
HAL Id: hal-03541461
https://hal.science/hal-03541461v1

Submitted on 24 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mixed Variable Gaussian Process-Based Surrogate
Modeling Techniques: Application to Aerospace Design

Julien Pelamatti, Loïc Brevault, Mathieu Balesdent, El-Ghazali Talbi,
Yannick Guerin

To cite this version:
Julien Pelamatti, Loïc Brevault, Mathieu Balesdent, El-Ghazali Talbi, Yannick Guerin. Mixed Vari-
able Gaussian Process-Based Surrogate Modeling Techniques: Application to Aerospace Design. Jour-
nal of Aerospace Information Systems, 2021, 18 (11), pp.813-837. �10.2514/1.I010965�. �hal-03541461�

https://hal.science/hal-03541461v1
https://hal.archives-ouvertes.fr

Mixed-variable Gaussian process based surrogate modeling
techniques, application to aerospace design

Julien Pelamatti ∗, Loïc Brevault † and Mathieu Balesdent ‡

ONERA, DTIS/Université Paris Saclay, F-91123 Palaiseau Cedex, France

El-Ghazali Talbi §
Inria - Lille Nord Europe, 59650 Villeneuve d’Ascq, France

Yannick Guerin ¶

Centre National d’Etudes Spatiales, Direction des lanceurs, 75012 Paris, France

Within the framework of complex system analyses, such as aircraft and launch vehicles,

the presence of computationally intensive models (e.g., finite element models and multidisci-

plinary analyses) coupled with the dependence on discrete and unordered technological design

choices results in challenging modeling problems. In this paper, the use of Gaussian process

surrogate modeling of mixed continuous/discrete functions and the associated challenges are

extensively discussed. A unifying formalism is proposed in order to facilitate the description

and comparison between the existing covariance kernels allowing to adapt Gaussian processes

to the presence of discrete unordered variables. Furthermore, the modeling performances of

these various kernels are tested and compared on a set of analytical and aerospace engineering

design related benchmarks with different characteristics and parameterizations. Eventually,

general tendencies and recommendations for such types of modeling problem using Gaussian

process are highlighted.

I. Introduction
Nowadays, a growing majority of aerospace design processes heavily relies on the use of computer models and

simulations, as it usually represents a faster and cheaper alternative to physical testing, while still providing results

accurate enough for most applications. Furthermore, computer simulations can also provide performance estimates in

conditions which cannot reasonably be tested (e.g., outer space behaviors). However, computer modeling also presents a

number of limitations and drawbacks. Most notably, the computation time associated to the performance simulation of

complex systems can be still considerably large. Typical examples involve computational fluid-dynamics analyses and

finite element models. This issue may become particularly problematic when the models are used within an optimization
∗Research Engineer, ONERA/DTIS.
†Research Engineer, ONERA/DTIS.
‡Research Engineer, ONERA/DTIS.
§Professor, INRIA-Lille Nord Europe.
¶Engineer, CNES Direction des lanceurs.

framework, as they usually must be called a large amount of times in order to determine the solution of the considered

problem (i.e., optimal design). In order to partially avoid this issue, a common solution consists in creating a surrogate

model of the numerical simulation codes [1], which relies on a mathematical representation of the studied function.

These surrogate models usually present a negligible computational cost when compared to the modeled functions,

which allows them, if necessary, to be evaluated a large amount of times during the optimization process. However,

the addition of this modeling layer also implies a loss of accuracy (i.e., introduction of additional modeling errors) if

compared to the actual simulation, the magnitude of which depends on the type of modeling technique that is used as

well as on its parameterization.

Among the most popular surrogate modeling techniques used within the framework of complex system design

optimization, one may find polynomial regression models [2], Artificial Neural Networks [3], Radial Basis Functions

[4], [5], Support Vector Machine Regression [6] and Multivariate adaptive regression spline [7]. More comprehensive

discussions on the differences and advantages of the various surrogate modeling techniques can be found in [1] and [8].

The main focus of this paper is relative to the use of specific modeling techniques known as Gaussian Processes [9]

(GP), which are increasingly popular methods when modeling functions with low amount of available data and/or when

dealing with computationally intensive optimization problems. The interest of GP comes from its ability to provide in

addition to a model prediction, an uncertainty prediction model (under the form of a probability distribution) that may

be used to quantify the surrogate model uncertainty and to refine the surrogate model via active learning strategies.

Most of the surrogate modeling techniques have originally been developed in order to model continuous problems (i.e.,

characterized by functions depending solely on continuous variables). However, aerospace design problems are also

confronted to the presence of discrete and categorical variables. The discrete choices may characterize, for instance,

technological or architectural alternatives. Typical examples of such discrete choices which can be encountered within

the aerospace systems are the type of material (e.g., steel, aluminum, composite), the type of rocket propulsion (e.g.,

liquid, solid, hybrid), the wing configuration (e.g., straight, delta, swept), the number of stages for a launcher, the

inclusion of auxiliary sub-systems and/or technologies (e.g., inclusion of lifting surfaces for reusable launch vehicle),

etc. Without loss of generality, the choices related to the architecture definition can be represented under the form

of discrete design variables, sometimes referred to as categorical or qualitative variables, which characterize design

alternatives and/or technological choices. Discrete variables are non-relaxable variables defined within a finite set of

choices. Discrete variables are typically divided into 2 categories: quantitative and qualitative. As the name suggests,

quantitative variables (sometimes also referred to as ordinal) are related to measurable values and by consequence, a

relation of order between the possible values of a given variable can be defined (i.e., it is possible to determine whether

a value is larger, smaller or equal to another). Quantitative discrete variables are often associated to integer variables,

although it is not a necessary requirement. When dealing with qualitative variables, instead, no relation of order can be

2

defined between the possible values of a given variable. When dealing with mixed continuous/discrete variables, a

number of additional challenges, such as the absence of metrics in the discrete search space, need to be addressed in

order to be able to create an accurate and reliable surrogate model. In the recent years, a few adaptations of existing

continuous surrogate modeling techniques as well as novel modeling methods have been developed in order to be able to

model mixed continuous/discrete functions. A few reviews of existing mixed continuous/discrete surrogate modeling

techniques can be found in [10], [11] and [12].

In the context of mixed continuous/discrete problems, GP have to be created by processing a training data setD of =

samples {x8 , z8 , H8} with 8 ∈ {1, ..., =}. D can be defined as follows:

D =
{
X = {x1, ..., x=} ∈ �=G , Z = {z1, ..., z=} ∈ �=I , y = {H1, ..., H=} ∈ �=H

}
where X and Z are the matrices containing the = continuous and discrete vectors characterizing the training data set, while

y is the vector containing the associated responses (i.e., modeled function). �=G , �=I and �=H are the definition domains of

the three previously mentioned matrices. GP are increasingly popular methods when dealing with computationally

intensive functions due to their modeling performance and flexibility. They present several advantages when compared

to other surrogate modeling techniques. For instance, the training of the hyperparameters can be directly performed with

respect to the training data, and does not require auxiliary data sets, as is for instance the case when using cross-validation.

Additionally, GP can be parameterized in order to automatically handle noisy training data sets, which can for example

be encountered when considering experimental data. Furthermore, although they do not explicitly require it, GP allow

the user to easily include problem specific knowledge in the model definition, if available (e.g., specification of the

mean function and selection of the kernel). Finally, and most importantly, GP can return an estimated error associated

to prediction of the modeled function as a (virtually) computationally free bi-product, under the form of a variance

value. This particular characteristic can be useful when performing Surrogate Model-Based Design Optimization, as it

allows to define surrogate model refinement criteria characterized by a trade-off between exploitation (i.e., refinement of

the incumbent solution) and exploration (i.e., reduction of the model error and uncertainty) of the design space. GP

have been first defined to model function depending solely on continuous variables.

This paper focuses on the use of Gaussian Process in order to model computationally intensive functions which

depend simultaneously on continuous and discrete variables. Recently, different covariance models [13–16] have been

proposed to allow mixed continuous and discrete variables GP. These covariance models involve various mathematical

formalisms and subtleties. The main objectives are to propose a unified formalism to facilitate the description and

comparison between different covariance models that are at the core of mixed-GP. A comprehensive discussion is

provided on the necessary steps required to model mixed-variable functions using GP and the advantages and drawbacks

of the different techniques. Moreover, the modeling performances of the described existing approaches are assessed on

3

a set of analytical test-cases (five toy cases of various dimension and complexity) and aerospace engineering design

problems (rocket engine performance simulation and launcher thrust frame structural analysis). General tendencies and

recommendations for such a type of surrogate models are provided.

Following this introduction, in the second Section a brief theoretical overview of Gaussian Processes is provided. In

the third Section, the construction of valid discrete variable kernels is discussed, and the existing kernels are re-defined

within this formalism, thus allowing to better highlight and discuss the differences between the presented kernels. In the

fourth Section, the discrete kernels are compared from a performance perspective by testing their modeling capabilities

on five of analytical toy cases and two aerospace design test-cases of varying complexity. In the fifth Section the obtained

results are described and discussed, and finally the relevant conclusions are provided in the sixth and last Section.

II. Gaussian Process surrogate models
The core concept of Gaussian Process-based surrogate modeling (sometimes also referred to as Kriging [17], [18]) is

to predict the response value H∗ of a black-box function 5 (·) for a generic unmapped input {x∗, z∗} through an inductive

procedure. Generally speaking, the larger the training data set is, the more accurate the model will be. However, it is

important to note that the choice of samples that are included in the training set also influences the modeling accuracy,

as is discussed later in the paper. In its most generic definition, a Gaussian Process is a collection of random variables,

any finite number of which have a multivariate joint Gaussian distribution, or alternatively is a generalization of the

Gaussian probability distribution[9]. In other words, instead of describing the probability distribution of random scalar

or vectorial variables, GP map the probability distribution of the possible regression functions. A generic Gaussian

Process . (x, z) is characterized by its mean function `:

`(x, z) = E[. (x, z)] (1)

with E[·] the mathematical expectation, and its covariance function:

�>E (. (x, z), . (x′, z′)) = � [(. (x, z) − `(x, z)) (. (x′, z′) − `(x′, z′))] (2)

and if a generic function 5 (·) follows a GP, it can be expressed as:

5 ∼ �%(`(·), �>E(·)) (3)

The mean function parameterization can technically be defined by the user in order to better represent the modeled

function. In most real-life engineering design cases, insufficient information regarding the global trend of the modeled

functions is known, and it is therefore complicated to choose the appropriate trend and relative parameterization of `(·).

4

In these cases, it is common practice to consider the regression function `(·) as a being constant with respect to the

design space [19]:

`(x, z) = ` (4)

The covariance function �>E(·) is usually defined through the use of a parameterized covariance kernel. The kernel

is used to model the covariance between two elements as a symmetric positive definite function of the values of the

coordinates of the elements : ({x, z}, {x′, z′}) (see Section IV). The most known kernels are the Squared Exponential

kernel (also known as Radial Basis Function), the Rational Quadratic kernel, the Matérn kernel, etc.. The prior mean and

prior covariance are updated by relying on the information on the modeled function provided by the data set D, which

enables to provide a more insightful model of the considered function. The predicted value 5 ∗ of this function at an

unmapped location {x∗, z∗} is then computed under the form of a Gaussian distribution conditioned on the data set [9]:

5 ∗ |x∗, z∗,X,Z,Y ∼ N
(
Ĥ(x∗, z∗), B̂2 (x∗, z∗)

)
(5)

In other words, the GP provides the predicted value of the modeled function at an unmapped location {x∗, z∗} under the

form of a mean value Ĥ(x∗, z∗):

Ĥ(x∗, z∗) = E[5 ∗ |x∗, z∗,X,Z,Y] (6)

= ` + �>E(. (x∗, z∗), . (X,Z))�>E(. (X,Z), . (X,Z))−1 (Y − `)

= ` + 7) (x∗, z∗)K−1 (y − 1`)

and associated variance B̂2 (x∗, z∗):

B̂2 (x∗, z∗) = +0A (5 ∗ |x∗, z∗,X,Z,Y) (7)

= �>E(. (x∗, z∗), . (x∗, z∗)) −

�>E(. (x∗, z∗), . (X,Z)) �>E(. (X,Z), . (X,Z))−1 �>E(. (X,Z), . (x∗, z∗))

= : ({x∗, z∗}, {x∗, z∗}) − 7) (x∗, z∗)K−17(x∗, z∗)

where K is the = × = Gram covariance matrix containing the covariance values between the = sample of the data set:

K8, 9 = �>E (. (x, z), . (x′, z′)) = : ({x, z}, {x′, z′}) (8)

5

y is a = × 1 vector containing the responses corresponding to the = data samples:

H8 = 5 (x8 , z8) for 8 = 1, . . . , = (9)

1 is a = × 1 vector of ones and finally 7 is an = × 1 vector containing the covariance values between each sample of the

training data set and the point at which the function is predicted:

78 (x∗, z∗) = �>E(. (x∗, z∗), . (x8 , z8)) = : ({x∗, z∗}, {x8 , z8}) for 8 = 1, . . . , = (10)

III. Mixed-variable Gaussian Process modeling
As mentioned in the introduction, there are relatively few techniques allowing to model functions which depend

simultaneously on continuous and discrete variables using GP. Reviews and comparisons of the existing techniques

can be found in [12] and [15]. The most commonly used approach when dealing with this kind of functions consists

in creating a separate and independent GP model for every category (i.e., combination of discrete variable values) of

the considered problem by relying solely on the training data relative to said category. In the remainder of this paper,

this approach is referred to as Category-wise surrogate modeling. However, within the framework of computationally

intensive function to be modeled it is often unfeasible to provide the amount of data for each category of the problem

necessary to model the considered function accurately enough. This issue becomes particularly relevant when dealing

with problems characterized by a large number of categories [12]. For this reason, in this paper the concept of

mixed-variable surrogate modeling is explored. The underlying idea is to maximize the use of the information provided

by the training data set by creating a single mixed continuous/discrete GP with the entirety of the available data rather

than distributing the available information over several independent continuous surrogate models. For illustrative

purposes, the following simple mixed-variable function 5 (·) is considered:

5 (G, I) = cos(G) + 0.5I (11)

G ∈ [0, 7], I ∈ {0, 1}

If few data samples are available in order to model the function, the prediction provided by the separate continuous

GP defined with respect to the two categories of the considered function might be highly inaccurate, as is shown in

the top half of Figure 1. If instead the exact same data samples are used in order to create a mixed-variable GP, the

prediction is considerably more accurate over the entirety of the search space, while the associated variance is also

reduced, as is shown in the lower part of Figure 1. By relying on mixed-variable surrogate modeling rather than

category-wise modeling, it is therefore possible to better exploit the information provided by the data samples defined in

6

0 1 2 3 4 5 6 7
x

3

2

1

0

1

2

Fu
nc

tio
n

va
lu

e

Mixed-variable surrogate modeling

Predictions
Exact function, z = 0
Exact function, z = 1
Data
Standard deviation

0 1 2 3 4 5 6 7
x

3

2

1

0

1

2

Fu
nc

tio
n

va
lu

e

Independent surrogate modeling

Fig. 1 Comparison between independent category-wise modeling and mixed-variable modeling

the mixed-variable search space, thus improving the modeling accuracy.

