
HAL Id: hal-03541649
https://hal.science/hal-03541649

Submitted on 11 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Standalone low-cost versatile FPGA-based fault
generator for PROFIBUS DP

Jean-Marc Capron, Mathieu Troch, Dimitri de Schuyter, Arne Verhoeven, Jos
Knockaert, Philippe Saey

To cite this version:
Jean-Marc Capron, Mathieu Troch, Dimitri de Schuyter, Arne Verhoeven, Jos Knockaert, et al.. Stan-
dalone low-cost versatile FPGA-based fault generator for PROFIBUS DP. IEEE 26th International
Conference on Emerging Technologies and Factory Automation (ETFA 2021), Sep 2021, Vasteras,
Sweden. �10.1109/ETFA45728.2021.9613509�. �hal-03541649�

https://hal.science/hal-03541649
https://hal.archives-ouvertes.fr


Standalone low-cost versatile FPGA-based fault generator for PROFIBUS DP 

Capron Jean-Marc  

Junia – ISEN & CNRS UMR 8520 - 

IEMN  

Lille, France 

jean-marc.capron@junia.com   

Verhoeven Arne 

KU Leuven – FET – ESAT-ELECTA 

Energy & Automation 

Gent, Belgium 

arne.verhoeven@kuleuven.be 

Troch Mathieu 

KU Leuven – FET – ESAT-ELECTA  

Energy & Automation 

Gent, Belgium 

mathieu.troch@kuleuven.be  

Knockaert Jos 

Ghent University, Dep. Industrial 

System and Product Design 

Kortrijk, Belgium 

jos.knockaert@ugent.be 

De Schuyter Dimitri 

KU Leuven – FET – ESAT-ELECTA  

Energy & Automation 

Gent, Belgium 

dimitri.deschuyter@kuleuven.be 

Saey Philippe 

KU Leuven – FET – ESAT-ELECTA 

Energy & Automation 

Gent, Belgium 

philippe.saey@kuleuven.be   

Abstract This paper presents the design, the validation steps 

and the measurement results of a fault generator device able to 

disturb the operation of a PROFIBUS DP network, under user-

defined conditions. It allows to test the robustness of an 

industrial network, to test and compare diagnostic tools, and to 

investigate off-line more complex faults encountered in 

industry. The core of the design is an FPGA, which results in a 

very low latency time. It generates trigger signals and imposes 

faults on the RS485 level up to the maximum bit rate of 12 Mbps. 

The design choices for fault duration, number of successive 

faults and skipped triggers, waiting time, etc. allow for the 

emulation of a wide range of network faults. 

 

Keywords Industrial network – Diagnostics – PROFIBUS DP 

– Data communication – Network-based control – Robustness 

I. INTRODUCTION 

Training and more advanced teaching of PROFIBUS DP 
network technology [1] [2] requires in-depth hands-on 
exercises, with a variety of realistic and challenging network 
faults. For training relevant for industry, a lot of attention 
should be on diagnostics and on troubleshooting network 
faults [3]. Also for research, for example to compare the 
diagnosis reported by different diagnostic tools, to reproduce 
more complex faults from industry cases during later off-line 
analysis with similar components, for stress testing of devices 
[4] etc., a performant fault generator device would be very 
useful. 

Typical “classic” faults such as short circuit, open circuit, 
impedance mismatches, power failure of or removing the 
connector of a slave, removing a module from a slave, etc. are 
easy to simulate during lab exercises and tests. However, these 
faults are – relative to the network cycle time – of very long 
duration and cannot produce short faults impacting only 1 or 
2 telegrams, let alone on the same one – originating from the 
same faulty network device – in consecutive PROFIBUS DP 
cycles. 

Nevertheless, many researchers apply these long 
“uncontrolled” short and open circuits and impedance 
mismatches using simple switches [5] [6] [7]. Also the 
commercial Procentec fault generator [8] uses this approach. 
The “DP training device” [9] is more advanced, but produces 
only a limited amount of fault types. 

