ ∈ K.

The second case is ϕ /∈ K. It is obvious that set union version entails set
difference version, since I(K) = I(K\{ϕ}) always holds due to the assumption



ϕ /∈ K. To prove the converse, we assume that ϕ is free for K. It suffices to
show that ϕ is also free for K ∪ {ϕ}. We assume for the contradiction that ϕ
is not free for K ∪ {ϕ}. Then there exists a consistent subset K1 of K ∪ {ϕ}
such that K1 ∪ {ϕ} |= ⊥ by the definition of free formulas. If ϕ ∈ K1, then we
have K1 |= ⊥ which contradicts the consistency of K1. If ϕ /∈ K1 (which entails
K1 ⊆ K), then the assumption K1 ∪ {ϕ} |= ⊥ contradicts the assumption that
ϕ is free for K. To sum up, ϕ is free for K ∪ {ϕ}. Immediately, by set difference
version, I(K ∪ {ϕ}) = I((K ∪ {ϕ})\{ϕ}). That is, I(K ∪ {ϕ}) = I(K).

Lemma 4. Let I satisfy Free-formula Independence. The following items hold:
(i) If ¬ϕ is free for K then K 
� ϕ. (ii) If ϕ is free for K then K 
� ¬ϕ.

Proof. (i) If ¬ϕ 
∈ K, apply Free-formula Independence, set union version, to
get I(K ∪ {¬ϕ}) = I(K) and Lemma 1 to obtain K 
� ϕ. If ¬ϕ ∈ K, apply
the set difference version to get I(K) = I(K\{¬ϕ}) and Lemma 1 to obtain
K 
� ϕ. Then, apply Lemma 3. (ii) Since ϕ is free for K, ¬¬ϕ is free for K. The
remaining proof is similar to (i).

3 Structural Properties Checking

Tarski [13] and Scott [12] worked out the idea of a logic as a closure operator,
i.e., an operator over sets of formulas which satisfies the so-called Extension,
Idempotence, and Isotony. Since we have formulated the induced consequence
as a relation �, they can be expressed, assuming compactness, as follows.

Reflexivity K � ϕ for any formula ϕ ∈ K.
Monotony If K � ϕ then K ∪ {ψ} � ϕ.
Cut If K � ϕ and K ∪ {ϕ} � ψ then K � ψ.

We now investigate the question of which properties of I guarantee � to
satisfy Reflexivity, Cut, and Monotony.1 We will use the following postulates of
the literature [1,15].

Penalty: For ϕ 
∈ K, if ϕ is not free for K then I(K ∪ {ϕ}) > I(K).
Monotony: If K ⊆ K ′ then I(K) ≤ I(K ′).
Rewriting: If ψ is a prenormal form2 of ϕ then I(K ∪ {ϕ}) = I(K ∪ {ψ}).

Proposition 1. Let I satisfy Penalty. Then, K � ϕ for all consistent ϕ ∈ K
(i.e., � satisfies Reflexivity except for inconsistent formulas).

1 Using Monotony, it is clear that Cut implies the finite general form: If K � ϕi for
i = 1, . . . , n and K ∪ {ϕ1, . . . , ϕn} � ψ then K � ψ. Similarly, Monotony gives the
finite general form: If K � ϕ then K ∪ {ψ1, . . . , ψn} � ϕ.

2 ψ is a prenormal form of ϕ if ψ results from ϕ by applying one or more of following
principles: commutativity, associativity and distribution for ∧ and ∨, De Morgan
laws, double negation equivalence.



Proof. Consider a consistent formula ϕ of K. Thus, ¬ϕ is not free for K due to
{ϕ} being a consistent subset of K such that supplementing it with ¬ϕ gives an
inconsistent set: {ϕ,¬ϕ} |= ⊥. Assume first ¬ϕ 
∈ K. By Penalty, I(K∪{¬ϕ}) >
I(K). Then, K � ϕ ensues by Lemma 1. Assume ¬ϕ ∈ K instead. Since ϕ is
in K and ϕ 
|= ⊥, it happens that {ϕ} is a consistent subset of K\{¬ϕ} (in
view of the trivial fact ϕ 
= ¬ϕ) such that supplementing it with ¬ϕ gives an
inconsistent set. That is, ¬ϕ is not free for K\{¬ϕ}. Also, ¬ϕ is not in K\{¬ϕ}.
Then, Penalty applies to give I((K\{¬ϕ}) ∪ {¬ϕ}) > I(K\{¬ϕ}). By Lemma
1, K\{¬ϕ} � ϕ. Applying Lemma 2, K � ϕ.