IV. Gaussian Process kernels
The covariance function : (·) is the core component of a Gaussian Process based surrogate model [9]. Loosely

speaking, the purpose of this function is to characterize the similarity between distinct data samples in the design space

with respect to the modeled function. In order for a function : (·) to represent a valid covariance, there are two main

requirements [20]. More specifically, the function must be symmetric:

: ({x, z}, {x′, z′}) = : ({x′, z′}, {x, z}) (12)

and positive semi-definite over the input space, i.e.:

=∑
8=1

=∑
9=1
080 9 : ({x, z}, {x′, z′}) ≥ 0 (13)

∀= ≥ 1, ∀(01, . . . , 0=) ∈ R= and ∀{x, z}, {x′, z′} ∈ �G × �I

7

Alternatively, a positive semi-definite function can also be defined by ensuring that the = × = matrix constructed by

computing each element K8, 9 as:

K8, 9 = : ({x8 , z8}, {x 9 , z 9 }) for 8, 9 = 1, . . . , = (14)

is positive semi-definite:

a)Ka ≥ 0 ∀ a ∈ R= (15)

Thanks to the characteristics mentioned above, a valid covariance function can, by construction, be defined as a

parameterizable Hilbert space kernel [9], as is discussed in the following paragraphs.

In order to define a unified formalism for the different existing kernels for mixed continuous and discrete variables a brief

introduction to Hilbert space kernels is discussed firstly within the purely continuous case, and then it is extended to the

mixed-variable case in the subsequent paragraphs. This formalism allows to define all the various approaches under a

unified form to ease the understanding and the comparison. Let �G ⊆ R=G be a non-empty set, a kernel function on �G ,

: : �G × �G → R can be defined if there exists an R-Hilbert space and a mapping q : �G →H such that ∀x, x′ ∈ �G :

: (x, x′) := 〈q(x), q(x′)〉H (16)

where 〈·, ·〉H is the inner product on the Hilbert spaceH . By definition, an inner product defined in a Hilbert space

must be [21], [22]:

• bi-linear: 〈U1q(x) + U2q(x′), q(x′′)〉H = U1〈q(x), q(x′′)〉H + U2〈q(x′), q(x′′)〉H

• symmetric: 〈q(x), q(x′)〉H = 〈q(x′), q(x)〉H

• positive: 〈q(x), q(x)〉H ≥ 0, 〈q(x), q(x)〉H = 0 if and only if q(x) = 0

for any x, x′, x′′ ∈ �G . The Hilbert space H can be seen as a space onto which specific features of the considered

design variables are mapped. If necessary, multiple mappings and associated kernels can be defined for the same design

variable in case several distinct features of the considered variable must be taken into account. In order to better capture

and model the dependence of the GP covariance function with respect to the various variables of the design space,

both the mapping function q(·) and the Hilbert space inner product 〈·〉H can depend on a number of hyperparameters

parameters [9]. Depending on the characteristics of the modeled function, some specific kernel choices might be

more appropriate than others. In general, a preliminary analysis of the problem at hand is necessary in order to select

the kernel which can provide the most accurate and/or robust modeling. Nevertheless, the concepts presented in this

work are valid and applicable regardless of the type of kernels which is chosen in order to model the influence of the

continuous design variables on the considered functions.

8

A. Kernel operators

For complex functions, a single kernel may not be sufficient in order to capture the different influences of the

various design variables. The main reason for this limitation is that the same single set of hyperparameters is used to

characterize the covariance between every dimension of the compared samples. For this reason, it is common practice

to combine kernels defined over various sub-spaces of the the design variables definition domain. This results in a valid

kernel defined over the entire search space which provides a more accurate modeling of the considered function. It

can be shown that kernels can be combined while still resulting in a valid covariance function, as long as the chosen

operator allows it [21]. In this paper, the three following kernel operators are considered:

• Sum

Let :1 (·) be a kernel defined on the input space �G1 and :2 (·) be a kernel defined on �G2 . It can be shown that

: (·) = :1 (·) + :2 (·) is a valid kernel on the input space �G = �G1 × �G2 .

• Product

Let :1 (·) be a kernel defined on the input space �G1 and :2 (·) be a kernel defined on �G2 . It can be shown that

: (·) = :1 (·) × :2 (·) is a valid kernel on the input space �G = �G1 × �G2 . Furthermore, let : (·) be a kernel defined

on the input space �G and U ∈ R+, U: (·) is also a valid kernel on �G .

• Mapping

Let : (·) be a kernel on �G , let �̃G be a set and let � : �̃G → �G be a mapping function. Then :̃ (·) defined as

:̃ (x, x′) := : (�(x), �(x′)) is a kernel on �̃G

The kernel operators can be used in order to combine kernels in various fashions. Two popular examples are the ANOVA

and the exponential kernel [23]:

• ANOVA: : ({G1, G2}, {G ′1, G
′
2}) = (1 + :G1 (G1, G

′
1)) × (1 + :G2 (G2, G

′
2))

• Exponential: exp(: (G, G ′)) = ∑==∞
==0

: (G,G′)=
=!

The combination of kernels has two main advantages: first, it enables to define distinct kernels over different design

variables, which allows to better capture and model the influence the various design variables on the modeled function.

Furthermore, different kernels can also be combined in order to model more accurately different trends characterized by

the same design variable or group of variables.

A popular approach when dealing with multidimensional problems consists in defining a single separate kernel

:3 (·) for each dimension 3 the considered problem depends on, and computing the global kernel as the product between

one-dimensional kernels [23]:

: (x, x′) =
=G∏
3=1

:3 (G3 , G ′3) (17)

where =G represents the total dimension of the input space �G . By doing so, each variable of the modeled function

can be associated to a specific kernel parameterization (for instance Squared-exponential, Matérn52, Matérn32 for the

9

continuous variables) as well as a set of specific associated hyperparameters, thus providing a more flexible modeling of

the considered function.

The same logic is relied on in order to deal with mixed-variable problems. Rather than defining a kernel on the

mixed continuous/discrete design space valid by construction, the developed approach consists in defining two distinct

and independent kernels: :G (·) with respect to the continuous variables x and :I (·) with respect to the discrete variables

z. Subsequently, the mixed variable kernel : ({x, z}, {x′, z′}) can be defined as:

: ({x, z}, {x′, z′}) = :G (x, x′) × :I (z, z′) (18)

Moreover, the kernel defined above can be further decomposed as a product of one-dimensional kernels, similarly to

what is shown in Eq. 17. The resulting mixed-variable kernel can then be defined as:

: ({x, z}, {x′, z′}) =
=G∏
3=1

:G3 (G3 , G ′3)
=I∏
3=1

:I3 (I3 , I′3) (19)

Eq. 17 describes the construction of a kernel characterizing the covariance between continuous data samples.

However, it can be noticed that no assumption on the nature of the considered design variables is required for the

kernel to be valid [22]. The kernel construction procedure discussed above can therefore be extended to any type of

design variable, as long as a proper mapping and associated Hilbert space can be defined. In the following section, the

construction of kernels defined with respect to discrete variables (regardless of whether qualitative or quantitative) is

discussed. Discrete variables are characterized as non-relaxable variables defined within a finite set of choices, named

levels in the following (for instance for the material choices, different levels might be steel, aluminum, composite, etc.),

and characterized by an absence of relation of order between the possible choices.

V. Discrete kernels
In order to define kernels allowing to characterize the covariance between the values of a discrete variable z, the

basic principle is the same as for continuous variables [21]. The kernel is computed as the inner product between the

mappings of the two considered discrete variable samples onto a Hilbert space:

:I (z8 , z 9) := 〈q(z8), q(z 9)〉H (20)

The main difference with what is described in the previous section lies within the fact that the discrete variables that are

considered present a finite number of possible values (i.e., levels) and by the fact that the numerical representation

assigned to the considered variables levels is usually arbitrary, and does therefore not yield useful information for the

10

kernel construction. By consequence, the mapping of a discrete variable onto a Hilbert space may be different than for a

continuous variable as it cannot directly depend on the exact values assigned to the considered variable levels. The

discrete kernels discussed in the following paragraphs are defined for one-dimensional inputs (i.e., one dimensional

discrete variables). The global discrete kernel can then be computed as the product between the one-dimensional

kernels, as already shown in Eq. 17:

: (z, z′) =
=I∏
3=1

:I3 (I3 , I′3) (21)

An alternative way of describing a discrete kernel can be obtained by exploiting the fact that each discrete variable is

characterized by a finite number of levels, as is discussed in [13]. By consequence, the kernel function also returns a

finite number of covariance values. It is therefore possible to define a ; × ; matrix T containing the covariance values

provided by the kernel:

T<,3 = :I (I8 = I<, I 9 = I3) (22)

By relying on this approach, the validity of a given kernel :I (·) can be ensured a posteriori by showing that the matrix

T is always symmetric and positive semi-definite for bounded hyperparameter values.

In the following paragraphs, existing kernels for discrete variables are presented. Furthermore, a valid construction

under the kernel Hilbert space formalism described by Eq. 16 is proposed for each kernel, thus allowing to better

highlight and compare their inherent characteristics.

A. Compound Symmetry

The first and most simple discrete kernel to be considered is the Compound Symmetry (CS), characterized by a

single covariance value for any non-identical pair of inputs [16]:

: (I, I′) =

f2
I if I = I′

\ · f2
I if I ≠ I′

(23)

where f2
I and 0 < \ < 1 are respectively the variance and the hyperparameter associated to the CS kernel. By definition,

in case the input data samples are identical, the kernel returns the associated variance value f2
I , as it can be seen in

Eq. 23. Alternatively, the variance computed between any pair of non-identical data samples is independent from the

inputs, and is equal to a value ranging from 0 to f2
I . In order to show that the CS is a valid kernel, it is first necessary to

11

perform the same task with a delta function X(I8 , I 9) defined as:

: (I, I′) = X(I, I′) =

1 if I = I′

0 if I ≠ I′
(24)

Let I be a discrete variable characterized by ; levels and let q(·) be a mapping of the discrete input space onto a

;-dimensional Hilbert space: q(I) : �I → R; . The mapping is defined in such a way that the only non-zero coordinate

of the image in the Hilbert space corresponds to the dimension associated to the mapped level. This is sometimes

referred to as the dummy coding or one-hot coding of a discrete variable [24]. An example of the mapping described

above for a generic discrete variable characterized by 4 levels is provided below:

I ∈ {I1, I2, I3, I4} →

q(I = I1) = [1, 0, 0, 0]

q(I = I2) = [0, 1, 0, 0]

q(I = I3) = [0, 0, 1, 0]

q(I = I4) = [0, 0, 0, 1]

By defining the inner product on the Hilbert space presented above as a standard Euclidean scalar product, the resulting

kernel, valid by construction, is equal to the delta function:

〈q(I), q(I′)〉 = q(I)) q(I′) = XI (I, I′) (25)

Finally, the CS kernel defined in Eq. 23 can be defined through the following combination of delta function and constant

kernels:

: (I, I′) = f2
I (22:1 (I, I′) + 21) = f2

I ((1 − \)XI (I, I′) + \) (26)

The kernel above is always valid as long as the constants 21 and 22 are positive, which is ensured by bounding \ ∈ [0, 1].

It should be pointed out that the CS kernel presented in the previous paragraphs is nearly identical to the one proposed by

Hutter and Halstrup in [25] and [26], although the construction differs. The approach proposed in these works consists

in defining a distance in the mixed-variable search space by relying on the concept of Gower distance [27]:

36>F ({x, z}, {x′, z′}) =
∑=G
3=1

|G3−G′3 |
ΔG3

=G
+

∑=I
3=1 X(I3 , I

′
3
)

=I
(27)

where ΔG3 is the domain range of the continuous variable G3 . This distance can then be rescaled and used in order to

compute the covariance as a function of the Gower distance between data samples by relying on a continuous squared

12

exponential kernel (or any other distance based kernel):

: (I, I′) = fI exp
(
−\36>F ({x, z}, {x′, z′})2

)
(28)

It can be easily shown that by selecting the appropriate parameterization, the results provided by the kernels defined in

Eq. 23 and 28 are identical.

