
HAL Id: hal-03541649
https://hal.science/hal-03541649

Submitted on 11 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Standalone low-cost versatile FPGA-based fault
generator for PROFIBUS DP

Jean-Marc Capron, Mathieu Troch, Dimitri de Schuyter, Arne Verhoeven, Jos
Knockaert, Philippe Saey

To cite this version:
Jean-Marc Capron, Mathieu Troch, Dimitri de Schuyter, Arne Verhoeven, Jos Knockaert, et al.. Stan-
dalone low-cost versatile FPGA-based fault generator for PROFIBUS DP. IEEE 26th International
Conference on Emerging Technologies and Factory Automation (ETFA 2021), Sep 2021, Vasteras,
Sweden. �10.1109/ETFA45728.2021.9613509�. �hal-03541649�

https://hal.science/hal-03541649
https://hal.archives-ouvertes.fr

Standalone low-cost versatile FPGA-based fault generator for PROFIBUS DP

Capron Jean-Marc

Junia – ISEN & CNRS UMR 8520 -

IEMN

Lille, France

jean-marc.capron@junia.com

Verhoeven Arne

KU Leuven – FET – ESAT-ELECTA

Energy & Automation

Gent, Belgium

arne.verhoeven@kuleuven.be

Troch Mathieu

KU Leuven – FET – ESAT-ELECTA

Energy & Automation

Gent, Belgium

mathieu.troch@kuleuven.be

Knockaert Jos

Ghent University, Dep. Industrial

System and Product Design

Kortrijk, Belgium

jos.knockaert@ugent.be

De Schuyter Dimitri

KU Leuven – FET – ESAT-ELECTA

Energy & Automation

Gent, Belgium

dimitri.deschuyter@kuleuven.be

Saey Philippe

KU Leuven – FET – ESAT-ELECTA

Energy & Automation

Gent, Belgium

philippe.saey@kuleuven.be

Abstract This paper presents the design, the validation steps

and the measurement results of a fault generator device able to

disturb the operation of a PROFIBUS DP network, under user-

defined conditions. It allows to test the robustness of an

industrial network, to test and compare diagnostic tools, and to

investigate off-line more complex faults encountered in

industry. The core of the design is an FPGA, which results in a

very low latency time. It generates trigger signals and imposes

faults on the RS485 level up to the maximum bit rate of 12 Mbps.

The design choices for fault duration, number of successive

faults and skipped triggers, waiting time, etc. allow for the

emulation of a wide range of network faults.

Keywords Industrial network – Diagnostics – PROFIBUS DP

– Data communication – Network-based control – Robustness

I. INTRODUCTION

Training and more advanced teaching of PROFIBUS DP
network technology [1] [2] requires in-depth hands-on
exercises, with a variety of realistic and challenging network
faults. For training relevant for industry, a lot of attention
should be on diagnostics and on troubleshooting network
faults [3]. Also for research, for example to compare the
diagnosis reported by different diagnostic tools, to reproduce
more complex faults from industry cases during later off-line
analysis with similar components, for stress testing of devices
[4] etc., a performant fault generator device would be very
useful.

Typical “classic” faults such as short circuit, open circuit,
impedance mismatches, power failure of or removing the
connector of a slave, removing a module from a slave, etc. are
easy to simulate during lab exercises and tests. However, these
faults are – relative to the network cycle time – of very long
duration and cannot produce short faults impacting only 1 or
2 telegrams, let alone on the same one – originating from the
same faulty network device – in consecutive PROFIBUS DP
cycles.

Nevertheless, many researchers apply these long
“uncontrolled” short and open circuits and impedance
mismatches using simple switches [5] [6] [7]. Also the
commercial Procentec fault generator [8] uses this approach.
The “DP training device” [9] is more advanced, but produces
only a limited amount of fault types.

Some researchers [10] [11] use software implementations
of PROFIBUS masters and slaves on microcontrollers (and
not industrial devices) at lower bit rates (9.6 up to 500 kbps)
than the typical 1.5 Mbps or higher used in industry, for
analysis and fault implementation. This method is however

flexible compared to the ones mentioned in the previous
paragraph and serves its specific research goals.

 From a practical view point, removing connectors or
modules, switching terminating resistors on/off, … all put a
heavy wear on the equipment and should be avoided as much
as possible for fault simulation.

