
The trusted computing base of the CompCert
verified compiler

David Monniaux Sylvain Boulmé

VERIMAG

2022-04-06 / ESOP 2022, Garching

https://hal.archives-ouvertes.fr/hal-03541595

D. Monniaux (VERIMAG) The trusted computing base of the CompCert verified compiler 2022-04-06 1 / 29

https://hal.archives-ouvertes.fr/hal-03541595


Executive summary

The problems are not where you think they are.

Part 1
Problems that pique theoretical computer scientists but are mostly
irrelevant in practice.

Part 2
Actual problems you likely have never heard of.

(Much more in the paper than in the talk!)

D. Monniaux (VERIMAG) The trusted computing base of the CompCert verified compiler 2022-04-06 2 / 29



The question

Plan

The question

Proof and typing issues

Semantic issues

D. Monniaux (VERIMAG) The trusted computing base of the CompCert verified compiler 2022-04-06 3 / 29



The question

CompCert

Rationale
The only industrial compiler with a formal proof of correctness
(see also CakeML).

Versions
▶ Official https://github.com/AbsInt/CompCert
▶ Commercial

https://www.absint.com/compcert/index.htm
▶ (Ours) For Kalray KV3 & extended optimizations, esp. for

Risc-V, AArch64 https://gricad-gitlab.
univ-grenoble-alpes.fr/certicompil/compcert-kvx

▶ With SSA https://compcertssa.gitlabpages.inria.fr/

D. Monniaux (VERIMAG) The trusted computing base of the CompCert verified compiler 2022-04-06 4 / 29

https://github.com/AbsInt/CompCert
https://www.absint.com/compcert/index.htm
https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/compcert-kvx
https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/compcert-kvx
https://compcertssa.gitlabpages.inria.fr/


The question

Proof of semantic preservation

Semantics
C source and (idealized) assembly source semantics as traces of
observable events:
▶ calls to external functions (I/O…)
▶ special processor instructions (system registers)
▶ read and writes on volatile variables

Theorem
If compilation succeeds, then any execution (up to undefined
behavior) of the C program yields the same execution trace for the
assembly program.

D. Monniaux (VERIMAG) The trusted computing base of the CompCert verified compiler 2022-04-06 5 / 29



The question

Questions

“Theorem formally proved within the Coq proof assistant.”
▶ What is actually guaranteed?
▶ Are there loopholes?
▶ What does it rely on?
▶ What assumptions?

D. Monniaux (VERIMAG) The trusted computing base of the CompCert verified compiler 2022-04-06 6 / 29



Proof and typing issues

Plan

The question

Proof and typing issues

Semantic issues

D. Monniaux (VERIMAG) The trusted computing base of the CompCert verified compiler 2022-04-06 7 / 29



Proof and typing issues

Coq

Coq (as opposed to, e.g., PVS) does not trust its own tactics.
Tactics produce proof terms, going to a typechecker (small kernel).
Typechecker reduces terms in typed λ-calculus (Calculus of
Inductive Constructions with universes)

Trust in the reduction strategies, including based on virtual machine
and native compilation.

https://github.com/coq/coq/blob/master/dev/doc/
critical-bugs
Some rare bugs could be exploited inadvertently.

D. Monniaux (VERIMAG) The trusted computing base of the CompCert verified compiler 2022-04-06 8 / 29

https://github.com/coq/coq/blob/master/dev/doc/critical-bugs
https://github.com/coq/coq/blob/master/dev/doc/critical-bugs


Proof and typing issues

Extraction

Coq code in CompCert is extracted to OCaml and linked to OCaml
code.

The TCB includes the extractor, the OCaml native-code compiler
(same for Coq itself).

OCaml code is memory-safe…
▶ if you don’t call external C functions (but the standard library?)
▶ if you don’t use the Obj module and unsafe array/string

functions

Some Obj.magic in extracted code (e.g. System F does not map to
ML’s Hindley-Milner polymorphism), which should be type-safe
since CIC is type-safe.

D. Monniaux (VERIMAG) The trusted computing base of the CompCert verified compiler 2022-04-06 9 / 29



Proof and typing issues

Coq and extractor

We don’t think there is an important hazard of Coq, OCaml or
extractor bugs
▶ that could be exploited unintentionally
▶ that would be undetected (memory corruption from C code /

Obj typically crashes OCaml programs)

D. Monniaux (VERIMAG) The trusted computing base of the CompCert verified compiler 2022-04-06 10 / 29



Proof and typing issues

Axioms in Coq

As in any other logical system, introducing contradictory axioms
allows proving false theorems.