The CS kernel presented in the paragraph above provides a very simple method allowing to model the effect of a given

discrete design variable by relying on a single hyperparameter. However, the underlying assumption which is made

when considering the CS kernel is that the covariance between any pair of non identical levels of a given discrete

variable is the same, regardless of the considered levels. This assumption may often be overly simplistic, especially

when dealing with discrete variables which present a large number of levels. In this case, the modeling error introduced

by CS kernel can become problematic, and alternative kernels should be considered. It is also important to point out

that the CS kernel formulation, as presented in Eq. 23, can only return positive covariance values (by construction).

This characteristic further limits the number of suitable applications for this particular covariance function. Finally,

it is worth mentioning that Roustant et al. have extended the CS kernel in order to model mixed-variable functions

characterized by discrete variables with a large number of levels [16]. The underlying idea is to group levels with similar

characteristics, thus allowing to compute the covariance between these groups rather than between the levels.

B. Hypersphere decomposition kernel

A second discrete kernel considered in this paper is the hypersphere decomposition kernel, first proposed by Zhou et

al. [13]. The working principle of the kernel is based on mapping each of the ; levels of the considered discrete variable

onto a distinct point on the surface of a ;-dimensional hypersphere:

q(I) : �I → R; (29)

q(I = I<) = fI [1<,0, 1<,1, . . . , 1<,;]) for < = 1, . . . , ;

13

where 1<,3 represents the 3-th coordinate of the <-th discrete variable level mapping, and is computed as follows:

1<,3 = 1 for < and 3 = 1

1<,3 = cos \<,3
3−1∏
:=1

sin \<,: for 3 = 1, . . . , < − 1

1<,3 =

3−1∏
:=1

sin \<,: for 3 = < ≠ 1

1<,3 = 0 for 3 ≥ < ≠ 1

with −c ≤ \<,3 ≤ c. It can be noticed that in the equations above, some of the mapping coordinates are arbitrarily set

to 0. This allows to avoid rotation indeterminacies (i.e., an infinite number of hyperparameter sets characterizing the

same covariance matrix), while also reducing the number of parameters required to define the mapping. The resulting

kernel is then computed as the Euclidean scalar product between the hypersphere mappings presented above:

: (I, I′) = q(I)) q(I′) (30)

This kernel construction defined above is equivalent to the original formulation [13], in which the discrete kernel

is defined as an ; × ; symmetric positive definite matrix T containing the covariance values between the discrete

variable levels. In order to ensure the positive definiteness of this matrix, it is defined through the following Cholesky

decomposition:

T = L)L (31)

where each element of L8, 9 is computed as 18, 9 :

L = fI

1 0 0

cos \2,1 sin \2,1 0

...
...

...
...

...

cos \;,1 sin \;,1 cos \;,2 . . . cos \;,;−1
∏;−2
3=1 sin \;,3

∏;−1
3=1 sin \;,3

(32)

Differently than the CS kernel, the hypersphere decomposition kernel can return a different covariance value for each

pair of levels characterizing the considered discrete variable. Furthermore, with the proper hyperparameters this kernel

function can also return negative values, as each covariance value is computed as the product between a number of sine

and cosine functions, which range from −1 to 1. However, it should also be highlighted that a part of the hyperparameters

characterizing this kernel (i.e., \;,3) influence several covariance values simultaneously and that furthermore, part of the

14

covariance values can depend on several hyperparameters simultaneously. As a result, determining the optimal value of

each hyperparameter might be more complex when compared to simpler kernel parameterizations such as CS.

C. Latent variable kernel

Similarly to the hypersphere decomposition kernel, the Latent Variable (LV) kernel, first proposed by Zhang et al.

[28], is constructed by mapping the discrete variable levels onto a continuous Hilbert space. However, in the latent

variable approach, the discrete variable levels are mapped onto a 2-dimensional Euclidean space regardless of the

number of discrete levels, rather than on the surface of an ;-dimensional hypersphere. The notion of latent variables

comes from the fact that the latent variables are unobserved, they correspond to a mathematical representation of the

discrete levels into a 2-dimensional Euclidean space. This mapping can be defined as follows:

q(I) : �I → R2 (33)

q(I = I<) = [\<,1, \<,2]) for < = 1, . . . , ;

where \<,1 and \<,2 are the hyperparameters representing coordinates in the 2-dimensional latent variable space

onto which the discrete variable level < is mapped. By consequence, the set of hyperparameters characterizing this

kernel is represented by the ; pairs of latent variable coordinates associated to a given discrete variable. For clarity

purposes, an example of the mapping of a discrete variable characterizing the material choice property of a hypothetical

system is provided in Figure 2. For instance, each material choice represented in Figure 2 corresponds to a point

into a 2-dimensional Euclidean space and the coordinates of the point are the hyperparameters that are optimized

(corresponding to the latent variable coordinates).

material = {aluminum, steel, titanium, composite}

x1

x2

Fig. 2 Example of latent variable mapping for a generic discrete variable characterizing the ’material choice’
characteristic.

Let q : �I → R2 be the mapping defined in Eq. 33, by applying the mapping rule discussed in Section IV.A, it can be

15

shown that a kernel :̃ (·) valid on R2 can be used in order to define a kernel : (·) valid on �I in the following fashion [21]:

: (I, I′) = :̃ (q(I), q(I′)) (34)

By consequence, any of the continuous kernels valid on R2 can be coupled with the latent variable mapping in order to

define a valid kernel on the discrete search space �I . Although in the original formulation of the method, the following

squared exponential kernel is considered:

: (I, I′) = f2
I exp(| |q(I) − q(I′) | |22) (35)

alternative continuous kernels could technically be used without loss of generality. It can be noticed that no lengthscale

parameter \ appears in the squared exponential kernel as defined in Eq. 35. The reason behind this is that the distance

between the latent variables already directly depends on the hyperparameter values (i.e., the latent variables coordinates),

and by consequence a lengthscale parameter would be redundant. Similarly to the hypersphere decomposition kernel

previously discussed, the latent variable kernel requires removing the translation and rotation indeterminacies on the

latent variable value estimations. Zhang et al. suggest fixing one of the latent variables coordinate pair to the origin of

the 2-dimensional latent search space (e.g., {\0,1, \0,2} = {0, 0}), and a second pair on the \1 axis (i.e., \1,1 = 0).

The latent variable kernel construction discussed above relies on mapping the discrete variable levels onto a

2-dimensional Hilbert space. This choice is arbitrary as the mapping can technically be performed onto a higher

dimensional space in order to provide a larger flexibility and improve the modeling accuracy of the model. However,

Zhang et al. [28] stated that the theoretical improvement of modeling performance does not compensate the increase

in the number of hyperparameters to be tuned, and identify therefore the 2-dimensional latent space as the optimal

trade-off between the kernel modeling capabilities and the number of associated hyperparameters. Similarly to the

hypersphere decomposition kernel, the latent variable kernel allows to define a distinct covariance value between every

pair of levels. However, due to the fact the covariance values are computed as a function of the distance between latent

variables in a continuous space, as shown in Eq. 35, the returned values can not be negative, which partially limits the

modeling capabilities of the LV discrete kernel.

By mapping the levels of the considered discrete variable onto a 2-dimensional latent space and by characterizing

the covariance between these levels as the Euclidean distance between the latent variables, the latent variable kernel

provides an intuitive visual representation of how the levels are correlated to each other, as is shown in Figure 2. In

this figure, the distance between the latent variables (i.e., red dots) associated to the various materials is inversely

proportional to the covariance between the relative levels. For instance, with the considered hyperparameter values, the

computed covariance between the aluminum and steel choices would be larger than the one between the aluminum and

16

the composite choices.

D. Coregionalization

The last discrete kernel considered in this paper is based on the definition of a coregionalization matrix [14]. This

approach is originally developed for the modeling of vector valued functions with respect to a continuous search space,

i.e., functions returning multidimensional outputs rather than scalar values, f : �G → R=>DC ?DCB , where =>DC ?DCB is the

size of the output vector. The underlying idea of the original formulation is to exploit the existing correlation between

the various outputs in order to improve the modeling accuracy with respect to the separate and independent modeling of

each output. For purely continuous functions, the Linear Model of Coregionalization (LMC) approach, as defined in

[29], consists in computing each component prior 53 of the prediction vector as a sum of Q groups of independent latent

GP models D8@ (x) , where each GP group @ of size '@ shares the same covariance function:

53 (x) =
&∑
@=1

'@∑
8=1

083,@D
8
@ (x) (36)

with 08
3,@

being scalar coefficients. The notion of latent GP models comes from the fact that the observed output 5 (·, ·)

is defined as a linear combination of unobserved GP models D8@ (·). When considering this kind of models, the resulting

vector valued kernel (i.e., one covariance function value per output) can be written as:

K(x, x′) =
&∑
@=1

B@:@ (x, x′) (37)

where :@ (·) is the kernel associated to the group of GP D@ , while B@ is the coregionalization matrix, containing the

elements 1@
3,3′ which characterize the cross-covariance between the predictions 3 and 3 ′ associated to D@ . The LMC

can be simplified into the Intrinsic Coregionalization Model (ICM) by considering a single kernel (i.e., & = 1) [30],

which results in the following expression of the multiple output covariance matrix:

K(X,X) = B ⊗ k(X,X) (38)

where ⊗ is the Kronecker product between matrices and k(X,X) is the Gram covariance matrix computed on the

continuous part of the training data set. The equation above is equivalent to:

K(x, x′) = B × : (x, x′) (39)

17

Without loss of generality, the concept of coregionalization can be applied to the modeling of mixed variable problems

by considering the modeled function as returning an independent output for each level of the considered discrete variable.

In this case, the coregionalization matrix becomes the matrix containing the covariance values between the discrete

variable levels.

B<,3 = :I (I = I<, I′ = I3) = T<,3 (40)

In order for the ICM to represent a valid kernel, it is necessary for the coregionalization matrix B to be symmetric

and positive semi-definite. Similarly to the hypersphere decomposition, the kernel defined above can be obtained by

mapping the levels of the considered discrete variable onto an ;-dimensional continuous space:

q : �I → R; (41)

q(I = I<) = [\<,0, \<,1, . . . , \<,;]) for < = 1, . . . , ;

However, differently than for the hypersphere decomposition kernel, the Cartesian coordinates of the locations onto

which the discrete levels are mapped are directly considered as hyperparameters. By defining the inner product on the

;-dimensional Hilbert space a Euclidean scalar product, a valid discrete kernel can then be defined:

: (I, I′) = q(I)) q(I′) (42)

It can be shown that Eq 38 and Eq. 42 yield the same covariance values by exploiting the fact that any positive

semi-definite matrix B can be obtained as the product between a real valued matrix W and its transpose [31]:

B = W)W (43)

If W is defined as the ; × ; matrix containing the hyperparameters onto which each level of the considered discrete

variable is mapped, the equivalence between Eq. 38 and Eq. 42 within the scope of coregionalization applied to discrete

variable kernels is shown.

It is important to point out that when adapting the ICM to the modeling of mixed-variable functions, the underlying

assumption is that only one discrete variable is considered, the levels of which are associated to independent outputs of

a vector valued function. However, the kernel defined in the paragraphs above is, by construction, valid on a discrete

dimension, regardless of the presence of other discrete variables. It can therefore be applied in a multi-dimensional

discrete search space framework without loss of generality. Similarly to the hypersphere decomposition case, the

coregionalization approach allows to characterize both positive and negative covariance values between the discrete

variable levels. Finally, it can be noticed that differently than the hypersphere decomposition and latent variable kernels,

18

the coregionalization kernel provides by construction an independent variance value for each level of the modeled

variable. This resulting property, known as heteroscedasticity, is further discussed in Section VI.B.

E. Discrete kernel comparison

The various discrete kernels described in the previous paragraphs present specific advantages and weaknesses which

must be taken into account when selecting the most suitable kernel parameterization for the modeling of a given problem.

For clarity purposes, the main characteristics of the presented discrete kernels are summarized in Table 1. In Figure 3,

the number of hyperparameters characterizing each kernel as a function of the number of levels are represented.

2 4 6 8 10 12
N of levels

0

20

40

60

80

100

120

140

N
 o

f h
yp

er
pa

ra
m

et
er

s

CS
LV
HS
CN

Fig. 3 Number of hyperparameters characterizing each kernel as a function of the number of levels.

Table 1 Advantages and weaknesses of discrete kernel parameterizations. The acronyms refer to the following
kernels: CS: Compound Symmetry, HS: Hypersphere Decomposition, LV: Latent Variable, CN: Coregionaliza-
tion.

Kernels
Hyperparameter Different Negative Inherently
scaling w.r.t. ; covariance per covariance values heteroscedastic

level pair
CS 1 No No No
HS ; (; − 1)/2 Yes Yes No
LV 2; − 3 Yes No No
CN ;2 Yes Yes Yes

It can be noticed that the scaling of the number of hyperparameters with respect to the number of levels ; of

the considered discrete variable varies considerably between the various kernels. This must be taken into account

when selecting the appropriate kernel, as a large set of hyperparameters might be difficult to tune when relying on

an insufficient amount of training data. On the contrary, simplistic kernel parameterizations, such as the CS, might

19

be inadequate for variables with large number of levels in case sufficient data is available. It can also be noticed

that the coregionalization kernel is the only one which allows to provide a heteroscedastic GP model. However, this

limitation can be partially solved by including an additional term in the considered kernel which results in a different and

independent variance associated to each discrete level. The description of this extension can be found in Section VI.B.