Therefore, a low-cost, versatile, standalone, compact
device that 1) produces trigger signals 2) imposes a fault
(destroy bits, bytes and telegrams, add e.g. an impedance
mismatch) has been developed. The trigger events can be used
by an oscilloscope to record other signals (shield current,
motor torque, etc.) or signals at multiple different network
locations. The faults are either imposed by RS485 drivers
(specific characters and telegrams, highly dynamic) or by reed
relays (e.g. add impedance or inject current in the shield, long
duration).

The core of the presented design is an FPGA, that
introduces only a very short latency time to detect the trigger
conditions, which can be combinations of multiple telegram
properties. These trigger conditions can be configured with
high flexibility using a simple Human Machine Interface
(HMI), and must be editable on-the-go, with instant effect.
Finally, the timing and sequence of the output activity (trigger
output, fault output) is also configurable: duration, skipped
triggers, delay, number of repeats.

Fig. 1. Main components of the PROFIBUS DP fault generator.

This paper describes the development and some use cases
of a low-cost, compact, versatile and standalone PROFIBUS
DP (PB DP) fault generator based on FPGAs. It addresses all
standard bit rates from 9.6 kbps up to 12 Mbps, and removes
a number of limitations of an older microprocessor based
implementation by the authors [12]. The FPGA in Fig. 1 is

used for the processing of the incoming information, to decode
on-going messages, search for a specific condition and
generate output signals (bus disturbance and external digital
outputs). This enables real-time analysis and quasi
instantaneous reaction time. The configuration of trigger
conditions and output characteristics can be modified on-the-
fly with an LCD display with keyboard switches as HMI,
managed by a microcontroller.

The remainder of this paper is organized as follows:
PROFIBUS DP is briefly described and design specifications
are inferred in Section 2. Section 3 presents the fault generator
design: use of FPGAs, serial receiver, trigger analysis, actual
fault generation, duration and sequence, etc. Section 4
discusses the validation by simulation. Validation in live
networks is discussed in Section 5, which covers the base-line
healthy network, the fault appearance over the length of the
bus line, 2 use cases, and the overall reaction time.

II. PROFIBUS DP – DESIGN SPECIFICATIONS

A. Network overview and UART character

Detailed descriptions of PROFIBUS DP (PB DP) can be
found in e.g. [2], [3] and [13]; the website of PI International
can be used for a first exploration [1]. In these paragraphs,
some elements that are of interest for the fault generator
design are described briefly.

PB DP is most often implemented using RS485 for the
Physical Layer (PHY). Fig. 2 shows the typical layout: it
features half duplex communication over two lines designated
A and B, is actively terminated on both ends of the network
(segment). There are up to a typical maximum of 8 segments
with each maximum 32 stations in a network. Fig. 3 shows the
non-return-to-zero UART (Universal Asynchronous Receiver
Transmitter) character. It has one start and stop bit, 8 data bits
and a (even) parity bit. Bit rates vary from 9600 bps up to 12
Mbps; typically 1.5 Mbps or higher is used in industry.

Fig. 2. Layout of the PROFIBUS DP RS485 Physical Layer.

Fig. 3. UART character of PB DP: non-return-to-zero, 8 databits, 1 start and

1 stop bit, even parity.

B. Telegram formats – Networks used for testing

Fig. 4 shows as example the standard data exchange
telegram SD2 (top). The meaning of the telegram parts and the
different PB telegram types – SD types – are explained in the
middle and bottom table. The tables are based on [13], and
form the basis of all state machines explained in Section III.

Fig. 4. Standard data exchange telegram SD2 (top), meaning of the

telegram bytes (middle) and different PB DP telegram types.

For measurements, two basic networks are used in this
study: a single master (DPM1, DP Master Class 1) network
with 3 slaves (Fig. 5, top), and a network including 3 DPM1
combined with 3 slaves, with token passing between the
masters (Fig. 5, bottom). The station addresses are indicated
in the bottom right corner.

Fig. 5. Networks used for verification of the fault generator.

Fig. 6 shows the healthy single master network with
measuring equipment as in Fig. 15. The bottom figure
provides a detailed view at the beginning of the middle
telegram, for 4 locations on the cable. Given the cable length
and the extra connectors – acting as small extra impedances –
the bit signals are slightly degraded, but fine and at good
voltage levels. Channel 4 – after the diagnostic repeater –
shows “restored” signals with extra delay caused by the
diagnostic repeater. One can observe the run time of the signal
over the cable.

Fig. 6. Healthy network signals at 1.5 Mbps.