Some researchers [10] [11] use software implementations 
of PROFIBUS masters and slaves on microcontrollers (and 
not industrial devices) at lower bit rates (9.6 up to 500 kbps) 
than the typical 1.5 Mbps or higher used in industry, for 
analysis and fault implementation. This method is however 

flexible compared to the ones mentioned in the previous 
paragraph and serves its specific research goals. 

 From a practical view point, removing connectors or 
modules, switching terminating resistors on/off, … all put a 
heavy wear on the equipment and should be avoided as much 
as possible for fault simulation.  

Therefore, a low-cost, versatile, standalone, compact 
device that 1) produces trigger signals 2) imposes a fault 
(destroy bits, bytes and telegrams, add e.g. an impedance 
mismatch) has been developed. The trigger events can be used 
by an oscilloscope to record other signals (shield current, 
motor torque, etc.) or signals at multiple different network 
locations. The faults are either imposed by RS485 drivers 
(specific characters and telegrams, highly dynamic) or by reed 
relays (e.g. add impedance or inject current in the shield, long 
duration). 

The core of the presented design is an FPGA, that 
introduces only a very short latency time to detect the trigger 
conditions, which can be combinations of multiple telegram 
properties. These trigger conditions can be configured with 
high flexibility using a simple Human Machine Interface 
(HMI), and must be editable on-the-go, with instant effect. 
Finally, the timing and sequence of the output activity (trigger 
output, fault output) is also configurable: duration, skipped 
triggers, delay, number of repeats. 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Main components of the PROFIBUS DP fault generator. 

This paper describes the development and some use cases 
of  a low-cost, compact, versatile and standalone PROFIBUS 
DP (PB DP) fault generator based on FPGAs. It addresses all 
standard bit rates from 9.6 kbps up to 12 Mbps, and removes 
a number of limitations of an older microprocessor based 
implementation by the authors [12]. The FPGA in Fig. 1 is 



used for the processing of the incoming information, to decode 
on-going messages, search for a specific condition and 
generate output signals (bus disturbance and external digital 
outputs). This enables real-time analysis and quasi 
instantaneous reaction time. The configuration of trigger 
conditions and output characteristics can be modified on-the-
fly with an LCD display with keyboard switches as HMI, 
managed by a microcontroller. 

The remainder of this paper is organized as follows: 
PROFIBUS DP is briefly described and design specifications 
are inferred in Section 2. Section 3 presents the fault generator 
design: use of FPGAs, serial receiver, trigger analysis, actual 
fault generation, duration and sequence, etc. Section 4 
discusses the validation by simulation. Validation in live 
networks is discussed in Section 5, which covers the base-line 
healthy network, the fault appearance over the length of the 
bus line, 2 use cases, and the overall reaction time.  

II. PROFIBUS DP – DESIGN SPECIFICATIONS  

A. Network overview and UART character 

Detailed descriptions of PROFIBUS DP (PB DP) can be 
found in e.g. [2], [3] and [13]; the website of PI International 
can be used for a first exploration [1]. In these paragraphs, 
some elements that are of interest for the fault generator 
design are described briefly. 

PB DP is most often implemented using RS485 for the 
Physical Layer (PHY). Fig. 2 shows the typical layout: it 
features half duplex communication over two lines designated 
A and B, is actively terminated on both ends of the network 
(segment). There are up to a typical maximum of 8 segments 
with each maximum 32 stations in a network. Fig. 3 shows the 
non-return-to-zero UART (Universal Asynchronous Receiver 
Transmitter) character. It has one start and stop bit, 8 data bits 
and a (even) parity bit. Bit rates vary from 9600 bps up to 12 
Mbps; typically 1.5 Mbps or higher is used in industry. 

 

 

 

 

 

 

 

Fig. 2. Layout of the PROFIBUS DP RS485 Physical Layer. 

 

 

 

 

Fig. 3. UART character of PB DP: non-return-to-zero, 8 databits, 1 start and 

1 stop bit, even parity. 

B. Telegram formats – Networks used for testing 

Fig. 4 shows as example the standard data exchange 
telegram SD2 (top). The meaning of the telegram parts and the 
different PB telegram types – SD types – are explained in the 
middle and bottom table. The tables are based on [13], and 
form the basis of all state machines explained in Section III. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Standard data exchange telegram SD2 (top), meaning of the 

telegram bytes (middle) and different PB DP telegram types. 