VI. Considerations on mixed-variable Gaussian Processes

A. Category-wise and level-wise mixed-variable kernels

In the previous paragraphs, only kernels for one-dimensional discrete vectors are discussed. However, most

of the considered problems depend on multiple discrete variables, in which case two different approaches can be

chosen: treating each dimension (i.e., each discrete variable) separately and independently or defining a kernel on the

combinatorial discrete search space. In this paper, these approaches are referred to as Level-wise and Category-wise

kernels.

The Level-wise approach is based on considering each discrete variable separately and defining an independent

kernel for each one of them. In this case, the various kernels are tasked with computing the covariance between the

various levels of each variable. This allows to more easily identify the specific influence of the considered discrete

variables and thus select the most suitable kernels, although this might require some previous knowledge on the modeled

function. Furthermore, the resulting model usually requires fewer hyperparameters in order to be defined. However,

dealing with each dimension separately implies considering that each dimension is independent from the others [32].

In practice, this means that the covariance between two levels (i.e., possible values) of a given discrete variable is

independent from the similarity of the 2 compared samples with respect to the other discrete variables. In some cases,

this assumption may be false.

Alternatively, the Category-wise kernel definition allows to avoid this kind of issues. The main idea is to define

the kernel on the combinatorial discrete search space rather than separately on each dimension of the input space. By

doing so, the resulting kernel allows to compute the covariance between discrete variable levels combinations (i.e.,

categories) rather than between discrete variable levels. However, the drawback of this approach is that the number of

hyperparameters required to describe such a kernel tends to scale exponentially with the number of discrete variables.

By consequence, larger amounts of data are usually required in order to properly learn the modeled function trends. If

this condition is not satisfied, this solution tends to provide worse modeling performance than the level-wise approach.

A second drawback of the category-wise approach is that data samples belonging to every category of the considered

problem are necessary in order to train the model. This can be problematic when dealing with computationally intensive

problems characterized by a large number of categories. Instead, the level-wise approach uses learned level correlations

to predict in a particular category which is not present within the data set. It means that, as a category is defined as

20

a combination of a specific level for each discrete variable, it is not necessary to have in the initial data set a data

for each category but only a data for each level of the discrete variables. When only a single discrete variable is

considered, level-wise and category-wise approaches are equivalent. Finally, it can be noted that when considering a

category-wise approach, the input of the global discrete kernel can be represented under the form of a scalar (i.e., a

single discrete variable) characterizing the category the considered sample belongs to rather than the level values of its

discrete variables.

It is important to keep in mind that category-wise modeling and category-wise kernel are two distinct and different

approaches for the modeling of mixed-variable functions. Indeed, category-wise modeling refers to the creation of a

separate and independent continuous GP for every category of the considered function, whereas the category-wise kernel

approach refers to the creation of a discrete kernel allowing to compute the covariance between the categories of the

considered discrete variables. Separate and independent continuous GP, category-wise kernel and level-wise approach

are evaluated in the benchmark of analytical toy cases and aerospace engineering design problems (see Section VII).

B. Surrogate model scedasticity

Within the framework of continuous GP, it is common practice to consider the model as being homoscedatic, which

translates to a constant variance value with respect to the design space:

: (x∗, x∗) = f2 (44)

When the GP kernel is defined as the product of one-dimensional continuous and discrete kernels, as in Eq. 19, the

homoscedastic variance can be interpreted as the product between the variances associated to each one of the kernels:

f2 =

=G∏
3

f2
G

=I∏
3

f2
I (45)

Although the homoscedasticity assumption is often acceptable in the purely continuous case, it may be overly simplistic

in the mixed continuous/discrete case, as the discrete variables may be associated to large variations of the modeled

function global trend. In these cases, it may be necessary to model the kernel variance so that its value depends on the

input data sample, thus obtaining what is referred to as a heteroscedastic GP. In the most general case, the heteroscedastic

mixed-variable GP variance should vary as a function of both continuous and discrete variables. However, as this work

paper is mainly on the discrete aspects of mixed-variable GP and in order to reduce the model training complexity, in

this paper the variance is only considered to vary as a function of the discrete variables z:

f({x∗, z∗}, {x∗, z∗}) = f2 (z∗, z∗) (46)

21

In general, a prior knowledge of the global trend of the modeled function allows to determine which choice, between

a homoscedastic and a heteroscedastic model is more suitable for a given problem. In this paper, it is assumed that

no prior information on the modeled function is known, and both alternatives are tested for the considered kernel

parameterizations. Finally, it is important to note that considering a heteroscedastic discrete kernel has a different

influence for Level-Wise and Category-Wise kernels, due to the fact that in the first case a different variance value is

associated each level of each discrete variable, whereas in the latter a different variance value is associated to each

category of the considered problem.

The heteroscedasticity of a mixed-variable function can be easily shown by considering the simple test-function shown

in Figure 4 and defined as follows:

5 (G, I) =

sin(7G) if I = 0

2 sin(7G) if I = 1
(47)

The variances associated to the two categories of the considered function (which in this case are equivalent to the

0.0 0.2 0.4 0.6 0.8 1.0
x

2

1

0

1

2

Fu
nc

tio
n

va
lu

e

Data
z = 0
z = 1

Fig. 4 Category-wise independent modeling of a heteroscedastic mixed variable function

levels of the variable I) can be compared by modeling it with two independent GP models obtained by considering

identical continuous data sets, as shown in Figure 4. In general, the optimal variance value depends on the size and on

the values of the specific data set with respect to which the models are trained. However, by repeating the comparison

over several data sets it can be shown that on average the variance associated to the first category of the problem (i.e.,

I = 0) is approximately 4 times smaller than the one associated to the second category of the problem (i.e., I = 1). This

is highlighted in Figure 5, where the estimated optimal variance associated to the two categories computed over 20

repetitions is provided for 3 different data set sizes. The results show that in general, a heteroscedastic mixed-variable

kernel should therefore yield more accurate predictions when dealing with functions presenting similar characteristics.

The heteroscedastic variance function defined in Eq. 46 can be characterized as a discrete kernel, similar to the ones

22

z =
 0

z =
 1

0.0

0.5

1.0

1.5

2.0

2.5

Op
tim

al
 G

P
va

ria
nc

e

5 training data samples

z =
 0

z =
 1

2

4

6

8

10

Op
tim

al
 G

P
va

ria
nc

e

10 training data samples

z =
 0

z =
 1

2

4

6

8

10

12

Op
tim

al
 G

P
va

ria
nc

e

15 training data samples

Fig. 5 Estimated optimal variance associated to the two categories of a heteroscedastic example for various
data set sizes over 20 repetitions per size

presented in the previous paragraphs:

f2 (z8 , z 9) =
=I∏
3=1

:I3 (I83 , I
9

3
) (48)

where each kernel :I3 can be constructed by mapping each level characterizing the discrete variable I3 onto a

hyperparameter characterizing the variance associated to the level:

q(I) : �I → R (49)

q(I<) = \< for < = 1, . . . , ;

and by defining the inner product as a standard product between scalars:

: (I
8 , I 9) = 〈q(I8), q(I 9)〉 = q(I8)q(I 9) (50)

The resulting variance function provides more flexible and accurate modeling when dealing with functions characterized

by heteroscedastic behaviors (with respect to the discrete design variables). However, considering a heteroscedastic

discrete kernel also results in a larger number of hyperparameters to be trained. Therefore, relying on a heteroscedastic

kernel in order to model a homoscedastic function when insufficient data is provided might be counterproductive and

yield worse results than a homoscedastic model.

C. Training of the models

The majority of the continuous and discrete kernels presented in the previous paragraphs depends on a number of

hyperparameters, such as the latent variables coordinates of Eq. 35, which influence the value returned by the kernel

23

function, independently from the input data samples. Furthermore, the global kernel function also depends on additional

parameters: namely the kernel and likelihood variances (f2, f2
=) as well as the GP mean `. The results obtained in

this paper are obtained by training the hyperparameters through the optimization of the marginal likelihood function.

Let) be the vector containing all the hyperparameters characterizing the global kernel : (·, ·), the contained values are

determined by maximizing the log marginal likelihood:

)∗ = argmax (log ?(Y|X,Z,))) (51)

)

= argmax
(
−1

2
y)K−1y − 1

2
log |K| − =

2
log 2c

)
)

where K is computed by relying on kernels which are parameterized as a function of) . Although the hyperparameter

vector) characterizes both continuous and discrete kernels, all of its values are defined within a continuous search

space, thus allowing to rely on common continuous optimization methods. For all the results presented in this paper,

the optimization problem defined in Eq. 51 is solved with the help of a Bounded Limited memory Broyden - Fletcher

- Goldfarb a Shanno (L-BFGS-B) algorithm [33]. Like most optimization methods of this family, the convergence

towards the global optimum of the problem is dependent on the initialization in the design space and cannot always be

ensured. This issue is particularly relevant when considering the discrete kernel parameterizations. Multiple random

initializations of the optimization algorithm with the selection of the result characterized by the largest likelihood value

is therefore considered. Heuristic optimization methods, such as the Differential Evolution [34] or the Covariance

Matrix Adaptation - Evolution Strategy [35], could also be tested. However this option is often not computationally

tractable due to the prohibitive increase of the overhead computational cost related to the GP training when dealing with

large Gram covariance matrices (usually associated to large dimensional problems).

D. Mixed-variable design of experiments

The modeling accuracy which can be provided by a GP is closely related to the training data set given as an input

to the model, which is sometimes referred to as Design of Experiments (DoE). In general, larger data sets result in

a better modeling accuracy. However, given that this paper lies within the scope of complex and computationally

intensive system design, the amount of data available for the creation of the surrogate models is usually very limited.

It might therefore be necessary to distribute the available data over the design space in such a way to maximize the

information that the GP model can use. In the purely continuous case, the data samples can either be sampled on given

distributions, such as a uniform distribution, or alternatively slightly more advanced sampling methods, such as the

Latin Hypercube Sampling (LHS) [36] method can be used. In order to extend the concept of design of experiments in

24

the mixed continuous/discrete search space, the assumption that is made in this paper is that in the absence of problem

specific-knowledge, the same amount of data should be placed in each category characterizing the modeled function.

Under this assumption, 3 possible alternatives for the creation of the design of experiment are considered:

• Evenly and randomly distributing the data obtained through a single continuous sampling between all of the

problem categories.

• Replicating the same continuous sampling in each category of the considered problem (meaning that for each

category, the continuous variables take the same values).

• Performing an independent continuous sampling in each category of the considered problem.

In general, samples which are close one another in the continuous search space while presenting different discrete

variable values allow the GP model to better determine the covariance functions between the various discrete levels and

categories. On the other hand, spacing the samples within the continuous design space allows to better capture the

global trend of modeled function in the continuous domain. The first mixed-variable DoE option allows to optimize

the usable information within the continuous part of the design space, while limiting the GP ability to determine the

covariance between the problem categories. Alternatively, the second option can provide a more accurate computation

of the covariance between categories, however it also tends to increase the modeling error for unmapped locations which

are distant from the training data set samples, due to the poor coverage of the continuous search space. Finally, the third

alternative represents a compromise between the first two options. Further analysis of the challenges related to the

mixed-variable sampling issues can be found in [37].

Usually, an analysis of the considered problem and of the amount of available computational resources is required in

order to select the most appropriate approach for the creation of a mixed-variable DoE. However, this type of analysis

extends beyond the scope of the paper. In this work, the first approach combined with a continuous LHS method is

considered for the DoE creation.

VII. Numerical comparison of the different mixed GP-based models
In the previous section, different kernels allowing to characterize the covariance function between discrete variables

levels are presented, discussed and compared. In order to assess the modeling performance of the various kernels as

well as its dependence on the characteristics of the considered function, a number of analytical and engineering related

test-cases characterized by different dimensions, complexities and characteristics are considered. The comparison

between the kernels is based on an analysis of the modeling error (i.e., difference between the actual function value and

the GP prediction) which is provided under the form of a Root Mean Squared Error (RMSE) calculated on a validation

25

data set distinct from the training one:

'"(� =

√√√
1
#

#∑
8=1
(Ĥ(x8 , z8) − H(x8 , z8))2 (52)

where # is the size of the validation data set and the values of H(·) and Ĥ(·) are normalized between 0 and 1:

Ĥ=>A< =
Ĥ − H<8=

H<0G − H<8=
(53)

H<8= and H<0G represent respectively the smallest and largest values present within the training data set (i.e., in the

vector y). In order to analyze the change in absolute and relative performance of the various kernels, the modeling

benchmark is performed for different training data set sizes, when possible. Furthermore, in order to take into account

the variability of the obtained results caused by the random nature of the training DOE, the benchmark is repeated

multiple times for each training data set size (varying as a function of the computational cost and complexity of the

problem). The validation data set size is fixed to 1000, and its elements are generated randomly by combining a

continuous LHS and a sampling over a uniform discrete distribution in the discrete search space.

In the presented benchmark, the compared discrete kernels are the following: Compound Symmetry (CS),

Hypersphere decomposition (HS), Latent Variables (LV) and Coregionalization (CN). Furthermore, for each one

of these kernels, 4 alternative variants are considered: the homoscedastic level-wise approach, the heteroscedastic

level-wise approach (referred to as _He), the homoscedastic category-wise approach (referred to as _C) and finally the

heteroscedastic category-wise approach (referred to as _C_He). However, due to the inherently heteroscedastic nature of

the CN kernel, only the level-wise and category-wise variants are considered in the presented results. In order to provide

a modeling performance reference, the modeling benchmark is also performed by relying on a Category-Wise (CW) GP,

which is obtained by defining an independent purely continuous GP for every category of the considered function. Each

one of these GP is trained by relying solely on the data samples of the training set which belong to the corresponding

category. The CW GP prediction of the modeled function at an unmapped location is then computed by evaluating the

continuous GP corresponding to the sample category at the location characterized by the sample continuous variables.