C. Design specifications and choices

 In general, the fault generator should be compact and
operate standalone. It is designed for all PROFIBUS DP bit
rates up to 12 Mbps. Two ways to inject faults are
implemented: destruction of a number of bits or characters via
RS485 drivers, and switch e.g. impedances, current sources,
etc. via reed relays. The reed relays are in this version – given
their relatively slow timing compared to PB DP telegrams and
cycle times – controlled manually via the display. The focus
in this paper is on fault injection via RS485 drivers and more
complex network fault situations, including multiple trigger
and sequencing options.

The reaction time should be short compared to the
character length, as the fault generator waits to inject a fault
until it has checked that the last character that fulfils the trigger
condition(s) is actually a valid character. The shortest
character length at 12 Mbps is 11 x 83 ns = 917 ns; as
reminder, telegrams are composed of several characters.

The trigger conditions are (the content of) each of the bytes
in Fig. 4 (top and middle), and can be combined (AND and
OR).

The fault duration itself can be expressed in bit times or
character (11 bit) times, and ranges from 1 to 999 resp. 1 to
510. The waiting time between applied faults can be up to 17
minutes (units in ms or s (both 1-999) or minutes (1-17)).
Skipped triggers can vary between 0 and 9999; the number of
successive faults is between 1 and 31. Also these properties
can be combined.

D. Coverage of different fault types

Referring to Fig. 7 [14] that provides one of the few
detailed overviews of typical faults in industrial networks, the
bit destruction part of the fault generator typically emulates
“software & devices” (9 %), “other” (20 %) and “EMC” (17
%). The “connectors” part – if intermittent – can also be
covered.

“Excessive cable length” and “cable” problems are
typically permanently present and not really relevant for the
bit destruction part. Some of these could be applied with the
reed relays by adding impedances: wrong cable type, too
many terminating networks, high transition resistance, etc. [5].

Fig. 7. Overview of typical network interventions of Indu-Sol. The figure

combines the data provided in the 2019 and 2020 Vortex reports.

An overview of the typical properties of EMI
(ElectroMagnetic Interference) phenomena that are at the
basis of EMC problems, and the coverage by the developed
fault generator, can be found in Fig. 8. With the fault
generator, we emulate the effect of the EMI phenomena on the
bus communication or on the temporary malfunctioning of a
network device (and consequently the “silence” on the bus),
by disrupting all communication of the device(s) for the
appropriate duration and periodicity.

Fig. 8. Overview of EMI phenomena, indicating typical duration and

coverage by the fault generator.

Some industrial examples and their link to EMI
phenomena are briefly presented in this paragraph. The
combination of PWM (Pulse Width Modulation) used in the
output stage of a motor inverter and reflections on the motor
cable gives a damped oscillation typically in the range of 500
kHz up to 10 MHz, and relates to the “continuous wave”
phenomenon. The PWM waveform itself has a rise time of
some tens of ns and can be related to the burst test. Arc
welding generates strong magnetic fields in the same lower
MHz frequency range; spot welding typically generates low
frequency magnetic fields (Hz up to kHz) that are of relatively
short duration. Touching metallic parts (a button, a connector)
can generate electrostatic discharges; a belt transmission is an
example of an “isolated transmission” causing ESD.

In conclusion, the design choices of this fault generator
make it well suited for the 48 % “interesting” (short, non-
deterministic, complex, single event, etc.) faults, and can be
used for a number of other ones, making it a versatile design.
Also refer to [3] and [15] for a number of industrial fault use
cases. (Remark: both RS485 (PROFIBUS) and Ethernet
(PROFINET) based networks are in the Indu-Sol statistics.
We assume a similar relative spreading, so percentages are
order of magnitude.)

III. FAULT GENERATOR DESIGN

A. Using FPGAs

An FPGA (Field Programmable Gate Array) combines on
the same die flip-flops, combinatorial logic, and configurable
routing. The FPGA hardware approach allows for parallel
processing, contrary to a microprocessor’s sequential
operation. In this application, it enables the fault generator to
decode the incoming PROFIBUS bits, and analyse in real-
time characters and telegrams for several concurrent criteria,
with a reaction delay in the ns range.

In this design the FPGA is used for:

• PROFIBUS serial signal reception

• real-time message analysis, with multiple concurrent
trigger criteria

• flexible fault generation, with configurable duration,
repetition rate and fault skipping.