Please observe that for an inconsistent ϕ in K, having K � ϕ would amount
to I(K ∪ {¬ϕ}) > I(K), that is, supplementing K with a tautology ¬ϕ would
increase the inconsistency degree: No inconsistency measure can be expected to
do that. In other words, Proposition 1 is the most that can be obtained towards
� satisfying Reflexivity. The following example is an illustration of this.

Example 1. Consider the inconsistency measure IMI satisfying Penalty, and an
inconsistent knowledge base K = {a,¬a, a ∧ ¬a}. Let a be a consistent element
of K. It is easy to see that K � a, since 2 = IMI(K) > IMI(K\{¬a}) = 1.
However, for the inconsistent element a ∧ ¬a of K, we have K 
� a ∧ ¬a due to
IMI(K ∪ {¬(a ∧ ¬a)}) = IMI(K) = 2.

We now turn to Monotony. To start with, Proposition 2 (proved by applying
Lemma 2 twice) states that Monotony succeeds when ψ = ¬ϕ. A more substan-
tial result is offered by Proposition 3.

Proposition 2. If K � ϕ then K ∪ {¬ϕ} � ϕ.

Proposition 3. Let I satisfy Free-formula Independence. Let ψ be free for K ∪
{¬ϕ}. If K � ϕ then K ∪ {ψ} � ϕ.

Proof. (i) First, consider the case ¬ϕ 
∈ K. Assume that ψ is free for K ∪ {¬ϕ}.
In view of Free-formula Independence, I(K ∪ {¬ϕ} ∪ {ψ}) = I(K ∪ {¬ϕ}). Also
by Free-formula Independence, I(K) = I(K ∪ {ψ}) because ψ being free for
K ∪ {¬ϕ} entails ψ being free for K. However, Lemma 1 gives I(K ∪ {¬ϕ}) >
I(K) due to K � ϕ and ¬ϕ 
∈ K. Hence, I(K∪{ψ}∪{¬ϕ}) > I(K∪{ψ}). Should
ψ = ¬ϕ, a contradiction I(K ∪ {ψ}) > I(K ∪ {ψ}) would arise. Hence, ψ 
= ¬ϕ.
This together with ¬ϕ 
∈ K give ¬ϕ 
∈ K ∪ {ψ}. By Lemma 1, K ∪ {ψ} � ϕ.

(ii) Second, consider the case ¬ϕ ∈ K. Then K = K ∪ {¬ϕ}. Also, K � ϕ
gives K\{¬ϕ} � ϕ according to Lemma 2. Now, ¬ϕ 
∈ K\{¬ϕ}. Moreover, ψ
is free for (K\{¬ϕ}) ∪ {¬ϕ} because ψ is free for K. (i) can be applied, giving
(K\{¬ϕ}) ∪ {ψ} � ϕ. For ψ 
= ¬ϕ, Lemma 1 then gives I((K\{¬ϕ}) ∪ {ψ} ∪
{¬ϕ}) > I((K\{¬ϕ}) ∪ {ψ}). That is, I(K ∪ {ψ} ∪ {¬ϕ}) > I((K\{¬ϕ}) ∪
{ψ}). Therefore I(K ∪ {ψ} ∪ {¬ϕ}) > I((K ∪ {ψ})\{¬ϕ}) due to ψ 
= ¬ϕ. Per
Definition 2, K ∪{ψ} � ϕ. The remaining case ψ = ¬ϕ is obvious since ¬ϕ ∈ K.

Example 2. This example shows that Proposition 3 is the most that can be
obtained towards � satisfying Monotony. Consider the drastic measure Id sat-
isfying Free-Formula Independence. Let K = {a,¬a}, ϕ = a, and ψ = b ∧ ¬b.



Then ψ is not free for K ∪{¬ϕ}. Besides, we have K � ϕ. However, K ∪{ψ} 
� ϕ
since Id(K ∪ {ψ} ∪ {¬ϕ}) = Id((K ∪ {ψ})\{¬ϕ}) = 1.

Since Monotony seems to fail on a general count, we can look at a weaken-
ing known as Cautious Monotony [8]. To show under which conditions Cautious
Monotony and Cut are satisfied, we propose, from a technical point of view,
two postulates, Denial Elimination and Denial Preservation which are basi-
cally the converse of each other. Denial Preservation states that if a formula
increases the inconsistency of a knowledge base, then for its superset with the
same inconsistency, we may wish that the negation of the formula increases the
same inconsistency to the knowledge base and the superset.