This results in a total number of compared methods equal to 15. Given that the main focus and contribution of this paper

is related to the discrete part of mixed-variable kernel, the continuous kernel considered in order to obtain the results

presented in the following and throughout this paper is the squared exponential kernel [9]. Finally, it might be worth

mentioning that in the heteroscedastic CS parameterization case, the hyperparameters characterizing the heteroscedastic

kernel outnumber and outweigh the CS kernel-specific ones. By consequence, the results obtained with the level-wise

and category-wise heteroscedastic CS kernel might be mainly driven by the heteroscedastic aspect rather than by the

specific kernel parameterization. For details about the benchmark settings and implementations, please refer to the

26

appendix.

A. Branin function

The first analytical benchmark function to be considered is a modified version of the Branin function [38]

characterized by two continuous variables and two discrete variables, each one with 2 levels, thus resulting in overall 4

discrete categories. The analytical definition of this mixed-variable Branin function is the following:

5 (G1, G2, I1, I2) =

ℎ(G1, G2) if I1 = 0 and I2 = 0

0.4ℎ(G1, G2) + 1.1 if I1 = 0 and I2 = 1

−0.75ℎ(G1, G2) + 5.2 if I1 = 1 and I2 = 0

−0.5ℎ(G1, G2) − 2.1 if I1 = 1 and I2 = 1

(54)

where:

ℎ(G1, G2) =(((15G2 −
5

4c2 (15G1 − 5)2 + 5
c
(15G1 − 5) − 6)2+

10
(
1 − 1

8c

)
cos(15G1 − 5) + 10) − 54.8104)/51.9496

(55)

with

G1 ∈ [0, 1], G2 ∈ [0, 1], I1 ∈ {0, 1}, I2 ∈ {0, 1}

For illustrative purposes, the responses associated to each category of the mixed-variable Branin function are presented

in Figure 6. By analyzing the function definition, two particular characteristics which may influence the modeling

performance of the various kernels can be highlighted. The first noticeable characteristic is the presence of a negative

correlation between the responses characterized by the 2 levels of the variable I1: I1 = 0 and I1 = 1 (i.e., the global

trends present opposite variations with respect to the continuous variables). Secondly, although the function depends

on 2 independent discrete variables, it can be noticed that its categories are defined as a function of the discrete level

combinations, rather than as a function of the discrete levels independently.

The modeling performance benchmark obtained for the mixed-variable Branin function are provided in Figure 7.

These results are obtained over 20 different training data sets of 20, 40 and 80 samples (i.e., 5, 10 and 20 samples

per discrete category). Overall, it can be seen that for this test-case most of the considered mixed-variable surrogate

modeling methods provide a better modeling accuracy than the independent CW GP. The only exceptions being the

homoscedastic and heteroscedastic category-wise CS kernels when insufficient data is provided (i.e., the 20 training

data samples case). It can also be noticed that for all 3 training data set sizes, both variants of the level-wise CS and LV

27

x1

0.0 0.2 0.4 0.6 0.8 1.0
x 2

0.0
0.2
0.4
0.6
0.8
1.0

Y

−1
0
1
2
3
4

−4
−2
0
2
4
6

Category 1: I1 = 0, I2 = 0

x1

0.0 0.2 0.4 0.6 0.8 1.0
x 2

0.0
0.2
0.4
0.6
0.8
1.0

Y

1.0
1.5

2.0

2.5

3.0

−4
−2
0
2
4
6

Category 2: I1 = 0, I2 = 1

x1

0.0 0.2 0.4 0.6 0.8 1.0
x 2

0.0
0.2
0.4
0.6
0.8
1.0

Y

2

3

4

5

−4
−2
0
2
4
6

Category 3: I1 = 1, I2 = 0

x1

0.0 0.2 0.4 0.6 0.8 1.0
x 2

0.0
0.2
0.4
0.6
0.8
1.0

Y

−4.5
−4.0
−3.5
−3.0
−2.5
−2.0

−4
−2
0
2
4
6

Category 4: I1 = 1, I2 = 1

Fig. 6 The 4 discrete categories of the Branin function.

kernels provide nearly identical results. This is due to the fact that in case the modeled variable is only characterized by

2 levels, both kernel parameterizations rely on a single hyperparameter to compute the covariance between the levels

and therefore yield very similar results. The slight difference between the results obtained with the 2 methods is due

to the different hyperparameter initialization in the GP model training. The same similarity is not found for CS and

LV category-wise variants, as in this case the discrete kernels model 4 levels instead of 2. A further noticeable trend

in the presented results is that both level-wise and category-wise CS and LV kernels tend to provide worse results

when compared to the rest of the considered methods. This can be explained by the fact that these kernels can not

return negative covariance values, which makes it so that they cannot properly model the negative correlation trends

characterizing the levels of I1. Furthermore, the results show that overall the heteroscedastic variants of the considered

kernels tend to produce better results with respect to their homoscedastic counterparts. This is closely related to the

heteroscedastic nature of the mixed-variable Branin function which is easily noticeable from its analytical definition.

Finally, the results show that for large enough training data sets, the best performing kernels in terms of modeling

accuracy are the HS_C, HS_C_He and the CN_C. Additionally to the previous considerations, these results can be

explained by the fact that when sufficient data is provided, the category-wise modeling of the discrete variables allows to

better capture the fact that each category of the considered mixed-variable Branin is defined as a function of the discrete

level combinations, rather than as a function of the discrete levels independently. When sufficient data are available, by

28

CW CS HS LV CN
CS_He

HS_He
LV_he

CS_C
 HS_C

 LV
_C

 CN_C

CS_C_He

 HS_C_He

 LV
_C_He

0.05

0.10

0.15

0.20

0.25

RM
SE

20 training data samples

CW CS HS LV CN
CS_He

HS_He
LV_he

CS_C
 HS_C

 LV
_C

 CN_C

CS_C_He

 HS_C_He

 LV
_C_He

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

RM
SE

40 training data samples

CW CS HS LV CN
CS_He

HS_He
LV_he

CS_C
 HS_C

 LV
_C

 CN_C

CS_C_He

 HS_C_He

 LV
_C_He

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

RM
SE

80 training data samples

Fig. 7 Comparison of various discrete kernels modeling performance on the mixed-variable Branin function
for various training data set sizes over 20 repetitions.

comparing HS_C and HS_C_He modeling, it may be noticed that both offer a small RMSE, but the heteroscedastic

variant offer a better modeling illustrating the interest of considering the scedasticity in this case. This difference is less

noticeable for smaller data sets, in which case the information provided to the GP is not sufficient to properly model

each function category.

B. Augmented Branin function

The second analytical benchmark function to be considered is an augmented (i.e., larger dimension) version of the

previously described Branin function, characterized by 10 continuous variables and 2 discrete variables, each one with 2

levels, thus resulting in 4 discrete categories. The main purpose of this test-case is to assess the dependency of the

29

various discrete kernel parameterizations performance with respect to the size of the continuous design space of the

considered problem. In practice, the augmented Branin function is defined as follows:

5 (G1, ..., G10, I1, I2) =

ℎ̃(G1, ..., G10) if I1 = 0 and I2 = 0

0.4ℎ̃(G1, ..., G10) + 1.1 if I1 = 0 and I2 = 1

−0.75ℎ̃(G1, ..., G10) + 5.2 if I1 = 1 and I2 = 0

−0.5ℎ̃(G1, ..., G10) − 2.1 if I1 = 1 and I2 = 1

(56)

where:

ℎ̃(G1, ..., G10) =
ℎ(G1, G2) + ℎ(G3, G4) + ℎ(G5, G6) + ℎ(G7, G8) + ℎ(G9, G10)

5
(57)

with:
ℎ(G8 , G 9) =(((15G 9 −

5
4c2 (15G8 − 5)2 + 5

c
(15G8 − 5) − 6)2+

10
(
1 − 1

8c

)
cos(15G8 − 5) + 10) − 54.8104)/51.9496

(58)

and

G1, ..., G10 ∈ [0, 1], I1 ∈ {0, 1}, I2 ∈ {0, 1}

For this benchmark function, the testing is performed with training data sets of 80, 160 and 320 samples (i.e., 20, 40 and

80 samples per discrete category). The results are provided in Figure 8.

An analysis of these results shows that for small training data sets (i.e., 80 samples), no real difference between

the various considered kernels can be highlighted due to the insufficient information to train the GP model. For

larger training data sets, instead, it is shown that mixed-variable GP yield overall better results when compared to the

independent CW GP, with the exception of the category-wise modeling with a CS kernel. Furthermore, similarly to

what is shown for the previously discussed mixed-variable Branin function, heteroscedastic approaches tend to provide

a better modeling accuracy, due to the ability to better capture the heteroscedastic trends of the considered function.

Finally, it can be seen that if sufficient data is provided, a category-wise approach of the mixed-variable surrogate

modeling yields the best results, if combined with heteroscedastic kernels (i.e., CN_C and HS_C_He). This is related to

the fashion in which the categories of this particular benchmark function are constructed, as is discussed in the previous

paragraphs. In general, it is shown that the relative performance of the considered kernel parameterizations does not

significantly vary when the size of the continuous search space is increased. The main noticeable difference is that

larger training data sets are required in order to obtain the same range of modeling accuracy, which can be explained by

the larger number of hyperparameters required to characterize the continuous kernels.

30

CW CS HS LV CN
CS_He

HS_He
LV_he

CS_C
 HS_C

 LV
_C

 CN_C

CS_C_He

 HS_C_He

 LV
_C_He

0.07

0.08

0.09

0.10

0.11

RM
SE

80 training data samples

CW CS HS LV CN
CS_He

HS_He
LV_he

CS_C
 HS_C

 LV
_C

 CN_C

CS_C_He

 HS_C_He

 LV
_C_He

0.05

0.06

0.07

0.08

0.09

RM
SE

160 training data samples

CW CS HS LV CN
CS_He

HS_He
LV_he

CS_C
 HS_C

 LV
_C

 CN_C

CS_C_He

 HS_C_He

 LV
_C_He

0.02

0.03

0.04

0.05

0.06

0.07

RM
SE

320 training data samples

Fig. 8 Comparison of various discrete kernels modeling performance on the augmentedmixed-variable Branin
function for various training data set sizes over 20 repetitions.

31

C. Goldstein function

The third analytical benchmark function to be considered in this work is a modified mixed-variable variant of the

Goldstein [39] function characterized by 2 continuous variables and 2 discrete variables, each one with 3 levels, thus

resulting in 9 discrete categories. This mixed-variable Goldstein function is defined as follows:

5 (G1, G2, I1, I2) = ℎ(G1, G2, G3, G4) (59)

with

G1 ∈ [0, 100], G2 ∈ [0, 100], I1 ∈ {0, 1, 2}, I2 ∈ {0, 1, 2}

The values of G3 and G4 are determined as a function of I1 and I2 according to the relations defined in Table 2.

I1 = 0 I1 = 1 I1 = 2
I2 = 0 G3 = 20, G4 = 20 G3 = 50, G4 = 20 G3 = 80, G4 = 20
I2 = 1 G3 = 20, G4 = 50 G3 = 50, G4 = 50 G3 = 80, G4 = 50
I2 = 2 G3 = 20, G4 = 80 G3 = 50, G4 = 80 G3 = 80, G4 = 80

Table 2 Characterization of the Goldstein function discrete categories

ℎ(G1, G2, G3, G4) = 53.3108 + 0.184901G1 − 5.02914G3
110−6 + 7.72522G4

110−8−

0.0870775G2 − 0.106959G3 + 7.98772G3
310−6+

0.00242482G4 + 1.32851G3
410−6 − 0.00146393G1G2−

0.00301588G1G3 − 0.00272291G1G4 + 0.0017004G2G3+

0.0038428G2G4 − 0.000198969G3G4 + 1.86025G1G2G310−5−

1.88719G1G2G410−6 + 2.50923G1G3G410−5−

5.62199G2G3G410−5

(60)

This benchmark function presents similar continuous and discrete design space dimensions to the previously discussed

mixed-variable Branin function, however, a few key characteristics differ. First of all, although both functions depend on

the same number of discrete variables, the Goldstein function presents a larger number of levels per discrete variable,

thus resulting in more than twice as many categories. On the other hand, the Goldstein function can be expected to be

less challenging to model due to the absence of negative correlations between discrete levels as well as the presence of

a more homoscedastic global trend when compared to the Branin function. Finally, it can also be noticed that each

discrete variable has an independent influence on the definition of each problem category, which is not the case for the

32

CW CS HS LV CN
CS_He

HS_He
LV_he

CS_C
 HS_C

 LV
_C

 CN_C

CS_C_He

 HS_C_He

 LV
_C_He

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

RM
SE

27 training data samples

CW CS HS LV CN
CS_He

HS_He
LV_he

CS_C
 HS_C

 LV
_C

 CN_C

CS_C_He

 HS_C_He

 LV
_C_He

0.00

0.01

0.02

0.03

0.04

RM
SE

72 training data samples

CW CS HS LV CN
CS_He

HS_He
LV_he

CS_C
 HS_C

 LV
_C

 CN_C

CS_C_He

 HS_C_He

 LV
_C_He

0.000

0.001

0.002

0.003

0.004

0.005

0.006

RM
SE

135 training data samples

Fig. 9 Comparison of various discrete kernels modeling performance on themixed-variable Goldstein function
for various training data set sizes over 20 repetitions.

two Branin function variants previously considered. For this benchmark function, the testing is repeated with data sets

of 27, 72 and 135 samples (i.e., 3, 8 and 15 samples per discrete category). The results obtained for the modeling of the

Goldstein function with the considered discrete kernels are provided in Figure 9. As for the previous test-cases, the

independent CW GP approach tends to provide considerably worse modeling performance, most notably for larger data

sets, due to lower amount of exploited information. A second noticeable trend which can be identified in the results is

that for small sized training data sets (i.e., 27 data samples), the category-wise kernels tend to provide a worse modeling

accuracy when compared to the ones based on a level-wise approach. This can be explained by the relatively large

number of categories with respect to the available data, which can be challenging to model independently. Additionally,

it can also be seen that the heteroscedastic variants of the considered kernels do not seem to provide a sizable advantage

33

in terms of modeling performance with respect to their homoscedastic counterpart. As previously mentioned, this is due

to the fact that the Goldstein function is not properly heteroscedastic, and by consequence, considering a heteroscedastic

model results in a number of unnecessary hyperparameters to be tuned. Finally, for large enough training data sets the

LV, HS and CN kernel parameterizations tend to provide the most promising modeling results, with a slightly better

performance for the latter two.