Most real-time message decoding and checking for
(combinations of) the user-selectable trigger conditions is
done in state machines (SMs), which by nature require a lot of
combinatorial functions. As the latter are prone to glitch and
delay introduction, attention was paid during FPGA design to
keep the signal path between two clock cycles as short as
possible, to increase the throughput and keep the operation
frequency as high as possible. This requires intensive use of
registers, but allows correct operation at maximum bit rate
[16].

B. Serial receiver

 To enable optimal operation in noisy environments, the
FPGA acquires 16 samples per bit (Fig. 3 shows the individual
bits in a PB DP UART character), and 3 samples in the middle
of the bit time are kept. The majority of the high/low levels of
these 3 is retained, which results in a low sensitivity for noise,
glitches, etc. This sample rate defines the main clock
frequency in the FPGA: as the maximum bit rate is 12 Mbps,
a value of 192 MHz (16 × 12 MHz) is chosen, resulting in a
(approximately) 5 ns main clock period.

C. Telegram analysis

PROFIBUS telegrams have different formats (Fig. 4). As
trigger conditions must be compatible with any SD-type, the
position of each byte (e.g. Source Address SA) is message-
type dependent and thus changes; refer to Fig. 9, reproduced
after [13].

As example of a small state machine, Fig. 9 (top) shows
the different locations (3rd or 6th position) of the SA, and the
corresponding state machine. As every hardware state
machine is independent from the other ones, they all work
concurrently and the number of activated trigger conditions
has no impact on the reaction time.

D. Fault generation

a) Fault implementation

Destroying (a series of) bits, bytes or complete telegrams
is either achieved by RS485 transceivers – by far most the
versatile and dynamic method – or by reed relays.

Fig. 9. (Top) Source Address position in PB DP telegram. (Bottom) State

machine for Source Address trigger.

Two independent PROFIBUS RS485 transceivers
(SN65HVD1176) force constant levels on the two bus lines
(A and B) of the differential pair of the bus. These are
individually controlled by different FPGA outputs for
maximum flexibility (Fig. 10). The type of fault – any
combination of A and B high or low – can be configured by
the user. The transceiver at the input is an ISO1176 (Fig. 1).

Besides triggered “fast” destruction of parts of network
telegrams, an “impedance mismatch”, a current source to
produce a shield current, etc. can be applied to the network
using reed relays. The HMI allows the control of 2 normally
open reed relays, with a closing time of max. 500 µs
(including bouncing) and an opening time of max. 100 µs.

Fig. 10. Forcing the fault on the RS-485 network.

b) Duration – Sequence

The duration of a single fault can be set: its value can be
expressed as a number of bit times or character times, and can
vary in a very wide range. The minimum duration is one bit
time at maximum bit rate, 83 ns at 12 Mbps; maximum 999
bit times can be selected. The maximum duration is chosen at
510 character times (2 maximum-length telegrams); at 9600
bps it is 0.58 s. The maximum duration at the more industrially
relevant 1.5 Mbps bit rate is 3.74 ms of “character times” (no
time between telegrams). Realistic length telegrams – as
slaves typically do not transfer a lot of information – are far
shorter than the maximum length; 510 characters is order of
magnitude 15-20 telegrams (for one single fault).

The final trigger sequence is fully configurable:

• The waiting time (“delay”) between successive fault
triggers is expressed in ms and can have any value
between 1 ms and 17 minutes.

• 0 up to 9999 trigger conditions can be skipped (“hold-
off”) in order to apply faults only after a certain
number of triggers.

• The number of applied successive faults (“repetition”)
can also be set to any value between 1 and 31.

By combining these optional functionalities, almost any
sequence of fault generation can be defined. Fig. 11 depicts
the situation when the number of skipped faults and the
number of successive faults are respectively set to 3 and 2,
with a non-zero waiting time.

Fig. 11. Example of a sequence with waiting time ≠ 0, skipped faults = 3 and

successive faults = 2.

c) The FPGA and custom PCB

The final system is an assembly of two boards, stacked
together. The Terasic DE0-Nano development board (Fig. 12,

top) holds the FPGA: a Cyclone IVE Intel FPGA with
22.320 Logic Elements (LEs) and 154 General Purpose Inputs
Outputs (GPIOs). The current application uses 4 % of the
available LEs and 14 % of the available GPIOs.