Cautious Monotony. If K � ϕ and K � ψ then K ∪ {ψ} � ϕ.

Denial Elimination: Let K and ϕ be such that I(K ∪ {ϕ}) > I(K). For all
K ′ ⊇ K, if I(K ′ ∪ {¬ϕ}) = I(K ∪ {¬ϕ}) then I(K ′) = I(K).

Denial Preservation: Let K and ϕ be such that I(K ∪ {ϕ}) > I(K). For all
K′ ⊇ K, if I(K ′) = I(K) then I(K ′ ∪ {¬ϕ}) = I(K ∪ {¬ϕ}).

Proposition 4. If I satisfies Denial Elimination, Monotony, and Rewriting,
then � satisfies Cautious Monotony restricted to the case ¬ϕ 
∈ K and ¬ψ 
∈ K.

Proof. Let K � ϕ and K � ψ. Assume ¬ϕ 
∈ K. Firstly, consider ¬ϕ = ψ.
K � ϕ gives I(K ∪ {¬ϕ}) > I(K) by Lemma 1. That is, I(K ∪ {ψ} ∪ {¬ϕ}) >
I((K ∪ {ψ})\{¬ϕ}). Hence, K ∪ {ψ} � ϕ by Definition 2. Secondly, consider
¬ϕ 
= ψ. Then ¬ϕ /∈ K ∪ {ψ}. Assume further ¬ψ /∈ K. Applying Lemma 1 to
K � ψ yields I(K ∪ {¬ψ}) > I(K). Denial Elimination can be applied so that
I(K ∪ {¬ψ}) 
= I(K) entails I(K ∪ {¬ϕ} ∪ {¬¬ψ}) 
= I(K ∪ {¬¬ψ}). Then
by Rewriting, we have I(K ∪ {¬ϕ} ∪ {ψ}) 
= I(K ∪ {ψ}). Due to Monotony,
I(K ∪ {¬ϕ} ∪ {ψ}) > I(K ∪ {ψ}). Eventually, K ∪ {ψ} � ϕ by Lemma 1.

Proposition 5. If I satisfies Denial Preservation, Monotony, and Rewriting,
then � satisfies Cut restricted to the case ¬ϕ 
∈ K and ¬ψ 
∈ K.

Proof. The proof is similar to the converse of the proof of Proposition 4.

4 KLM Properties Checking

Kraus, Lehman and Magidor [7] introduced a series of possible properties for
inference relations. In this section, we explore under which conditions the fol-
lowing KLM properties can be satisfied. More specifically, when an inconsistency
measures satisfies some postulate(s), we show that the induced inference relation
satisfies some KLM properties restricted to compulsory extra condition(s).

Right Weakening. If K � ϕ and ϕ |= ψ then K � ψ.
Left Logical Equivalence. If K ≡ K ′ and K � ϕ, then K ′ � ϕ.



AND. If K � ϕ and K � ψ then K � ϕ ∧ ψ.
Rational Monotony. If K � ϕ and K 
� ¬ψ then K ∪ {ψ} � ϕ. 
Contraposition. If ϕ � ψ then ¬ψ � ¬ϕ.
OR. If K ∪ {ϕ} � ρ and K ∪ {ψ} � ρ then K ∪ {ϕ ∨ ψ} � ρ.

Below are the rationality postulates [1,15] we will consider in this section. 
Note that Antinomy Increase and Mutual Increase are new rationality postu-
lates. The former states that adding an inconsistent formula would increase the 
inconsistency degree. The latter states that when adding a formula ϕ increases 
the inconsistency amount of an inconsistent knowledge base K, we would expect 
that adding K also increases the inconsistency amount of ϕ.

Dominance: If ϕ /∈ K, ϕ 
|= ⊥ and ϕ |= ψ then I(K ∪ {ϕ}) ≥ I(K ∪ {ψ}). 
Disjunct Minimality: min(I(K ∪ {ϕ}), I(K ∪ {ψ})) ≤ I(K ∪ {ϕ ∨ ψ}). 
Disjunct Maximality: I(K ∪ {ϕ ∨ ψ}) ≤ max(I(K ∪ {ϕ}), I(K ∪ {ψ})). 
Antinomy Increase: Let |= ¬ϕ. If ϕ 
∈ K then I(K ∪ {ϕ}) > I(K).
Mutual Increase: If K |= ⊥ and I(K ∪{ϕ}) > I(K), then I(K ∪{ϕ}) > I({ϕ}).

Proposition 6. Let I satisfy Dominance. Then � satisfies Right Weakening 
restricted to the case  ¬ψ 
|= ⊥, ¬ψ /∈ K and ¬ϕ /∈ K.