D. Fourth benchmark function

The fourth analytical benchmark function which is considered is an adaptation of a function proposed in [16],

characterized by a single continuous variable and 2 discrete variables, presenting respectively 4 and 2 levels, for a total

of 8 categories. The considered function is defined as follows:

5 (G, I1, I2) =

cos

(
7c G2 −

I1
20

)
if I2 = 0

cos
(
7c G2 +

(
0.4 + I1

15
)
c − I1

20
)

if I2 = 1
(61)

with G ∈ [0, 1], I1 ∈ {6, 7, 8, 9} and I2 ∈ {0, 1}. For illustrative purposes, the 8 categories of the function defined above

are plotted in Figure 10. This benchmark is expected to be characterized by homoscedastic trends combined with a

0.0 0.2 0.4 0.6 0.8 1.0
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Fu
nc

tio
n

va
lu

e

Fig. 10 Categories of the 4th modeling analytical benchmark.

negative covariance between the levels of the discrete variable I2. For this function, the testing is repeated with data

sets of 40, 80 and 120 samples (i.e., 5, 10 and 15 samples per discrete category). The obtained modeling results are

provided in Figure 11. Overall, it can be seen that most of the considered discrete kernels provide a considerably better

modeling accuracy when compared to the independent category-wise GP, the only exception being the homoscedastic

and heteroscedastic category-wise CS and LV kernels, which tend to poorly model the negative correlation trends. The

results also show that due to the relatively homoscedastic nature of this particular test-case, the heteroscedastic variants

of the considered discrete kernels do not yield sizable advantages in terms of modeling accuracy.

34

CW CS HS LV CN
CS_He

HS_He
LV_he

CS_C
 HS_C

 LV
_C

 CN_C

CS_C_He

 HS_C_He

 LV
_C_He

0.0

0.1

0.2

0.3

0.4

RM
SE

40 training data samples

CW CS HS LV CN
CS_He

HS_He
LV_he

CS_C
 HS_C

 LV
_C

 CN_C

CS_C_He

 HS_C_He

 LV
_C_He

0.00

0.05

0.10

0.15

0.20

RM
SE

80 training data samples

CW CS HS LV CN
CS_He

HS_He
LV_he

CS_C
 HS_C

 LV
_C

 CN_C

CS_C_He

 HS_C_He

 LV
_C_He

0.00

0.01

0.02

0.03

0.04

RM
SE

120 training data samples

Fig. 11 Comparison of various discrete kernels modeling performance on the fourth analytical benchmark
function for various training data set sizes over 20 repetitions.

E. Fifth benchmark function

The fifth and final analytical benchmark function which is considered is an adaptation of a function proposed in

[40], characterized by 5 continuous variables and 5 discrete variables. Each one of the discrete variables is associated to

3 levels, which results in a total of 243 categories. This test-function is defined as follows:

5 (x, z) =
5∑
8=1

G8 (I6−8 − 2)
80

5∏
8=1

cos
(
G8√
8

)
sin

(
50(I6−8 − 2)
√
8

)
(62)

with x = {G1, . . . , G5} ∈ [0, 1]5, and I8 ∈ {1, 2, 3} for 8 = {1, ..., 5} . The mixed-variable function defined above is

characterized by a large number of categories relatively to the total dimension of its design space. As a consequence,

35

both the independent category-wise GP and category-wise discrete kernels cannot reasonably be considered for this

benchmark, as the number of training data samples would be smaller than the total number of categories, and by

extension also lower than the number of hyperparameters to be tuned. For this benchmark the testing is repeated with

data sets of 60, 90 and 120 samples. The results obtained with the considered level-wise discrete kernels are provided in

Figure 12. The results show that for small training data sets, not enough information is provided in order to properly

CS HS LV CN
CS_He

HS_He
LV_he

0.1

0.2

0.3

RM
SE

60 training data samples

CS HS LV CN
CS_He

HS_He
LV_he

0.000

0.025

0.050

0.075

0.100

0.125

RM
SE

90 training data samples

CS HS LV CN
CS_He

HS_He
LV_he

0.00

0.01

0.02

0.03

0.04

RM
SE

120 training data samples

Fig. 12 Comparison of various discrete kernels modeling performance on the fifth analytical benchmark
function for various training data set sizes over 20 repetitions.

train heteroscedastic kernels, and by consequence the homoscedastic ones yield slightly better results. For larger training

data sets, instead, both variants of the CS kernel are too simplistic and thus unable to properly capture the trends of the

considered function. In order to be able to distinguish the differences in performance between the remaining kernel

parameterizations, the same results of Figure 12 are presented in Figure 13 without the 2 CS kernel variants, It can then

be seen that when sufficient information is provided to the model, the heteroscedastic kernels provide the most accurate

modeling of the considered function, with the best results being associated to the CN kernel.

36

HS LV CN
HS_He

LV_he
0.000

0.001

0.002

0.003

0.004

0.005

RM
SE

90 training data samples

HS LV CN
HS_He

LV_he

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

RM
SE

120 training data samples

Fig. 13 Comparison of various discrete kernels modeling performance on the fifth analytical benchmark
function for various training data set sizes over 20 repetitions.

F. Propulsion performance simulation

In order to better assess the surrogate modeling performance of the discrete kernels discussed in this paper, two

aerospace design related test-cases are considered as benchmarks. The first representative test-case is a simulation

of the combustion performance of a launcher engine. More specifically, the modeled variable is the specific impulse

�(% provided by the engine. The �(% is modeled as a function of the reductant to oxidant ratio $� , the combustion

chamber pressure %2 , the nozzle area ratio n (defined as the ratio between the nozzle throat diameter and the nozzle exit

diameter) and the type of reductant and oxidant. The first three variables characterizing the �(% are continuous, while

the type of reductant and oxidant are discrete choices which can be represented with the use of discrete variables. A

summary of the variables characterizing the problem is provided in Table 3.

Variable Nature Min Max Levels
$� continuous 2.5 5.5 [-]

%2 [bar] continuous 20 80 [-]
n continuous 10 60 [-]

Oxidant discrete [-] [-] O2, N204, F2, H2O2
Reductant discrete [-] [-] CH4, N2H4, JP-4, H2

Table 3 Variables characterizing the combustion performance simulation test-case

Although this problem is theoretically characterized by a total of 16 categories, it is important to note that not all

the combinations of reductant and oxidant can realistically be simulated and therefore only 7 categories are modeled.

The combustion simulations necessary to create the training data sets are performed by using the thermo-chemical

simulation software ’Chemical Equilibrium with Applications’ (CEA) created by NASA [41]. This software simulates

37

the combustion of gases in a combustion chamber and their expansion in an engine nozzle. The conditions for chemical

motion equilibrium are stated in terms of Gibbs and Helmholtz energies [42] or the maximization of the entropy. The

system of equations which characterizes the equilibrium and describes its composition is non-linear and therefore

iterative methods (such as the Newton-Rhapson method [43]) are used to solve it. In Figure 14, the �(% profiles for the 7

considered combinations of reductant and oxidant are shown as a function of the nozzle ratio Y and the reductant to

oxidant ratio $� .

OF

2.53.03.54.04.55.05.5
ε

10
20
30
4050

60

I S
P

280
300
320
340

360

O2 - CH4

200
250
300
350
400
450

OF

2.53.03.54.04.55.05.5
ε

10
20
30
4050

60

I S
P

220
240
260
280
300

N2O4 - N2H4

200
250
300
350
400
450

OF

2.53.03.54.04.55.05.5
ε

10
20
30
4050

60

I S
P

280
300
320
340

O2 - JP-4

200
250
300
350
400
450

OF

2.53.03.54.04.55.05.5
ε

10
20
30
4050

60

I S
P

390
400
410
420
430
440

O2 - H2

200
250
300
350
400
450

OF

2.53.03.54.04.55.05.5
ε

10
20
30
4050

60

I S
P

200
220
240
260
280

O2 - N2H4

200
250
300
350
400
450

OF

2.53.03.54.04.55.05.5
ε

10
20
30
4050

60

I S
P

410
420
430
440
450
460

F2 - H2

200
250
300
350
400
450

OF

2.53.03.54.04.55.05.5
ε

10
20
30
4050

60
I S
P

280
300

320

340

H2O2 - JP-4

200
250
300
350
400
450

Fig. 14 Specific impulse of a launcher engine as a function of the nozzle ratio n and the reductant to oxidant
ratio $� for various combinations of oxidant and reductant.

The results obtained when modeling the launcher engine specific impulse are provided in Figure 15. These results

are obtained over 20 different training data sets of 21, 56 and 105 samples (i.e., 3, 8 and 15 samples per discrete

category). As for the previous test-cases, it is shown that mixed-variable modeling provides a more accurate prediction

of the modeled function values with respect to independent continuous CW GP. Furthermore, it can be seen that for

small training data sets (i.e., 21 samples), heteroscedastic kernels tend to yield worse results when compared to the

homoscedastic ones due to the larger number of hyperparameters to train with insufficient data. However, it can be

38

CW CS HS LV CN
CS_He

HS_He
LV_he

CS_C
 HS_C

 LV
_C

 CN_C

CS_C_He

 HS_C_He

 LV
_C_He

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

RM
SE

21 training data samples

CW CS HS LV CN
CS_He

HS_He
LV_he

CS_C
 HS_C

 LV
_C

 CN_C

CS_C_He

 HS_C_He

 LV
_C_He

0.010

0.015

0.020

0.025

0.030

RM
SE

56 training data samples

CW CS HS LV CN
CS_He

HS_He
LV_he

CS_C
 HS_C

 LV
_C

 CN_C

CS_C_He

 HS_C_He

 LV
_C_He

0.004

0.006

0.008

0.010

0.012

0.014

RM
SE

105 training data samples

Fig. 15 Comparison of various discrete kernels modeling performance on the launcher engine specific impulse
test-case for various training data set sizes over 20 repetitions.

noticed that when sufficient data is provided (i.e., 105 data samples), the relative difference in performance between the

compared surrogate models diminishes. This can be explained by the fairly smooth and linear trends of the modeled

function with respect to the design variables (as is shown in Figure 14) that often characterizes physical phenomena,

which result in an easier modeling process.

G. Thrust frame structural analysis

The second aerospace design test-case that is considered is the modeling of a launcher thrust frame stiffening,

commonly performed for preliminary sizing purposes. More specifically, the Ariane 6 aft bay structural characteristics

are analyzed. The thrust frame is located at the bottom of the launcher first stage and has the purpose of withstanding

39

the weight of the launcher as well as the thrust of the two solid rocket boosters during the lift-off phase. A schematic

representation of the Ariane 6 aft bay and its location within the launch vehicle system is provided in Figure 16. This

structure is composed of a cylindrical outer skin, stiffened by frames and stringers, and an inner body comprising three

major frames and an inner skin.

Fig. 16 Ariane 6 PPH launcher aft bay.

The static loads that are considered for this simulation are the longitudinal and lateral thrust of the two solid rocket

boosters (see Figure 16). The boundary conditions are defined by modeling the first stage composite bottom skirt

clamped to the upper interface of the thrust frame. In this test-case, two different parameters of the considered system

are modeled: the maximum von Mises stress on the inner skin of the structure [44] and the upper interface longitudinal

over-flux. These are modeled as a function of the inner and outer skins thicknesses C8 , C> of the 6 regions in which the

thrust frame is divided as well as of the number of stringers #B and the number of frames # 5 . The 12 thicknesses are

continuous variables while the number of stringers and frames are discrete variables, each one characterized by 3 levels,

thus resulting in a total of 9 categories. For illustrative purposes, structural responses on the entire thrust frame structure

considering the maximum von Mises stress and the over-flux are provided in Figure 17. For the sake of simplicity, the

same range is considered for all the thicknesses variables characterizing the problem. More specifically, the minimum

and maximum bounds are 1 and 30 mm, respectively. A summary of the variables characterizing the studied problem is

provided in Table 4.

In order to generate the training and testing data sets for this analysis, the MSC Nastran Finite Element Method

(FEM) software [45] is used. In practice, a separate finite element model is created for every considered category of the

problem (i.e., for every combination of the number of stringers and frames) due to the need of a distinct meshing for

every configuration. A number of static FEM analyses is then performed with varying inner and outer skins thicknesses,

according to the values present in the data sets, and using the finite element model corresponding to the category the

40

Fig. 17 Examples of structural responses on the entire thrust frame structure. On the left figure the maximum
von Mises stress is illustrated, while on the right figure the upper interface longitudinal over-flux is shown.