For measurements, two basic networks are used in this 
study: a single master (DPM1, DP Master Class 1) network 
with 3 slaves (Fig. 5, top), and a network including 3 DPM1 
combined with 3 slaves, with token passing between the 
masters (Fig. 5, bottom). The station addresses are indicated 
in the bottom right corner. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Networks used for verification of the fault generator. 

Fig. 6 shows the healthy single master network with 
measuring equipment as in Fig. 15. The bottom figure 
provides a detailed view at the beginning of the middle 
telegram, for 4 locations on the cable. Given the cable length 
and the extra connectors – acting as small extra impedances – 
the bit signals are slightly degraded, but fine and at good 
voltage levels. Channel 4 – after the diagnostic repeater – 
shows “restored” signals with extra delay caused by the 
diagnostic repeater. One can observe the run time of the signal 
over the cable. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Healthy network signals at 1.5 Mbps. 

C. Design specifications and choices 

 In general, the fault generator should be compact and 
operate standalone. It is designed for all PROFIBUS DP bit 
rates up to 12 Mbps. Two ways to inject faults are 
implemented: destruction of a number of bits or characters via 
RS485 drivers, and switch e.g. impedances, current sources, 
etc. via reed relays. The reed relays are in this version – given 
their relatively slow timing compared to PB DP telegrams and 
cycle times – controlled manually via the display. The focus 
in this paper is on fault injection via RS485 drivers and more 
complex network fault situations, including multiple trigger 
and sequencing options. 

The reaction time should be short compared to the 
character length, as the fault generator waits to inject a fault 
until it has checked that the last character that fulfils the trigger 
condition(s) is actually a valid character. The shortest 
character length at 12 Mbps is 11 x 83 ns =  917 ns; as 
reminder, telegrams are composed of several characters. 

The trigger conditions are (the content of) each of the bytes 
in Fig. 4 (top and middle), and can be combined (AND and 
OR). 

The fault duration itself can be expressed in bit times or 
character (11 bit) times, and ranges from 1 to 999 resp. 1 to 
510. The waiting time between applied faults can be up to 17 
minutes (units in ms or s (both 1-999) or minutes (1-17)). 
Skipped triggers can vary between 0 and 9999; the number of 
successive faults is between 1 and 31. Also these properties 
can be combined. 

D. Coverage of different fault types 

Referring to Fig. 7 [14] that provides one of the few 
detailed overviews of typical faults in industrial networks, the 
bit destruction part of the fault generator typically emulates 
“software & devices” (9 %), “other” (20 %) and “EMC” (17 
%). The “connectors” part – if intermittent – can also be 
covered. 

“Excessive cable length” and “cable” problems are 
typically permanently present and not really relevant for the 
bit destruction part. Some of these could be applied with the 
reed relays by adding impedances: wrong cable type, too 
many terminating networks, high transition resistance, etc. [5]. 

 
 
 
 
 
 
 
 
 

Fig. 7. Overview of typical network interventions of Indu-Sol. The figure 

combines the data provided in the 2019 and 2020 Vortex reports. 

An overview of the typical properties of EMI 
(ElectroMagnetic Interference) phenomena that are at the 
basis of EMC problems, and the coverage by the developed 
fault generator, can be found in Fig. 8. With the fault 
generator, we emulate the effect of the EMI phenomena on the 
bus communication or on the temporary malfunctioning of a 
network device (and consequently the “silence” on the bus), 
by disrupting all communication of the device(s) for the 
appropriate duration and periodicity. 

 

 

 

 

 

 

 

 

 

Fig. 8. Overview of EMI phenomena, indicating typical duration and 

coverage by the fault generator. 

Some industrial examples and their link to EMI 
phenomena are briefly presented in this paragraph. The 
combination of PWM (Pulse Width Modulation) used in the 
output stage of a motor inverter and reflections on the motor 
cable gives a damped oscillation typically in the range of 500 
kHz up to 10 MHz, and relates to the “continuous wave” 
phenomenon. The PWM waveform itself has a rise time of 
some tens of ns and can be related to the burst test. Arc 
welding generates strong magnetic fields in the same lower 
MHz frequency range; spot welding typically generates low 
frequency magnetic fields (Hz up to kHz) that are of relatively 
short duration. Touching metallic parts (a button, a connector) 
can generate electrostatic discharges; a belt transmission is an 
example of an “isolated transmission” causing ESD. 