Proof. Assume that K � ϕ and ϕ |= ψ. Then  ¬ψ |= ¬ϕ. By Dominance, we
have I(K ∪ {¬ψ}) ≥ I(K ∪ {¬ϕ}). We also have I(K ∪ {¬ϕ}) > I(K) by
Lemma 1. Immediately, I(K ∪ {¬ψ}) > I(K). That is, K � ψ by Lemma 1.

Example 3. The extra condition ¬ϕ 
∈ K of Proposition 6 is compulsory. Actu-
ally, consider Id satisfying Dominance. Let K = {a, ¬a}, ϕ = a and ψ = a ∨ b. It
follows that K � ϕ and ϕ |= ψ. But K 
� ψ since Id(K ∪ {¬ψ}) = Id(K) = 1.

Due to failure of the general form for Right Weakening, a special case is of 
interest: Is every tautology a consequence according to �?

Proposition 7. If I satisfies Antinomy Increase, K � ϕ for every tautology ϕ.

Proof. Take a tautology ϕ. Thus, ¬¬ϕ is also a tautology. Assume ¬ϕ /∈ K. By  
Antinomy Increase, I(K ∪ {¬ϕ}) > I(K). Hence, K � ϕ by Lemma 1. Assume
¬ϕ ∈ K. Then, ¬ϕ /∈ K\{¬ϕ}. Therefore, I((K\{¬ϕ}) ∪ {¬ϕ}) > I(K\{¬ϕ})
by Antinomy Increase. That is I(K) > I(K\{¬ϕ}). So K � ϕ by Lemma 1.

Using the previous proposition, we can get closer to Right Weakening.

Corollary 1. Let I satisfy Dominance and Antinomy Increase. Let ¬ψ /∈ K
and ¬ϕ /∈ K. If K � ϕ and ϕ |= ψ then K � ψ.

Proposition 8. Let K 
|= ⊥. Then � satisfies Left Logical Equivalence.

Proof. Apply Theorem 1 twice.

Example 4. The extra condition K 
|= ⊥ is necessary. Actually, consider IMI  , 
and two inconsistent knowledge bases K = {a, ¬a} and K ′ = {b, ¬b}. It is
obvious that K ≡ K ′ and K � a. However, K ′ 
� a as I(K ′ ∪{¬a}) = I(K ′) = 1.



Proposition 9. Let I satisfy Disjunct Minimality, Rewriting and Monotony.
Then � satisfies AND restricted to the case ¬ϕ 
∈ K and ¬ψ 
∈ K.

Proof. Assume that K � ϕ and K � ψ. Let ¬ϕ 
∈ K and ¬ψ 
∈ K. Then
I(K ∪{¬ϕ}) > I(K) and I(K ∪{¬ψ}) > I(K) by Lemma 1. Applying Disjunct
Minimality gives I(K ∪ {¬ϕ ∨ ¬ψ}) ≥ min(I(K ∪ {¬ϕ}), I(K ∪ {¬ψ})). Hence,
I(K∪{¬ϕ∨¬ψ}) > I(K). Applying Rewriting yields I(K∪{¬(ϕ∧ψ)}) > I(K).
Besides, applying Monotony gives I(K) ≥ I(K\{¬(ϕ∧ψ)}). Therefore, it is the
case that I(K ∪ {¬(ϕ ∧ ψ)}) > I(K\{¬(ϕ ∧ ψ)}). By Definition 2, K � ϕ ∧ ψ.

Example 5. Consider the drastic inconsistency measure Id satisfying Disjunct
Minimality, Rewriting and Monotony. Let K = {a,¬a} and ϕ = ψ = a. Then
¬ψ and ¬ϕ are formulas occurring in K. Besides, K � ϕ and K � ψ. But we
have K 
� ϕ ∧ ψ due to Id(K ∪ {¬(ϕ ∧ ψ)}) = Id(K\{¬(ϕ ∧ ψ)}) = 1.

The converse of the second item of Lemma 4 is untrue because I(K ∪{ψ}) =
I(K) is possible for ψ not free for K (see for instance the drastic inconsistency
measure). However, by Monotony, it is possible to use K 
� ¬ψ to infer I(K ∪
{ψ}) = I(K). That is the interest of the next lemma.

Lemma 5. Let I satisfy Monotony and Rewriting. Let K\{¬ϕ} 
� ¬ψ. If K � ϕ
then K ∪ {ψ} � ϕ.