The second one (Fig. 12, bottom) is a custom board with a

8-bit Microchip microcontroller used for the Human
Machine Interface (HMI), and interfaces with the FPGA via
SPI (Serial Peripheral Interface). The HMI (4×16 LCD
display and keyboard switches) allows for on-the-fly
modifications that are instantly applied. Fig 1 depicts 4 trigger
signal outputs from the FPGA: these can be used e.g. to trigger
an oscilloscope measuring other than bus signals.

The reaction time of the FPGA is limited to 4 clock pulses
(of 5 ns each) by using a pipelined design. The check on the
trigger conditions itself starts at the end of each character, to
be certain that calculations are performed on a valid character.

Fig. 12. The final assembly: FPGA board (top) and custom board (bottom).

IV. VALIDATION BY SIMULATION

The 1st phase of the system validation was done by gate-
level simulation, after “Place & Route” in the FPGA, and
taking into account the real propagation delays introduced by
the configurable connections and the logic cells. All
simulations were done with ModelSim [17].

To be even closer to real behaviour, an input signal was
extracted from a live measurement in a 1.5 Mbps PB DP
network. A VHDL testbench was written to read analogue
values from the measurement ascii file obtained with an
oscilloscope, to convert these to digital values, and finally use
these as simulation inputs. It was thus possible to check that
the expected functionality was reached both with “real” data
but also with simulated data for rather random situations.

Fig. 13 shows a simulation result in the case of a Start
Delimiter detection. The system was configured to generate a

10 µs output pulse whenever a Start Delimiter was found.

Fig. 13. Gate-level simulation result: Start Delimiter detection.

Simulation also proved useful to quickly and efficiently
validate the system’s ability to introduce a waiting time
between successive actions, to skip some triggers, and to apply
a predefined number of faults. These sequences and
combinations can be checked in a flexible way in the
simulation phase, but are tedious to check in a live network.

V. VALIDATION IN LIVE PROFIBUS DP NETWORKS

A. Fault injection

Fig. 14 shows both differential voltage and absolute
voltages on lines A & B during a fault injection at 1.5 Mbps.
Line B is forced low and line A is forced high on a cable of
100 m length.

Fig. 14. Oscilloscope measurement of fault injection at 1.5 Mbps, showing

both differential voltage and absolute voltages on lines A & B.

B. Networks and measuring equipment for the use cases

The baseline networks were presented in Chapter II (Fig. 5).
A UART decoding oscilloscope Tektronix DPO 4054B with
isolating probes [18] was used for measurements on up to 4
points in the network (Fig. 15, top). Besides UART decoding
by the oscilloscope, a MATLAB script was developed for
further analysis. The trigger outputs of the fault generator can
be used by extra oscilloscopes to determine the behavior of
other network components (e.g. digital outputs of slave
stations, analog torque or speed signals of drive systems, etc.).

Fig. 15 (bottom) shows a number of diagnostic tools that
are connected to analyze what is actually reported on each
fault: two ProfiCores with ProfiTrace software, a COMbricks
(all Procentec), a diagnostic repeater (Siemens), and a
PROFIBUS Inspektor (Indu-Sol). A short discussion on the
reporting of these diagnostic devices – also depending on their
location – is presented in the use cases. However, a detailed
analysis of their diagnosis is beyond the scope of this paper.

C. Use case 1: destroying 2 consecutive telegrams to a

slave

The following set-up is configured in the fault generator
settings: 2 consecutive SD2 telegrams from DPM1 (address
74) to the slave with address 34 are destroyed every 10 s. Line
B is forced high and line A low so that B-A is positive; the
network bit rate is 1.5 Mbps and the fault duration is 3
characters.

Fig. 15. Measuring equipment used for the validation in live networks.

Fig 16 (left) shows healthy data exchange telegrams left
from the middle of the trace. The telegram in the middle of the
oscilloscope image is destroyed, as well as the repeated
telegram in the right part. Fig. 16 (right) shows in detail the 3
destroyed characters: these are only mildly shifted in voltage
level at the master side (source of the telegram, and quite far
away from the imposed fault levels), and on all the other
locations a complete destruction can be observed.

In Fig. 17 a ProfiTrace recording (at the side of the master)
is shown. As the slave doesn’t receive a request from the
DPM1 twice in a row, and consequently does not respond, the
master’s repeat limit is exceeded. “Repeat (lost)” is indicated
the second time. The master waits for the next cycle to set
parameters (indicated with “Sync”). When the slave is ready,
it will (later) again get in the communication sequence.