CompCert uses classical axioms (excluded middle, functional
extensionality, proof irrelevance), consistent with CIC.

We did not detect misuse of axioms.

D. Monniaux (VERIMAG) The trusted computing base of the CompCert verified compiler 2022-04-06 11 / 29



Proof and typing issues

Linking to OCaml code

Coq definitions or axioms may be specified to be extracted to OCaml
types, terms:
▶ for e.g. using OCaml’s list and bool types instead of

declaring new (isomorphic) list and Boolean types extracted
from Coq

▶ for calling external OCaml functions (oracles)
▶ for implementing smart constructors

D. Monniaux (VERIMAG) The trusted computing base of the CompCert verified compiler 2022-04-06 12 / 29



Proof and typing issues

Oracle calls

Used to run procedures not easily coded in Coq (hash tables, calls to
external tools…), e.g. register allocator

Axiom in Coq, “extract constant as” OCaml code

Mismatch of OCaml types (e.g., integer vs Boolean) detected by
OCaml typechecker.

CompCert avoids specifications such as “function that returns
n ≤ 3”, because n ≤ 3 would be trusted.

D. Monniaux (VERIMAG) The trusted computing base of the CompCert verified compiler 2022-04-06 13 / 29



Proof and typing issues

Untrusted oracle use

Oracles used
▶ for picking heuristic choice
▶ for computing untrusted results

Untrusted results must be fed to trusted verifier (e.g. check that a
fixed point is a fixed point, that a register allocation is valid…).

Coq is purely functional, OCaml isn’t.

D. Monniaux (VERIMAG) The trusted computing base of the CompCert verified compiler 2022-04-06 14 / 29



Proof and typing issues

Hash-consing

= create one single copy of each active term
two different solutions in CompCert KVX

Minimal trust solution
An untrusted “factory” returns terms (from impure monad), which
are checked for correctness.
The only trusted part: pointer equality of two OCaml terms
implies term equality (surprisingly controversial)

More trusted solution
Extract the constructor to a “smart constructor” with hash-consing.
Trust a few lines of OCaml

D. Monniaux (VERIMAG) The trusted computing base of the CompCert verified compiler 2022-04-06 15 / 29



Proof and typing issues

Executive summary so far

Did not see any way to cause miscompilation.

D. Monniaux (VERIMAG) The trusted computing base of the CompCert verified compiler 2022-04-06 16 / 29



Semantic issues

Plan

The question

Proof and typing issues

Semantic issues

D. Monniaux (VERIMAG) The trusted computing base of the CompCert verified compiler 2022-04-06 17 / 29



Semantic issues

C semantic issues

What if CompCert’s notion of C is not the programmer’s?

We have conducted extensive testing by comparison with gcc
(applications and randomly generated code). No discrepancy from
compiled code…

D. Monniaux (VERIMAG) The trusted computing base of the CompCert verified compiler 2022-04-06 18 / 29



Semantic issues

A little fun question

#include <stdio.h>

struct toto { unsigned fx : 3; };

int main() {
struct toto m;
m.fx = 2;
if (m.fx == 2) {
printf(”coincoin\n”);

}
return 0;

}

D. Monniaux (VERIMAG) The trusted computing base of the CompCert verified compiler 2022-04-06 19 / 29



Semantic issues

Related

#include <stdio.h>
#include <stdlib.h>

struct toto { unsigned fx : 3; };

int main() {
struct toto *m = malloc(sizeof(struct toto));
m->fx = 2;
int r = (m->fx != 2);
free(m);
return r;

}

D. Monniaux (VERIMAG) The trusted computing base of the CompCert verified compiler 2022-04-06 20 / 29



Semantic issues

Malloc is OK

#include <stdio.h>
#include <stdlib.h>

struct toto { unsigned fx; };

int main() {
struct toto *m = malloc(sizeof(struct toto));
m->fx = 2;
int r = (m->fx != 2);
free(m);
return r;

}

D. Monniaux (VERIMAG) The trusted computing base of the CompCert verified compiler 2022-04-06 21 / 29



Semantic issues

Global ?