Proof. First, consider ¬ϕ 
∈ K. The assumption becomes K 
� ¬ψ. Since the
codomain of I is linearly ordered, Lemma 1 gives I(K ∪ {¬¬ψ}) ≤ I(K). Using
Rewriting, I(K ∪ {ψ}) ≤ I(K). Applying Monotony gives I(K ∪ {ψ}) = I(K).
However, Lemma 1 gives I(K ∪ {¬ϕ}) > I(K) due to K � ϕ and ¬ϕ 
∈ K.
Therefore, I(K ∪ {¬ϕ}) > I(K ∪ {ψ}). By Monotony, I(K ∪ {¬ϕ} ∪ {ψ}) ≥
I(K ∪ {¬ϕ}) hence I(K ∪ {¬ϕ} ∪ {ψ}) > I(K ∪ {ψ}). Should ψ = ¬ϕ, a
contradiction I(K ∪ {ψ}) > I(K ∪ {ψ}) would arise. Hence, ψ 
= ¬ϕ. This
together with ¬ϕ 
∈ K give ¬ϕ 
∈ K ∪ {ψ}. By Lemma 1, K ∪ {ψ} � ϕ ensues.

Consider now ¬ϕ ∈ K. Since K\{¬ϕ} 
� ¬ψ, in view of Lemma 1, we
have I((K\{¬ϕ}) ∪ {¬¬ψ}) ≤ I(K\{¬ϕ}). However, I(K\{¬ϕ}) < I(K) by
Lemma 1 due to K � ϕ. Also, Monotony requires I(K) ≤ I(K ∪{ψ}). Combin-
ing, I((K\{¬ϕ}) ∪ {¬¬ψ}) < I(K ∪ {ψ}) ensues. By Rewriting, I((K\{¬ϕ}) ∪
{ψ}) < I(K ∪ {ψ}). Should ψ = ¬ϕ, a contradiction I(K ∪ {ψ}) < I(K ∪ {ψ})
would arise. Hence, ψ 
= ¬ϕ. Thus, I((K ∪{ψ})\{¬ϕ}) < I(K ∪{ψ}). Applying
Lemma 1, this gives K ∪ {ψ} � ϕ.

Proposition 10. Let I satisfy Monotony and Rewriting. Then � satisfies
Rational Monotony restricted to the case ¬ϕ 
∈ K.

Proof. Apply Lemma 5 for ¬ϕ 
∈ K in order to obtain that if K � ϕ and K 
� ¬ψ
then K ∪ {ψ} � ϕ.

Example 6. The extra condition ¬ϕ /∈ K in Proposition 10 is compulsory. Actu-
ally, consider Id which satisfies Monotony and Rewriting. Let K = {a,¬a,¬b},
ϕ = a and ψ = b. Trivially, ¬ϕ ∈ K. Also, K � ϕ since 1 = Id(K) >
Id(K\{¬ϕ}) = 0. On the other hand, K 
� ¬ψ since Id(K ∪{¬¬ψ}) = Id(K) =
1. However, K ∪ {ψ} 
� ϕ because Id(K ∪ {ψ}) = Id((K ∪ {ψ})\{¬ϕ}) = 1.



Proposition 11. Let I satisfy Rewriting and Mutual Increase. Then � satisfies
Contraposition restricted to the case ϕ |= ⊥, ¬ψ 
= ϕ and ψ 
= ¬ϕ.

Proof. Assume ϕ � ψ. Then I({ϕ} ∪ {¬ψ}) > I({ϕ}) by Lemma 1. Applying
Mutual Increase to {ϕ} and {¬ψ} yields I({ϕ} ∪ {¬ψ}) > I({¬ψ}). In view of
Rewriting, I({¬¬ϕ} ∪ {¬ψ}) > I({¬ψ}). Hence, ¬ψ � ¬ϕ by Lemma 1.

Example 7. The extra condition ¬ψ 
= ϕ is compulsory. Actually, consider Id

satisfying Rewriting and Mutual Increase. Let ¬ψ = ϕ = ¬(a ∨ ¬a). Then
ψ = a ∨ ¬a. ϕ � ψ since Id({ϕ} ∪ {¬ψ}) = 1 > 0 = Id({ϕ})\{¬ψ}). But
¬ψ 
� ¬ϕ since Id({¬ψ} ∪ {¬¬ϕ}) = Id({¬ψ}\{¬¬ϕ}) = 1.