Although a detailed analysis of what the different
diagnostic tools report is not within the scope of this paper, we
can briefly indicate the possibilities for analysis and
comparison. All diagnostic tools detect this fault. It is seen
either as a restart or a sync of slave 34. Some tools installed
close to the source also detect repeats, some also detect illegals
(close to the destination).

Fig. 16. Use case 1 oscilloscope recording. Left figure: the telegram to

station 34 is destroyed, and the repeat (towards the right) also. Right

figure: detail of the destroyed telegram.

Fig. 17. ProfiTrace recording of Use case 1.

D. Use case 2: destroying token passes between masters

Some measurements and short analysis of the stability
behavior of the token ring between DP masters have been
described in e.g. [10]. These are limited to 500 Kbps (not a
typical PROFIBUS DP bit rate for industrial applications);
e.g. [11] even goes as low as 19200 bps in particular tests. In
contrast to these severe limitations, the developed fault
generator destroys token passes in a freely configurated
sequence, to industrial DPM1 stations, and at a high bit rate
(in a 1.5 Mbps network, a 6 Mbps one for the reaction time
measurement) until the token ring is reconfigured (Fig. 5).

The following set-up is configured in the fault generator
settings: 3 consecutive SD4 Token Pass telegrams to DPM1
with address 2 are destroyed every 10 s. Line B is forced high
and line A low, so that B-A is positive; the network bit rate is
1.5 Mbps. The fault duration is 3 characters, in this case lasting
longer than the remainder of the telegram: the trigger is
reached at the end of the 2nd character in the SD4 telegram.

Fig 18 (left) shows 3 destroyed SD4 telegrams to station
2, the first one under the orange “T” mark on top. The right
figure shows a detail of a destroyed SD4 telegram on 4
locations. Again, these are only mildly shifted in voltage level
at the master side and still correct (source of the telegram, and
quite far away from the imposed fault levels), and on all the
other locations a complete destruction can be observed.

Fig. 18. Use case 2 oscilloscope recording. Left figure: 3 SD4 telegrams to

station 2 are destroyed, the first one under the orange “T” dot on top.

Right figure: detail of a destroyed SD4 telegram.

In Fig. 19 a ProfiTrace recording (at the side of the master)
is shown. The Master on address 1 notices no communication
from any master within the slot time, and repeats the token
pass to Master station 2 two times. Station 2 is removed from
the LAS (List of Active Stations), and the token is passed from
1 to 3. The latter doesn’t expect it from 1, so it is repeated
before station 3 accepts the token.

Brief analysis: all diagnostic tools detect this fault, either
as a repeat (close to the source) or as an illegal (close to the
destination). The COMbricks – in this case a Head Station
Type 1C (HW V1.9; SW V1.303), with as Repeater a Type 1
(HW V1.4; SW V1.14) – does not indicate repeats for token
passes.

Fig. 19. ProfiTrace recording of Use case 2.

E. Overall reaction time

The reaction time of the FPGA is 4 x 5 ns (Section III).
The typical remaining time delays for the generation of the
fault trigger are measured in Fig 20, that shows a SD4 token
passing telegram in a 6 Mbps network. Channel 4 on the
oscilloscope now shows the trigger signal. Channel 2 (light
blue) is at the fault generator, trigger condition is fulfilled at
the end of the last telegram character “01”, so that there is a
clear view on the destruction (line B is H, line A is L). From
the end of “01” (which is correctly indicated by the decoding,
at the end of 2 “H” bits of 167 ns each) to the start of the trigger

pulse is about 70 ns. The input delay of the optocoupler is max.
55 ns, the FPGA reaction time is 20 ns, and the output
optocoupler introduces typically 31 ns of delay time; the

components are listed in Section III D. The 70 ns in the
measurement is thus within the specifications.

From “trigger condition fulfilled” to start of destruction is
80.4 ns (cursor measurement in Fig. 20, insert); at 6 Mbps it
means that the character after the one that fulfils the trigger
condition is destroyed (11 x 167 ns = 1.84 µs). Also at 12
Mbps, it is the 1st character after the one that fulfils the trigger
condition that is destroyed (one character takes 11 x 83 = 913
ns), which means that for all bit rates the character after
fulfilling the trigger conditions is destroyed.