#include <stdio.h>

struct toto { unsigned fx : 3; } m;

int main() {
m.fx = 2;
return (m.fx != 2);

}

D. Monniaux (VERIMAG) The trusted computing base of the CompCert verified compiler 2022-04-06 22 / 29



Semantic issues

Explanation

Bitfields are internally converted into bit shifts / masks on integers.

If a word is uninitialized (“value undefined” or Vundef), operations
all yield Vundef, thus undefined behavior.

D. Monniaux (VERIMAG) The trusted computing base of the CompCert verified compiler 2022-04-06 23 / 29



Semantic issues

Why is this a problem

The compiler may substitute anything for undefined behavior.

This is why CompCert is cautious with optimizations and is generally
designed not to optimize based on undefined behavior.
▶ Many programs rely on undefined behavior.
▶ CompCert’s source semantics wrongly introduces undefined

behavior on bitfields (and possibly other topics).
▶ Would it really gain speed?

D. Monniaux (VERIMAG) The trusted computing base of the CompCert verified compiler 2022-04-06 24 / 29



Semantic issues

Target semantics

CompCert (Asm.v module) has an idealized semantics of assembly
code.

It reflects not only the actual assembly instructions (ISA) but also
the application binary interface (ABI) of the operating system
(linking, etc.).
e.g. “how do I get the address of a global symbol?”

Idealized version: talks of “pointer”, “32-bit integer”, “64-bit integer”
and not about their bit representation.
Is a 32-bit value 0-extended? sign-extended? higher bits irrelevant?

ABI not specified in one clean place but spread over.
May be different from gcc/clang (documented).

D. Monniaux (VERIMAG) The trusted computing base of the CompCert verified compiler 2022-04-06 25 / 29



Semantic issues

Pseudo-instructions

Some instructions are not real CPU instructions but are expanded by
unverified OCaml code.
▶ “Too magical”, impossible to express/prove in idealized

semantics (e.g., memcpy builtin, stack frame
allocation/deallocation).

▶ ABI issues (“get the address of a thread-local variable”)

The OCaml code and the Coq specification of the instructions must
match.

D. Monniaux (VERIMAG) The trusted computing base of the CompCert verified compiler 2022-04-06 26 / 29



Semantic issues

What we found

▶ On multiple architectures, some pseudo-instructions were
incorrectly specified (missing clobbered registers).

▶ Some of this was found when developing optimizations, proved
correct and generating incorrect code (because of incorrect
preexisting specification).

▶ Some instructions were incorrectly printed but resulted in
syntactically correct assembly code (order of arguments of
fused multiply-add on x86).

D. Monniaux (VERIMAG) The trusted computing base of the CompCert verified compiler 2022-04-06 27 / 29



Semantic issues

What would be needed

Systematic testing of the specified semantics of the instructions and
pseudo-instructions with respect to generated assembly code?

D. Monniaux (VERIMAG) The trusted computing base of the CompCert verified compiler 2022-04-06 28 / 29



Semantic issues

Conclusion

▶ Computer science researchers worry about explicit axioms such
as “pointer quality implies equality”, and pure functionality,
which have not resulted in any miscompilation.

▶ Source semantics have some odd corners (bitfields).
▶ Target semantics, trusted transformation and printing have

been insufficiently tested (order of arguments printed
incorrectly) and need validation.

https://gricad-gitlab.univ-grenoble-alpes.fr/
certicompil/compcert-kvx

D. Monniaux (VERIMAG) The trusted computing base of the CompCert verified compiler 2022-04-06 29 / 29

https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/compcert-kvx
https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/compcert-kvx


Functionality

Coq is a pure functional language. f(x) always has the same value.
OCaml is an impure language. f(x) can change values if references
are used.

It is possible to reach “unreachable” cases in Coq code by calling an
OCaml impure function that changes value.

Seems difficult to exploit by mistake (call the same OCaml function
twice with same arguments intentionally, exploit “unreachable”
case).

D. Monniaux (VERIMAG) The trusted computing base of the CompCert verified compiler 2022-04-06 1 / 2



Impure monad

The register allocator is trusted to be functional despite using
mutable state.

A more elegant solution: an impure “may return” monad.

Used for some external calls in CompCert KVX (hash-consing engine
for symbolic execution).

D. Monniaux (VERIMAG) The trusted computing base of the CompCert verified compiler 2022-04-06 2 / 2


	The question
	Proof and typing issues
	Semantic issues
	Appendix