A general result for OR is hard to obtain, since conditions satisfying OR
are very demanding. Assessing inconsistency of a disjunction is a delicate mat-
ter. There is a lack of measures for assessing inconsistency of a disjunction in
the existing literature except Disjunct Minimality and Disjunct Maximality [1].
However, even if an inconsistency measure satisfies these two postulates, it is
not clear whether OR is satisfied by the induced inference relation.

Assume that K ∪ {ϕ} � ρ and K ∪ {ψ} � ρ. Then by Definition 2, I(K ∪
{ϕ}∪{¬ρ}) > I((K ∪{ϕ})\{¬ρ}) and I(K ∪{ψ}∪{¬ρ}) > I((K ∪{ψ})\{¬ρ}).
But K ∪ {ϕ ∨ ψ} � ρ is not necessarily entailed by these conditions. Let us
analyze this by considering two cases. Firstly, consider the case min(I(K ∪{ϕ}∪
{¬ρ}), I(K ∪{ψ}∪{¬ρ})) = I(K ∪{ϕ}∪{¬ρ}). Then I(K ∪{ϕ∨ψ}∪{¬ρ}) ≥
I(K ∪ {ϕ} ∪ {¬ρ}) by Disjunct Minimality. In such a case, we are not able to
compare I(K ∪{ϕ∨ψ}∪{ρ}) and I((K ∪{ϕ∨ψ})\{ρ}) since the relative order
between I((K ∪ {ϕ})\{¬ρ}) and I((K ∪ {ϕ})\{¬ρ}) is not clear. Both I((K ∪
{ϕ})\{¬ρ}) ≤ I((K∪{ϕ})\{¬ρ}) and I((K∪{ϕ})\{¬ρ}) ≥ I((K∪{ϕ})\{¬ρ})
are possible. If I((K ∪{ϕ})\{¬ρ}) ≤ I((K ∪{ϕ})\{¬ρ}), we have no idea which
one is smaller.

However, it is possible to compare the two items when I((K ∪{ϕ})\{¬ρ}) ≥
I((K ∪ {ϕ})\{¬ρ}). Let us consider a simple case where ¬ρ 
= ϕ, ¬ρ 
= ψ and
¬ρ 
= ϕ ∨ ψ. Then I((K ∪ {ϕ})\{¬ρ}) ≥ I((K ∪ {ϕ})\{¬ρ}) is equivalent to
I((K\{¬ρ}) ∪ {ϕ}) ≥ I((K\{¬ρ}) ∪ {ψ}). Applying Disjunct Maximality gives
I((K\{¬ρ}) ∪ {ϕ}) ≥ I((K\{¬ρ}) ∪ {ϕ ∨ ψ}), namely, I((K ∪ {ϕ})\{¬ρ}) ≥
I((K ∪ {ϕ ∨ ψ})\{¬ρ}). Thus, I(K ∪ {ϕ ∨ ψ}\{¬ρ}) > I((K ∪ {ϕ ∨ ψ})\{¬ρ}).
By Definition 2, K ∪ {ϕ ∨ ψ} � ρ. The analysis for the case where min(I(K ∪
{ϕ}∪{¬ρ}), I(K ∪{ψ}∪{¬ρ})) = I(K ∪{ψ}∪{¬ρ}) is similar to the first case.

5 Paraconsistency Checking

This section investigates which inconsistency measures induce a paraconsistent
inference relation. The following definition formally describes paraconsistency.

Definition 3 (Paraconsistency). An inference relation � is paraconsistent
if for all inconsistent K ∈ K, there exists a formula ϕ such that K 
� ϕ.



An inconsistency measure I is called relative [2] if it satisfies Normalization
(i.e., 0 ≤ I(K) ≤ 1) and either Free-Formula Reduction or Relative Separability
(or both).

Free-Formula Reduction: For ϕ 
∈ K, if ϕ is free for K and I(K) 
= 0 then
I(K ∪ {ϕ}) < I(K).

Relative Separability: If I(K1) � I(K2) and Atoms(K1) ∩ Atoms(K2) = ∅ then
I(K1) � I(K1 ∪ K2) � I(K2) where either � is < in every instance or � is
= in every instance.

Proposition 12. If I is an inconsistency measure satisfying (i) Free-Formula
Reduction or (ii) Relative Separability, then � is paraconsistent.