In conclusion, the design choices of this fault generator 
make it well suited for the 48 % “interesting” (short, non-
deterministic, complex, single event, etc.) faults, and can be 
used for a number of other ones, making it a versatile design. 
Also refer to [3] and [15] for a number of industrial fault use 
cases. (Remark: both RS485 (PROFIBUS) and Ethernet 
(PROFINET) based networks are in the Indu-Sol statistics. 
We assume a similar relative spreading, so percentages are 
order of magnitude.) 

 



III. FAULT GENERATOR DESIGN 

A. Using FPGAs 

An FPGA (Field Programmable Gate Array) combines on 
the same die flip-flops, combinatorial logic, and configurable 
routing. The FPGA hardware approach allows for parallel 
processing, contrary to a microprocessor’s sequential 
operation. In this application, it enables the fault generator to 
decode the incoming PROFIBUS bits, and analyse in real-
time characters and telegrams for several concurrent criteria, 
with a reaction delay in the ns range. 

In this design the FPGA is used for: 

• PROFIBUS serial signal reception 

• real-time message analysis, with multiple concurrent 
trigger criteria 

• flexible fault generation, with configurable duration, 
repetition rate and fault skipping. 

Most real-time message decoding and checking for 
(combinations of) the user-selectable trigger conditions is 
done in state machines (SMs), which by nature require a lot of 
combinatorial functions. As the latter are prone to glitch and 
delay introduction, attention was paid during FPGA design to 
keep the signal path between two clock cycles as short as 
possible, to increase the throughput and keep the operation 
frequency as high as possible. This requires intensive use of 
registers, but allows correct operation at maximum bit rate 
[16].  

B. Serial receiver 

 To enable optimal operation in noisy environments, the 
FPGA acquires 16 samples per bit (Fig. 3 shows the individual 
bits in a PB DP UART character), and 3 samples in the middle 
of the bit time are kept. The majority of the high/low levels of 
these 3 is retained, which results in a low sensitivity for noise, 
glitches, etc. This sample rate defines the main clock 
frequency in the FPGA: as the maximum bit rate is 12 Mbps, 
a value of 192 MHz (16 × 12 MHz) is chosen, resulting in a 
(approximately) 5 ns main clock period. 

 

C. Telegram analysis 

PROFIBUS telegrams have different formats (Fig.  4). As 
trigger conditions must be compatible with any SD-type, the 
position of each byte (e.g. Source Address SA) is message-
type dependent and thus changes; refer to Fig. 9, reproduced 
after [13]. 

As example of a small state machine, Fig. 9 (top) shows 
the different locations (3rd or 6th position) of the SA, and the 
corresponding state machine. As every hardware state 
machine is independent from the other ones, they all work 
concurrently and the number of activated trigger conditions 
has no impact on the reaction time. 

 

D. Fault generation 

a) Fault implementation 

Destroying (a series of) bits, bytes or complete telegrams 
is either achieved by RS485 transceivers – by far most the 
versatile and dynamic method – or by reed relays. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. (Top) Source Address position in PB DP telegram. (Bottom) State 

machine for Source Address trigger.  

Two independent PROFIBUS RS485 transceivers 
(SN65HVD1176) force constant levels on the two bus lines 
(A and B) of the differential pair of the bus. These are 
individually controlled by different FPGA outputs for 
maximum flexibility (Fig. 10). The type of fault – any 
combination of A and B high or low – can be configured by 
the user. The transceiver at the input is an ISO1176 (Fig. 1). 

Besides triggered “fast” destruction of parts of network 
telegrams, an “impedance mismatch”, a current source to 
produce a shield current, etc. can be applied to the network 
using reed relays. The HMI allows the control of 2 normally 
open reed relays, with a closing time of max. 500 µs 
(including bouncing) and an opening time of max. 100 µs.  