Variable Nature Min Max Levels
C81,6 [mm] continuous 1 30 [-]
C>1,6 [mm] continuous 1 30 [-]

#B discrete [-] [-] 36, 72, 144
5 discrete [-] [-] 2, 4, 8

Table 4 Variables characterizing the thrust frame structural analysis test-case

considered sample belongs to. The lift-off conditions are simulated by considering two aligned vertical loads �G and

two opposing horizontal loads �H , applied on the side of the thrust frame, as illustrated in Figure 16.

Due to the larger computation cost of the static load simulation when compared to the analytical test-cases, the

modeling performance benchmark is only performed over 10 repetitions, with each training data set containing 135

samples. The results obtained when performing the surrogate modeling of the maximum inner skin von Mises stress

and the upper interface longitudinal over-flux on the thrust frame are shown in the upper and lower plots of Figure

18, respectively. The results show that overall, relying on mixed-variable kernels allows to considerably reduce the

modeling error if compared to independent CW GP. It can also be noticed that category-wise mixed-variable kernels

yield worse results with respect to a level-wise modeling, due to the nature of the modeled functions as well as the

relatively small data sets size. No significant difference in performance between CS/LV kernels and HS/CN kernels can

be noticed, which can be explain by a lack of negative correlation trends between the discrete levels and/or categories of

the considered problem. Finally, heteroscedastic and homoscedastic kernels yield similar results, which again suggests

the absence of considerably heteroscedastic trends in the modeled function.

41

CW CS HS LV CN

CS_H
e

HS_H
e

LV
_h

e
CS_C

HS_C
LV

_C
CN_C

CS_C
_H

e

HS_C
_H

e

LV
_C

_H
e

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

R
M

S
E

Von Mises stress

CW CS HS LV CN

CS
_H
e

HS
_H
e

LV
_h
e

CS
_C

HS
_C

LV
_C

CN
_C

CS
_C
_H
e

HS
_C
_H
e

LV
_C
_H
e

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

R
M
S
E

Over-flux

Fig. 18 Comparison of various discrete kernels modeling performance on the thrust frame structural analysis
test-case. The modeled values are the maximum inner skin von Mises stress (top) and the upper interface
longitudinal over-flux (bottom) over 10 repetitions.

H. Model error estimation accuracy

Within the context of function modeling, the main property which is usually considered is the modeling accuracy,

i.e., the difference between the actual and the predicted function value, which can be estimated through criteria such as

the RMSE. However, in some cases the validity of the error model (i.e., variance prediction B̂2 (·)) may also be relevant.

A notable example is the role of the GP models within the Bayesian optimization framework [46], in which the variance

prediction drives the exploration aspect of the optimization process. This highlights the necessity for both the prediction

to be accurate and the error model to be coherent. As a measure of the error model coherence, the Mean Negative test

Log-Likelihood (MNLL) is considered. Similarly to the RMSE, this measure (for the Gaussian case) is computed on a

test data set of N samples as:

MNLL = − 1
#

#∑
8=1

log

(
1√

2cB̂2 (x8 , z8)
exp

(
−

(
H(x8 , z8) − Ĥ(x8 , z8)

)2

2B̂2 (x8 , z8)

))
(63)

42

and it represents the (negative) likelihood of predicting the exact value of the data set samples with the considered GP

model prediction (in terms of both mean prediction and associated variance). As for the RMSE, lower values of the

MNLL tend to characterize a better likelihood of explaining the test set and therefore reflect the higher quality of the

surrogate model uncertainty estimation. For illustrative purposes, the error model produced by the various discrete

kernels considered in this paper is compared on the most representative analytical and design related test-cases.

First the mixed-variable Branin function is considered. As for the modeling accuracy benchmark, the test is repeated

20 times over data sets of 20, 40 and 80 samples and validated on a data set of a 1000 samples. The obtained results are

provided in Figure 19.

CW CS HS LV CN
CS_He

HS_He
LV_he

CS_C
 HS_C

 LV
_C

 CN_C

CS_C_He

 HS_C_He

 LV
_C_He

4

3

2

1

M
NL

L

20 training data samples

CW CS HS LV CN
CS_He

HS_He
LV_he

CS_C
 HS_C

 LV
_C

 CN_C

CS_C_He

 HS_C_He

 LV
_C_He

5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5

M
NL

L

40 training data samples

CW CS HS LV CN
CS_He

HS_He
LV_he

CS_C
 HS_C

 LV
_C

 CN_C

CS_C_He

 HS_C_He

 LV
_C_He

5.5

5.0

4.5

4.0

3.5

3.0

2.5

M
NL

L

80 training data samples

Fig. 19 Comparison of various discrete kernels error model on the mixed-variable Branin function for various
training data set sizes over 20 repetitions.

Overall, the results show a similar relative performance between the various kernels as for the prediction benchmark.

43

The main difference is represented by the independent CW approach which tends to provide an error model accuracy

comparable to most of the considered kernels for small sized data sets (i.e., 20 and 40 data samples). A slightly worse

relative performance of the heteroscedastic hypersphere decomposition kernel can also be noticed.

The second considered benchmark is the thrust frame structural analysis. In this case, the test is repeated 10 times

over data sets of 135 data samples. The obtained results for the modeling of the maximum von Mises stress on the inner

skin of the structure and the upper interface longitudinal over-flux are provided in the top and bottom parts of Figure 20,

respectively.

CW CS HS LV CN

CS_H
e

HS_H
e

LV
_h

e
CS_C

HS_C
LV

_C
CN_C

CS_C
_H

e

HS_C
_H

e

LV
_C

_H
e

3.00

2.75

2.50

2.25

2.00

1.75

1.50

1.25

M
N

LL

Von-Mises stress

CW CS HS LV CN

CS
_H
e

HS
_H
e

LV
_h
e

CS
_C

HS
_C

LV
_C

CN
_C

CS
_C
_H
e

HS
_C
_H
e

LV
_C
_H
e

3.0

2.8

2.6

2.4

2.2

2.0

M
N
LL

Over-flux

Fig. 20 Comparison of various discrete kernels modeling MNLL on the thrust frame structural analysis test-
case. Themodeled values are themaximum inner skin vonMises stress (top) and the upper interface longitudinal
over-flux (bottom) over 10 repetitions.

Also for this benchmark, the results show that the MNLL provided by the independent CW approach, relatively to

the rest of the discrete kernels, is considerably better than its prediction RMSE. Furthermore, it can also be noticed that

differently from the modeling benchmark, most of the category-wise approaches overall tend to provide a more accurate

error model when compared to the level-wise approaches. This might be explained by the fact that sufficient data is

provided in order to properly optimize the variance associated to each category of the problem, resulting in uncertainty

44

model associated to the prediction that is more likely to contained the unobserved exact simulation results. It illustrates

the importance of considering both the accuracy of the prediction and the accuracy of the error model calibration.

VIII. Result synthesis
In the previous sections, the different discrete kernel parameterizations described in Section V have been tested on

several analytical and engineering related benchmark functions. Overall, it is shown that mixed-variable GP tend to

provide a considerably more accurate modeling performance when compared to the independent category-wise GP

as they can rely on the entirety of the training data rather than only the samples associated to a given category. This

difference becomes more noticeable when the number of categories associated to the considered problem increases.

This can, for instance, be seen when comparing the results obtained for the Branin and Goldstein functions in Figures 7

and 9, characterized respectively by 4 and 9 categories, but the same number of discrete variables.

The results presented in this benchmark of analytical and engineering problems are a direct illustration of the "no

free lunch theorem" [47], no mixed-variable GP performs better for all analytical and engineering problems, for all

dataset size and for all repetitions. However, some general trends can be identified.

Among the considered kernel parameterizations, the CS is outperformed by the other kernels for most of the

test-cases when considering sufficiently large data sets. This is due to the fact that the CS models the covariance between

any pair of non identical levels with the same hyperparameter value, which considerably limits its modeling capabilities

when confronted with complex problems and/or large number of levels. However, this difference in performance

becomes less noticeable when small data sets are used, as the model is easier to train when compared to other kernels

characterized by a larger number of hyperparameters. This can, for instance, be seen for the augmented Branin functions

in Figure 8. The obtained results also show that, because of its specific distance-based construction, the LV kernel is not

suitable when dealing with functions which present negative correlation trends between levels or categories, as it can

only return positive covariance values. This is for instance clearly shown in the results obtained for the Branin and

augmented Branin functions in Figures 7 and 8. Finally, the hypersphere and coregionalization kernels show similar

behaviors on the various considered test-cases, which can be explained by the similar construction and characteristics

(i.e., mapping of ; levels onto an ;-dimensional Hilbert space). The main differences in performance between the two

kernels can be identified when dealing with particularly small data sets, in which case the coregionalization is limited by

its larger number of hyperparameters, and when dealing with heteroscedastic functions, which the coregionalization

kernel can model inherently better.

The difference in performance between the level-wise and category-wise approach based kernels varies depending on

the considered function. For mixed-variable functions characterized by a low number of categories (relatively to the

number of discrete variables), a category-wise approach may provide a better modeling as it can allow to separately

45

characterize the covariance between each category, thus better capturing the various trends of the considered function.

This can for instance be seen in the results obtained for the Branin function in Figure 7. However, when considering

functions characterized by larger number of categories, the level-wise approach based kernels tend to perform better

than the category-wise based ones in case small training data sets are provided, as is for instance shown for the Goldstein

function in Figure 9. This can be explained by the fact that the number of categories characterizing a given function

tends to increase exponentially with the number of discrete variables. The number of hyperparameters necessary to

characterize a category-wise kernel follows a similar trend and can therefore become considerably large with respect to

the available data, thus resulting in a difficult model training process. For functions characterized by a particularly

large number of categories, such as the fifth analytical benchmark, a category-wise approach becomes unfeasible, as it

presents more categories than the amount of data samples which can be provided for the GP model training. An analysis

of the considered function in terms of number of levels and categories with respect to the size of the available training

data set might therefore be necessary in order to assess whether a level-wise or category-wise is more suitable.

The obtained results also show that in the presence of heteroscedastic trends in the modeled function, considering

heteroscedastic kernels tends to results in better modeling performance, as can for instance be seen for the fifth analytical

benchmark in Figure 12. However, it can also be noticed that when dealing with homoscedastic functions, considering

heteroscedastic kernels usually yields results comparable with the homoscedastic ones. Therefore, unless the considered

function presents a particularly large discrete design space or the training data is particularly limited, considering

heteroscedastic kernels is usually the safest choice, unless problem specific knowledge is available.

Finally, the coherence of the considered discrete kernels error models is also analyzed on two representative test-cases

(one analytical benchmark and one engineering design related benchmark) with different data set sizes by relying on

the mean negative test log-likelihood as a comparison criterion. Overall, it is shown that the relative performance

between kernels for a given modeled function is similar to the one obtained when considering the RMSE. The main

noticeable difference with respect to the modeling accuracy benchmark is the good performance of the independent CW

GP modeling (i.e., the reference method), especially for small sized training data sets, as is shown in Figures 19 and 20.

In fact, in these cases the independent CW GP provides a more coherent error model than several of the compared

kernels. This can be explained by the fact that this approach relies on considerably less data in order to build each one

of the independent surrogate models, and provides therefore a more conservative variance prediction due to the lack of

information with respect to a large portion of the search space.

46

IX. Conclusions
In this paper, the Gaussian Process based surrogate modeling of fixed-size mixed-variable functions is discussed.

It is shown that it is possible to define a mixed-variable kernel by combining purely continuous and purely discrete

kernels. Subsequently, the construction of valid discrete kernels is discussed, and the existing alternatives are presented

and compared. Furthermore, the resulting mixed-variable Gaussian processes are tested on a number of benchmarks

with different characteristics. Overall, the obtained results show that relying on mixed-variable surrogate models rather

than on separate and independent continuous GP for each category allows to better exploit the available data and by

consequence model more accurately the considered functions. The results also show that depending on the specific

characteristics of the modeled function, such as homoscedasticity, number of levels/categories and presence of negative

correlations, the relative performance of the compared discrete kernel varies. As a result, the kernel choice must be

adapted to the specifics of the considered problems. Overall, in this paper the modeling capabilities of mixed-variable

Gaussian processes when dealing with small training data sets are shown. This characteristic, coupled with the fact

that Gaussian processes can provide an estimate of the modeling error under the form of a variance as a (virtually)

free bi-product of the modeled function prediction, makes mixed-variable Gaussian processes a promising candidate

for the surrogate model-based optimization of mixed-variable problems[48]. One of the main limits of the current

mixed-variable GPs is the curse of dimension and the explosion of combinatorial choices, which can lead to a high

number of hyperparameters to be determined. Several approaches could be investigated to reduce this number such as

partial least square techniques and constitutes an interesting perspective.

Funding Sources
This research was co-founded by the Centre National d’Etudes Spatiales (CNES) and by the Office National d’Etudes

et de Recherches Aerospatiales (ONERA - The French Aerospace Lab) within the context of a PhD thesis.

Appendix A
In the following, the various discrete kernels presented in this paper are tested on a number of benchmarks. More

specifically, 5 analytical functions and 2 engineering-related test-cases are considered. These benchmarks present

different characteristics in terms of continuous and discrete design space dimensions, combinatorial design space

size, complexity, presence of negative correlation and heteroscedastic trends and category-wise construction. The key

properties (from a modeling perspective), simulation details and expected analyses for each benchmark are provided

below:

Branin function

• 2 continuous dimensions, 2 discrete dimensions, 9 categories

• Modeling performed for 3 data set sizes: 20, 40, 80

47

• Presence of negative correlation trends between levels and category-wise construction of the function.

Augmented Branin function

• 10 continuous dimensions, 2 discrete dimensions, 4 categories

• Modeling performed for 3 data set sizes: 80, 160, 320

• Increase of the continuous design space size with respect to the Branin function (but identical discrete design

space characteristics). Presence of negative correlation trends between levels and category-wise construction of

the function.