Proof. (i) Take an inconsistent K ∈ K and an atom a /∈ Atoms(K). Then ¬a is
free for K and ¬a /∈ K. Besides, I(K) 
= 0 by Consistency Null. So applying Free-
Formula Reduction to K gives I(K ∪{¬a}) < I(K). Thus, K 
� ϕ by Lemma 1.
Hence, � is paraconsistent by Definition 3. (ii) Take an inconsistent K ∈ K
and an atom a /∈ Atoms(K). Then I(K) > 0 and I({¬a}) = 0 by Consistency
Null. Hence, we have I({¬a}) < I(K). Besides, Atoms({¬a}) ∩ Atoms(K) = ∅.
Applying Relative Separability gives I({¬a}) < I(K∪{¬a}) < I(K). Therefore,
K 
� a by Lemma 1. Thus, � is paraconsistent by Definition 3.

Theorem 2. For every relative inconsistency measure I, the inference relation
� induced from I is paraconsistent.

Next we show that the inference relation � induced from I is paraconsis-
tent if I satisfies some rationality postulate(s). Note that we propose a postu-
late Tautology Non-Increase which states that any tautology does not increase
inconsistency degree.

Safe-Formula Independence: If ϕ is safe for K then I(K ∪ {ϕ}) = I(K).
Tautology Independence: If ϕ is a tautology then I(K ∪ {ϕ}) = I(K).
MI-separability: If MI(K1 ∪ K2) = MI(K1) ∪ MI(K2) and MI(K1) ∩ MI(K2) = ∅

then I(K1 ∪ K2) = I(K1) + I(K2).
Tautology Non-Increase: If ϕ is a tautology then I(K ∪ {ϕ}) ≤ I(K).

Proposition 13. If I is an inconsistency measure satisfying (i) Free-formula
Independence, (ii) Safe-Formula Independence, (iii) Tautology Independence or
(iv) MI-separability, then � is paraconsistent.

Proof. (i) Take an inconsistent K ∈ K and an atom a /∈ Atoms(K). Then apply-
ing Free-Formula Independence to K gives I(K∪{¬a}) = I(K), as ¬a is free for
K. Hence, K 
� ϕ by Lemma 1. (ii) Obvious. (iii) Take an inconsistent K ∈ K,
and an inconsistent formula ϕ such that no atom in ϕ occur in K. Then apply-
ing Tautology Independence gives I(K ∪ {¬ϕ}) = I(K), as ¬ϕ is a tautology.
Trivially, ¬ϕ /∈ K. Hence K 
� ϕ by Lemma 1. (iv) Take an inconsistent K ∈ K
and an atom a /∈ Atoms(K). Then MI(K ∪ {¬a}) = MI(K) since ¬a does not
participate in inconsistency. Besides, we have MI({¬a}) = ∅. Hence, we have



MI(K ∪ {¬a}) = MI(K) ∪ MI({¬a}) and MI(K) ∩ MI({¬a}) = ∅. Therefore,
I(K ∪ {¬a}) = I(K) + I({¬a}) holds by applying MI-separability to K and
{¬a}. Thus, I(K ∪ {¬a}) = I(K) due to I({¬a}) = 0. So K 
� a by Lemma 1.

Lemma 6. If I satisfies Tautology Non-Increase, K 
� ϕ for all inconsistent ϕ.

Proof. Let ϕ is be an inconsistent formula. Then ¬ϕ is a tautology. Assume ¬ϕ 
∈
K. According to Tautology Non-Increase, I(K ∪ {ϕ}) ≤ I(K). Using Lemma 1,
K 
� ϕ. Otherwise, assume ¬ϕ ∈ K. Applying Tautology Non-Increase, we have
I((K\{¬ϕ}) ∪ {¬ϕ}) ≤ I(K\{¬ϕ}). By Lemma 1, K 
� ϕ.

It is easy to see from Lemma 6 that if I satisfies Tautology Non-Increase
then � is paraconsistent.

6 Dependencies and Incompatibilities

Some postulates imply some other postulates, whereas others are incompatible.
This section presents results in this sense.

Lemma 7. The following statements hold: (i) MI-separability entails Antinomy
Increase and Tautology Independence. (ii) Penalty entails Antinomy Increase.
(iii) Tautology Independence entails Tautology Non-Increase. (iv) Penalty and
Monotony entails Mutual Increase.