VI. CONCLUSIONS AND FUTURE WORK

A low-cost, versatile and configurable trigger and fault
generator for PROFIBUS DP has been developed. It proves
very useful for training purposes, analysis of the behavior of
diagnostic tools and for in-depth testing of more complex
industrial problems. It covers all PROFIBUS DP bit rates up
to 12 Mbps, and it covers 48 % of the “interesting, highly
dynamic” faults.

The reaction time of the FPGA – to calculate if the trigger
conditions are fulfilled – is limited to 4 clock cycles of 5 ns.
The trigger condition itself is checked at the end of the
character that fulfils the trigger condition. The trigger signal
is typically available 70 ns after the end of the character that
fulfils the trigger condition. Total reaction time to the fault
impact on the bus itself is about 80 ns.

Total cost is less than € 200 (using vendors providing
quick delivery of components, so a further decrease of the
price is possible), without a mounting box.

As future application, it is planned to use the fault generator
in research concerning “big data” analysis of bus phenomena
in real-time for early detection of bus failures. Finally, the idea
of a fault generator for Ethernet based industrial networks
remains to be explored.

ACKNOWLEDGMENT

Bram Vanseveren (UGent), Annemarie Kokosy and Bruno
Stefanelli (both Junia-ISEN), Jos De Brabanter (KU Leuven)
and Frederic Depuydt (now ArcelorMittal Gent, formerly at
KU Leuven) for advice and support. Engineering

staff of ArcelorMittal Gent for inspiration and advice. This
work was funded by the Interreg Va 2 Seas project 2S01-049
INCASE.

REFERENCES

[1] https://www.profibus.com/

[2] “The New Rapid Way to Profibus DP”, M. Popp. PROFIBUS
Nutzorganisation, 2003, Karlsruhe, Germany..

[3] “PROFIBUS: Theory & Practice, Engineering & Troubleshooting”; F.
Depuydt, W. Hauspie, H. Derre, T. De Landtsheer, S. Noppe, M.
Troch, D. De Schuyter, P. Saey. Internal course notes INCASE, 2019.

[4] “CAN-PROFIBUS interface for communication between MV1000
drive and PLC”); E. Hubaux, MSc thesis, KU Leuven, 2021.

[5] “The PROFIBUS Protocol Observation”; P. Drahos, I. Belai. 9th IFAC
Symposium on Advances in Control Education, Nizhny Novgorod,
Russia, 2012.

[6] “Artificial Neural Networks and Signal Clipping for PROFIBUS DP
diagnostics”, G. Sestito, P. Souza, E. Mossin, D. Brandão and A. Dias.
12th IEEE international conference on industrial informatics, INDIN
2014, pp. 242–247.

[7] "Automatic Diagnosis for Profibus Networks", E. Mossin, D. Brandão,
G. Sestito, and R. Torres. Journal of Control, Automation and
Electrical Systems 27.6 (2016): pp. 658-69.

[8] “Procentec fault generator”;
https://procentec.com/products/automation-tools/training-tools/fault-
generator/

[9] https://procentec.com/products/automation-tools/training-
tools/profibus-dp-training-device/. DP slave as fault generator.

[10] “Assessment of PROFIBUS networks using a fault injection
framework”; J. Carvalho, A. Carvalho, P. Portugal. IEEE ETFA, 2005.

[11] “An Open Implementation of Profibus DP”; D.K. Tran, P. Pisa, P.
Smolik. Real Time Linux Workshops, Dresden, Germany, 2009.

[12] “Design of an Arduino based low-cost error generator for PROFIBUS
DP”; P. Saey, W. Hauspie, H. Derre, T. De Landtsheer, A. Kokosy, J.
Knockaert. IEEE Conference on Emerging Technologies and Factory
Automation ETFA 2014, Sep. 16-19, Barcelona (Spain).

[13] “PROFIBUS Manual”; M. Felser, 2017. https://felser.ch/profibus-
manual/index.html

[14] “Vortex report” 2019 & 2020, R. Heidl et. al., https://www.indu-
sol.com/en/

[15] “PROFIBUS troubleshooting a.d.h.v permanente logging met
COMbricks in ArcelorMittal Gent” (“PROFIBUS troubleshooting
using permanent logging with COMbrickx in ArcelorMittal Gent”); J.
Mortier, MSc thesis, KU Leuven, 2015.

[16] “Methodology for FPGA-based system design”. J. Capron. Course
notes INCASE, 2017.

[17] https://www.mentor.com/products/fv/modelsim/

[18] http://www.tektronix.com

Fig. 20. Reaction time measurement at 6 Mbps.