 

 

 

 

 

 

 

 

Fig. 10. Forcing the fault on the RS-485 network.  

 



b) Duration – Sequence 

The duration of a single fault can be set: its value can be 
expressed as a number of bit times or character times, and can 
vary in a very wide range. The minimum duration is one bit 
time at maximum bit rate, 83 ns at 12 Mbps; maximum 999 
bit times can be selected. The maximum duration is chosen at 
510 character times (2 maximum-length telegrams); at 9600 
bps it is 0.58 s. The maximum duration at the more industrially 
relevant 1.5 Mbps bit rate is 3.74 ms of “character times” (no 
time between telegrams). Realistic length telegrams – as 
slaves typically do not transfer a lot of information – are far 
shorter than the maximum length; 510 characters is order of 
magnitude 15-20 telegrams (for one single fault). 

The final trigger sequence is fully configurable: 

• The waiting time (“delay”) between successive fault 
triggers is expressed in ms and can have any value 
between 1 ms and 17 minutes. 

• 0 up to 9999 trigger conditions can be skipped (“hold-
off”) in order to apply faults only after a certain 
number of triggers. 

• The number of applied successive faults (“repetition”) 
can also be set to any value between 1 and 31. 

By combining these optional functionalities, almost any 
sequence of fault generation can be defined. Fig. 11 depicts 
the situation when the number of skipped faults and the 
number of successive faults are respectively set to 3 and 2, 
with a non-zero waiting time. 

 

 

 

 

 

Fig. 11. Example of a sequence with waiting time ≠ 0, skipped faults = 3 and 

successive faults = 2. 

c) The FPGA and custom PCB 

The final system is an assembly of two boards, stacked 
together. The Terasic DE0-Nano development board (Fig. 12, 

top) holds the FPGA: a Cyclone IVE Intel FPGA with 
22.320 Logic Elements (LEs) and 154 General Purpose Inputs 
Outputs (GPIOs). The current application uses 4 % of the 
available LEs and 14 % of the available GPIOs. 

The second one (Fig. 12, bottom) is a custom board with a 

8-bit Microchip microcontroller used for the Human 
Machine Interface (HMI), and interfaces with the FPGA via 
SPI (Serial Peripheral Interface). The HMI (4×16 LCD 
display and keyboard switches) allows for on-the-fly 
modifications that are instantly applied. Fig 1 depicts 4 trigger 
signal outputs from the FPGA: these can be used e.g. to trigger 
an oscilloscope measuring other than bus signals. 

The reaction time of the FPGA is limited to 4 clock pulses 
(of 5 ns each) by using a pipelined design. The check on the 
trigger conditions itself starts at the end of each character, to 
be certain that calculations are performed on a valid character.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. The final assembly: FPGA board (top) and custom board (bottom). 

IV. VALIDATION BY SIMULATION 

The 1st phase of the system validation was done by gate-
level simulation, after “Place & Route” in the FPGA, and 
taking into account the real propagation delays introduced by 
the configurable connections and the logic cells. All 
simulations were done with ModelSim [17]. 

To be even closer to real behaviour, an input signal was 
extracted from a live measurement in a 1.5 Mbps PB DP 
network. A VHDL testbench was written to read analogue 
values from the measurement ascii file obtained with an 
oscilloscope, to convert these to digital values, and finally use 
these as simulation inputs. It was thus possible to check that 
the expected functionality was reached both with “real” data 
but also with simulated data for rather random situations. 

Fig. 13 shows a simulation result in the case of a Start 
Delimiter detection. The system was configured to generate a 

10 µs output pulse whenever a Start Delimiter was found. 

 

 

 

 

 

 

 

Fig. 13. Gate-level simulation result: Start Delimiter detection.  

Simulation also proved useful to quickly and efficiently 
validate the system’s ability to introduce a waiting time 
between successive actions, to skip some triggers, and to apply 
a predefined number of faults. These sequences and 
combinations can be checked in a flexible way in the 
simulation phase, but are tedious to check in a live network.  

V. VALIDATION IN LIVE PROFIBUS DP NETWORKS 

A. Fault injection 

Fig. 14 shows both differential voltage and absolute 
voltages on lines A & B during a fault injection at 1.5 Mbps. 
Line B is forced low and line A is forced high on a cable of 
100 m length. 