Proof. (i) We first show that MI-separability entails Antinomy Increase. Let
ϕ 
∈ K such that ϕ |= ⊥. Then, MI(K ∪ {ϕ}) = MI(K) ∪ MI({ϕ}) and
MI(K) ∩ MI({ϕ}) = ∅. By MI-separability, I(K ∪ {ϕ}) = I(K) + I({ϕ}). How-
ever, Consistency Null guarantees I({ϕ}) > 0. Then, I(K ∪ {ϕ}) > I(K). We
turn to show that MI-separability entails Tautology Independence. Let ϕ be a
tautology. Then, MI(K ∪ {ϕ}) = MI(K) ∪ MI({ϕ}) and MI(K) ∩ MI({ϕ}) = ∅.
MI-separability then gives I(K ∪ {ϕ}) = I(K) + I({ϕ}). Consistency Null
ensures I({ϕ}) = 0. Thus, I(K ∪ {ϕ}) = I(K). (ii) Consider ϕ 
∈ K such
that ϕ |= ⊥. Clearly, ϕ is not free for K because the empty set is a con-
sistent subset K but ∅ ∪ {ϕ} |= ⊥. Applying Penalty, I(K ∪ {ϕ}) > I(K).
(iii) Obvious. (iv) Assume K |= ⊥ and I(K ∪ {ϕ}) > I(K). Then the latter
assumption gives ϕ /∈ K. Let us take a formula ψ that belongs to a mini-
mal inconsistent subset of K. Hence, ψ is not free for (K\{ψ}) ∪ {ϕ}. Apply-
ing Penalty yields I(K ∪ {ϕ}) > I((K\{ψ}) ∪ {ϕ}). In view of Monotony,
I((K\{ψ}) ∪ {ϕ}) ≥ I({ϕ}). Immediately, I(K ∪ {ϕ}) > I({ϕ}).

Accordingly, if I satisfies Penalty then K � ϕ for all consistent ϕ ∈ K (by
Proposition 1) and all tautological ϕ (by Proposition 7).

The results given in the previous sections do not generally add up in the sense
that combining rationality postulates for a given inconsistency measure may
make the induced inference inference fails to enjoy some property. There are two
main reasons. First, some possible properties of the induced inference relation are
exclusive of each other. Second, some rationality postulates are incompatible. For



Table 1. Satisfiable Properties of the Inference Relation �, depending on Sufficient
Postulates of the Inconsistency Measure I and Compulsory Extra Conditions, with
Reference to the Result

Properties of � Sufficient postulates of
I

Extra conditions Results

Reflexivity Penalty Consistent formulas Proposition 1

Monotony Free-formula
independence

ψ is free for K ∪ {¬ϕ} Proposition 3

Cut Denial preservation,
monotony, rewriting

¬ϕ �∈ K, ¬ψ �∈ K Proposition 5

Cautious monotony Denial elimination,
monotony, rewriting

¬ϕ �∈ K, ¬ψ �∈ K Proposition 4

Right weakening Dominance, antinomy
increase

¬ϕ /∈ K, ¬ψ /∈ K Corrolary 1

AND Disjunct minimality,
rewriting, monotony

¬ϕ �∈ K, ¬ψ �∈ K Proposition 9

Rational monotony Monotony, rewriting ¬ϕ �∈ K Proposition 10

Contraposition Rewriting, mutual
increase

ϕ |= ⊥, ¬ψ �= ϕ,
¬ψ �= ¬¬ϕ

Proposition 11

instance, a consequence of Lemma 6 is that Tautology Non-Increase makes AND
to fail whenever Reflexivity holds for all consistent formulas (let K ⊇ {ϕ, ¬ϕ}
for some consistent non-tautological ϕ). Then we have the following proposition.

Proposition 14. If I satisfies Penalty and Tautology Non-Increase, then � fails
to satisfy AND.

7 Conclusion and Future Work

In order to reason with inconsistent knowledge bases, we have proposed a new
family of inference relations induced from inconsistency measures. It is worth
mentioning that the new inference relations have the same consequences as clas-
sical logic when premises are consistent. We have shown that these inference
relations satisfy some important nonmonotonic reasoning properties (restricted
to some extra requirements) when the corresponding inconsistency measures sat-
isfy some rationality postulates (see Table 1). Furthermore, we have shown that
the new inference relations are paraconsistent when the corresponding inconsis-
tency measures satisfy some rationality postulates; importantly, every relative
inconsistency measures can induce a paraconsistent inference relation. Lastly, we
have presented some dependencies and incompatibilities among postulates.

This article opens up directions for future research. Firstly, we will continue
to investigate whether the remaining KLM properties (i.e. Equivalence, MPC,



Transitivity, EHD, Loop) can be satisfied. We will also keep on investigating
dependencies and incompatibilities between postulates. Secondly, we will con-
sider an extension of the approach to infinite knowledge bases. An idea in this
sense would be that the inference relation � induced from an inconsistency mea-
sure I, considering an infinite knowledge base X, would be such that: X � ϕ iff
I(Y ∪ {¬ϕ}) > I(Y \{¬ϕ}) for some finite Y ⊆ X.
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