 



 

 

 

 

 

 

 

 

 

 

Fig. 14. Oscilloscope measurement of fault injection at 1.5 Mbps, showing 

both differential voltage and absolute voltages on lines A & B. 

B. Networks and measuring equipment for the use cases 

The baseline networks were presented in Chapter II (Fig. 5). 
A UART decoding oscilloscope Tektronix DPO 4054B with 
isolating probes [18] was used for measurements on up to 4 
points in the network (Fig. 15, top). Besides UART decoding 
by the oscilloscope, a MATLAB script was developed for 
further analysis. The trigger outputs of the fault generator can 
be used by extra oscilloscopes to determine the behavior of 
other network components (e.g. digital outputs of slave 
stations, analog torque or speed signals of drive systems, etc.). 

Fig. 15 (bottom) shows a number of diagnostic tools that 
are connected to analyze what is actually reported on each 
fault: two ProfiCores with ProfiTrace software, a COMbricks 
(all Procentec), a diagnostic repeater (Siemens), and a 
PROFIBUS Inspektor (Indu-Sol). A short discussion on the 
reporting of these diagnostic devices – also depending on their 
location – is presented in the use cases. However, a detailed 
analysis of their diagnosis is beyond the scope of this paper. 

C. Use case 1: destroying 2 consecutive telegrams to a 

slave 

The following set-up is configured in the fault generator 
settings: 2 consecutive SD2 telegrams from DPM1 (address 
74) to the slave with address 34 are destroyed every 10 s. Line 
B is forced high and line A low so that B-A is positive; the 
network bit rate is 1.5 Mbps and the fault duration is 3 
characters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Measuring equipment used for the validation in live networks. 

Fig 16 (left) shows healthy data exchange telegrams left 
from the middle of the trace. The telegram in the middle of the 
oscilloscope image is destroyed, as well as the repeated 
telegram in the right part. Fig. 16 (right) shows in detail the 3 
destroyed characters: these are only mildly shifted in voltage 
level at the master side (source of the telegram, and quite far 
away from the imposed fault levels), and on all the other 
locations a complete destruction can be observed. 

In Fig. 17 a ProfiTrace recording (at the side of the master) 
is shown. As the slave doesn’t receive a request from the 
DPM1 twice in a row, and consequently does not respond, the 
master’s repeat limit is exceeded. “Repeat (lost)” is indicated 
the second time. The master waits for the next cycle to set 
parameters (indicated with “Sync”). When the slave is ready, 
it will (later) again get in the communication sequence. 

Although a detailed analysis of what the different 
diagnostic tools report is not within the scope of this paper, we 
can briefly indicate the possibilities for analysis and 
comparison. All diagnostic tools detect this fault. It is seen 
either as a restart or a sync of slave 34. Some tools installed 
close to the source also detect repeats, some also detect illegals 
(close to the destination). 

 

Fig. 16. Use case 1 oscilloscope recording. Left figure: the telegram to  

station 34 is destroyed, and the repeat (towards the right) also. Right 

figure: detail of the destroyed telegram. 



 

 

 

 

 

 

 

 

 

 

 

Fig. 17. ProfiTrace recording of Use case 1. 

D. Use case 2: destroying token passes between masters 

Some measurements and short analysis of the stability 
behavior of the token ring between DP masters have been 
described in e.g. [10]. These are limited to 500 Kbps (not a 
typical PROFIBUS DP bit rate for industrial applications); 
e.g. [11] even goes as low as 19200 bps in particular tests. In 
contrast to these severe limitations, the developed fault 
generator destroys token passes in a freely configurated 
sequence, to industrial DPM1 stations, and at a high bit rate 
(in a 1.5 Mbps network, a 6 Mbps one for the reaction time 
measurement) until the token ring is reconfigured  (Fig. 5). 

The following set-up is configured in the fault generator 
settings: 3 consecutive SD4 Token Pass telegrams to DPM1 
with address 2 are destroyed every 10 s. Line B is forced high 
and line A low, so that B-A is positive; the network bit rate is 
1.5 Mbps. The fault duration is 3 characters, in this case lasting 
longer than the remainder of the telegram: the trigger is 
reached at the end of the 2nd character in the SD4 telegram. 

Fig 18 (left) shows 3 destroyed SD4 telegrams to station 
2, the first one under the orange “T” mark on top. The right 
figure shows a detail of a destroyed SD4 telegram on 4 
locations. Again, these are only mildly shifted in voltage level 
at the master side and still correct (source of the telegram, and 
quite far away from the imposed fault levels), and on all the 
other locations a complete destruction can be observed. 

Fig. 18. Use case 2 oscilloscope recording. Left figure: 3 SD4 telegrams to 

station 2 are destroyed, the first one under the orange “T” dot on top. 

Right figure: detail of a destroyed SD4 telegram. 

In Fig. 19 a ProfiTrace recording (at the side of the master) 
is shown. The Master on address 1 notices no communication 
from any master within the slot time, and repeats the token 
pass to Master station 2 two times. Station 2 is removed from 
the LAS (List of Active Stations), and the token is passed from 
1 to 3. The latter doesn’t expect it from 1, so it is repeated 
before station 3 accepts the token. 

Brief analysis: all diagnostic tools detect this fault, either 
as a repeat (close to the source) or as an illegal (close to the 
destination). The COMbricks – in this case a Head Station 
Type 1C (HW V1.9; SW V1.303), with as Repeater a Type 1 
(HW V1.4; SW V1.14) – does not indicate repeats for token 
passes. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19. ProfiTrace recording of Use case 2. 

E. Overall reaction time 

The reaction time of the FPGA is 4 x 5 ns (Section III). 
The typical remaining time delays for the generation of the 
fault trigger are measured in Fig 20, that shows a SD4 token 
passing telegram in a 6 Mbps network. Channel 4 on the 
oscilloscope now shows the trigger signal. Channel 2 (light 
blue) is at the fault generator, trigger condition is fulfilled at 
the end of the last telegram character “01”, so that there is a 
clear view on the destruction (line B is H, line A is L). From 
the end of “01” (which is correctly indicated by the decoding, 
at the end of 2 “H” bits of 167 ns each) to the start of the trigger 

pulse is about 70 ns. The input delay of the optocoupler is max. 
55 ns, the FPGA reaction time is 20 ns, and the output 
optocoupler introduces typically 31 ns of delay time; the 



components are listed in Section III D. The 70 ns in the 
measurement is thus within the specifications.  

From “trigger condition fulfilled” to start of destruction is 
80.4 ns (cursor measurement in Fig. 20, insert); at 6 Mbps it 
means that the character after the one that fulfils the trigger 
condition is destroyed (11 x 167 ns = 1.84 µs). Also at 12 
Mbps, it is the 1st character after the one that fulfils the trigger 
condition that is destroyed (one character takes 11 x 83 = 913 
ns), which means that for all bit rates the character after 
fulfilling the trigger conditions is destroyed. 

 

VI. CONCLUSIONS AND FUTURE WORK 

A low-cost, versatile and configurable trigger and fault 
generator for PROFIBUS DP has been developed. It proves 
very useful for training purposes, analysis of the behavior of 
diagnostic tools and for in-depth testing of more complex 
industrial problems. It covers all PROFIBUS DP bit rates up 
to 12 Mbps, and it covers 48 % of the “interesting, highly 
dynamic” faults. 

The reaction time of the FPGA – to calculate if the trigger 
conditions are fulfilled – is limited to 4 clock cycles of 5 ns. 
The trigger condition itself is checked at the end of the 
character that fulfils the trigger condition. The trigger signal 
is typically available 70 ns after the end of the character that 
fulfils the trigger condition. Total reaction time to the fault 
impact on the bus itself is about 80 ns.  

Total cost is less than € 200 (using vendors providing 
quick delivery of components, so a further decrease of the 
price is possible), without a mounting box. 
  

As future application, it is planned to use the fault generator 
in research concerning “big data” analysis of bus phenomena 
in real-time for early detection of bus failures. Finally, the idea 
of a fault generator for Ethernet based industrial networks 
remains to be explored.  
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