Goldstein function

• 2 continuous dimensions, 2 discrete dimensions, 9 categories

• Modeling performed for 3 data set sizes: 27, 72, 135

• Increase in the number of categories with respect to the Branin function (but identical discrete design space size).

Overall homoscedastic trend.

Analytical benchmark N.4

• 1 continuous dimensions, 2 discrete dimensions, 8 categories

• Modeling performed for 3 data set sizes: 40, 80, 120

• Overall homoscedastic with negative correlation trends between levels.

Analytical benchmark N.5

• 5 continuous dimensions, 5 discrete dimensions, 243 categories

• Modeling performed for 3 data set sizes: 60, 90, 120

• Large number of categories, impossibility of relying on category-wise approaches.

Propulsion performance simulation

• 3 continuous dimensions, 2 discrete dimensions, 7 categories (16 theoretical)

• Modeling performed for 3 data set sizes: 21, 56, 105

• Realistic simulation. Not all level combinations are physically feasible, which results in not all categories being

present in the DoE.

Thrust frame structural analysis

• 12 continuous dimensions, 2 discrete dimensions, 9 categories

• Modeling performed for 1 data set sizes: 135

• Realistic simulation. Linear trends with respect to the continuous sizing variables.

Implementation

The results presented in the following paragraphs are obtained with the following implementation. The model comparison

overhead routine is written in Python 3.6. The compared discrete kernels are implemented within the framework of

a GPflow [49], a Python based toolbox for GP-based modeling relying on the Tensorflow machine learning platform

48

[50] (version 1.13). The GP training is performed with the help of a Bounded Limited memory Broyden - Fletcher -

Goldfarb a Shanno (L-BFGS-B) algorithm [33].

References
[1] Queipo, N. V., Haftka, R. T., Shyy, W., Goel, T., Vaidyanathan, R., and Kevin Tucker, P., “Surrogate-based analysis and

optimization,” Progress in Aerospace Sciences, Vol. 41, No. 1, 2005, pp. 1–28. https://doi.org/10.1016/j.paerosci.2005.02.001.

[2] Draper, N. R., and Smith, H., Applied regression analysis, Vol. 326, John Wiley & Sons, 1998.

[3] Papadrakakis, M., Lagaros, N. D., and Tsompanakis, Y., “Structural optimization using evolution strategies and neural networks,”

Computer methods in applied mechanics and engineering, Vol. 156, No. 1-4, 1998, pp. 309–333. https://doi.org/10.1016/S0045-

7825(97)00215-6.

[4] Dyn, N., Levin, D., and Rippa, S., “Numerical procedures for surface fitting of scattered data by radial functions,” SIAM Journal

on Scientific and Statistical Computing, Vol. 7, No. 2, 1986, pp. 639–659. https://doi.org/10.1137/0907043.

[5] Fang, H., and Horstemeyer, M. F., “Global response approximation with radial basis functions,” Engineering Optimization,

Vol. 38, No. 04, 2006, pp. 407–424. https://doi.org/10.1080/03052150500422294.

[6] Smola, A. J., and Schölkopf, B., “A tutorial on support vector regression,” Statistics and computing, Vol. 14, No. 3, 2004, pp.

199–222. https://doi.org/10.1023/B:STCO.0000035301.49549.88.

[7] Friedman, J. H., et al., “Multivariate adaptive regression splines,” The annals of statistics, Vol. 19, No. 1, 1991, pp. 1–67.

https://doi.org/https://www.jstor.org/stable/2241837.

[8] Wang, G. G., and Shan, S., “Review of Metamodeling Techniques in Support of Engineering Design Optimization,” Journal of

Mechanical Design, Vol. 129, No. 4, 2007, p. 370. https://doi.org/10.1115/1.2429697.

[9] Rasmussen, C. E., and Williams, C. K. I., Gaussian processes for machine learning, MIT Press, 2006.

[10] Bartz-Beielstein, T., and Zaefferer, M., “Model-based methods for continuous and discrete global optimization,” Applied Soft

Computing, Vol. 55, 2017, pp. 154–167.

[11] Meckesheimer, M., Barton, R. R., Simpson, T., Limayem, F., and Yannou, B., “Metamodeling of Combined Discrete/Continuous

Responses,” AIAA JOURNAL, Vol. 39, No. 10, 2001.

[12] Swiler, L. P., Hough, P. D., Qian, P., Xu, X., Storlie, C., and Lee, H., “Surrogate models for mixed discrete-continuous variables,”

Constraint Programming and Decision Making, Springer, 2014, pp. 181–202. https://doi.org/10.1007/978-3-319-04280-0_21.

[13] Zhou, Q., Qian, P. Z. G., and Zhou, S., “A Simple Approach to Emulation for Computer Models With Qualitative and

Quantitative Factors,” Technometrics, Vol. 53, No. 3, 2011, pp. 266–273. https://doi.org/10.1198/TECH.2011.10025.

49

https://doi.org/10.1016/j.paerosci.2005.02.001
https://doi.org/10.1016/S0045-7825(97)00215-6
https://doi.org/10.1016/S0045-7825(97)00215-6
https://doi.org/10.1137/0907043
https://doi.org/10.1080/03052150500422294
https://doi.org/10.1023/B:STCO.0000035301.49549.88
https://doi.org/https://www.jstor.org/stable/2241837
https://doi.org/10.1115/1.2429697
https://doi.org/10.1007/978-3-319-04280-0_21
https://doi.org/10.1198/TECH.2011.10025

[14] Alvarez, M. A., Rosasco, L., Lawrence, N. D., et al., “Kernels for vector-valued functions: A review,” Foundations and Trends®

in Machine Learning, Vol. 4, No. 3, 2012, pp. 195–266.

[15] Zhang, Y., and Notz, W. I., “Computer experiments with qualitative and quantitative variables: A review and reexamination,”

Quality Engineering, Vol. 27, Taylor & Francis, 2015, pp. 2–13. https://doi.org/10.1080/08982112.2015.968039.

[16] Roustant, O., Padonou, E., Deville, Y., Clément, A., Perrin, G., Giorla, J., and Wynn, H., “Group kernels for Gaussian process

metamodels with categorical inputs,” arXiv preprint arXiv:1802.02368, 2018.

[17] Oliver, M. A., and Webster, R., “Kriging: a method of interpolation for geographical information systems,” International

Journal of Geographical Information Systems, Vol. 4, No. 3, 1990, pp. 313–332. https://doi.org/10.1080/02693799008941549.

[18] Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P., “Design and Analysis of Computer Experiments,” Statistical Science,

Vol. 4, No. 4, 1989, pp. 409–423. https://doi.org/https://www.jstor.org/stable/2245858.

[19] Simpson, T. W., Peplinski, J. D., Koch, P. N., and Allen, J. K., “Metamodels for Computer-based Engineering Design: Survey

and recommendations,” Engineering with Computers, Vol. 17, No. 2, 2001, pp. 129–150. https://doi.org/10.1007/pl00007198.

[20] Aronszajn, N., “Theory of reproducing kernels,” Transactions of the American mathematical society, Vol. 68, No. 3, 1950, pp.

337–404. https://doi.org/10.2307/1990404.

[21] Steinwart, I., and Christmann, A., Support vector machines, Springer Science & Business Media, 2008.

[22] Scholkopf, B., and Smola, A. J., Learning with kernels: support vector machines, regularization, optimization, and beyond,

MIT press, 2001.

[23] Santner, T. J., Williams, B. J., and Notz, W. I., The Design and Analysis of Computer Experiments, Springer New York, 2003.

https://doi.org/10.1007%2F978-1-4939-8847-1.

[24] Suits, D. B., “Use of Dummy Variables in Regression Equations,” Journal of the American Statistical Association, Vol. 52, No.

280, 1957, pp. 548–551. https://doi.org/10.1080/01621459.1957.10501412.

[25] Halstrup, M., “Black-box optimization of mixed discrete-continuous optimization problems,” Ph.D. thesis, TU Dortmund, jan

2016.

[26] Hutter, F., “Automated configuration of algorithms for solving hard computational problems,” Ph.D. thesis, University of British

Columbia, 2009.

[27] Gower, J. C., “A General Coefficient of Similarity and Some of Its Properties,” Biometrics, Vol. 27, No. 4, 1971, p. 857.

[28] Zhang, Y., Tao, S., Chen, W., and Apley, D. W., “A latent variable approach to Gaussian process modeling with qualitative and

quantitative factors,” Technometrics, 2019, pp. 1–12. https://doi.org/10.1080/00401706.2019.1638834.

[29] Journel, A. G., and Huĳbregts, C. J.,Mining geostatistics, Vol. 600, Academic press London, 1978.

50

https://doi.org/10.1080/08982112.2015.968039
https://doi.org/10.1080/02693799008941549
https://doi.org/https://www.jstor.org/stable/2245858
https://doi.org/10.1007/pl00007198
https://doi.org/10.2307/1990404
https://doi.org/10.1007%2F978-1-4939-8847-1
https://doi.org/10.1080/01621459.1957.10501412
https://doi.org/10.1080/00401706.2019.1638834

[30] Goovaerts, P., et al., Geostatistics for natural resources evaluation, Oxford University Press on Demand, 1997.

[31] Pinheiro, J., and Bates, D. M., “Unconstrained parametrizations for variance-covariance matrices,” Statistics and Computing,

Vol. 6, No. 3, 1996, pp. 289–296. https://doi.org/10.1007/BF00140873.

[32] Qian, P. Z. G., Wu, H., and Wu, C. F. J., “Gaussian Process Models for Computer Experiments With Qualitative and Quantitative

Factors,” Technometrics, Vol. 50, No. 3, 2008, pp. 383–396. https://doi.org/10.1198/004017008000000262.

[33] Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C., “A limited memory algorithm for bound constrained optimization,” SIAM Journal

on Scientific Computing, Vol. 16, No. 5, 1995, pp. 1190–1208. https://doi.org/10.1137/0916069.

[34] Storn, R., and Price, K., “Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous

Spaces,” Journal of Global Optimization, Vol. 11, No. 4, 1997, pp. 341–359.

[35] Hansen, N., “Towards a New Evolutionary Computation: Advances in the Estimation of Distribution Algorithms,” Towards a

New Evolutionary Computation, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, pp. 75–102.

[36] McKay, M. D., Beckman, R., and Conover, W., “A Comparison of Three Methods for Selecting Values of Input Variables in the

Analysis of Output from a Computer Code,” Technometrics, Vol. 21, No. 2, 1979, p. 239. https://doi.org/10.1080/00401706.

2000.10485979.

[37] Deng, X., Hung, Y., and Lin, C. D., “Design for computer experiments with qualitative and quantitative factors,” Statistica

Sinica, 2015, pp. 1567–1581.

[38] Forrester, A., Sobester, A., and Keane, A., Engineering design via surrogate modelling: a practical guide, John Wiley & Sons,

2008.

[39] Picheny, V., Wagner, T., and Ginsbourger, D., “A benchmark of kriging-based infill criteria for noisy optimization,” Structural

and Multidisciplinary Optimization, Vol. 48, No. 3, 2013, pp. 607–626. https://doi.org/10.1007/s00158-013-0919-4.

[40] Deng, X., Lin, C. D., Liu, K. W., and Rowe, R. K., “Additive Gaussian Process for Computer Models With Qualitative and

Quantitative Factors,” Technometrics, Vol. 59, No. 3, 2017, pp. 283–292. https://doi.org/10.1080/00401706.2016.1211554.

[41] McBride, B. J., and Gordon, S., “Computer Program for Calculation of Complex Chemical Equilibrium Compositions and

Applications. User Manual and Program Description,” Tech. rep., NASA, 1996.

[42] Levine, I. N., Physical chemistry, McGraw-Hill, 2009.

[43] Bonnans, J.-F., Gilbert, J. C., and Lemarechal, C., Numerical optimization: theoretical and practical aspects, Springer Berlin

Heidelberg, 2006. https://doi.org/10.1007/978-3-540-35447-5.

[44] Ford, H., and Alexander, J. M., Advanced mechanics of materials, E. Horwood, 1977.

[45] MacNeal, R. H., and McCormick, C. W., “The NASTRAN Computer Program for Structural Analysis,” SAE Technical Paper,

SAE International, 1969. https://doi.org/10.1016/0045-7949(71)90021-6.

51

https://doi.org/10.1007/BF00140873
https://doi.org/10.1198/004017008000000262
https://doi.org/10.1137/0916069
https://doi.org/10.1080/00401706.2000.10485979
https://doi.org/10.1080/00401706.2000.10485979
https://doi.org/10.1007/s00158-013-0919-4
https://doi.org/10.1080/00401706.2016.1211554
https://doi.org/10.1007/978-3-540-35447-5
https://doi.org/10.1016/0045-7949(71)90021-6

[46] Jones, D. R., Schonlau, M., and Welch, W. J., “Efficient Global Optimization of Expensive Black-Box Functions,” Journal of

Global Optimization, Vol. 13, 1998, pp. 455–492. https://doi.org/10.1023/A:1008306431147.

[47] Ho, Y.-C., and Pepyne, D. L., “Simple explanation of the no-free-lunch theorem and its implications,” Journal of optimization

theory and applications, Vol. 115, No. 3, 2002, pp. 549–570. https://doi.org/10.1023/A:1021251113462.

[48] Pelamatti, J., Brevault, L., Balesdent, M., Talbi, E.-G., andGuerin, Y., “Efficient global optimization of constrainedmixed variable

problems,” Journal of Global Optimization, Vol. 73, No. 3, 2019, pp. 583–613. https://doi.org/10.1007/s10898-018-0715-1.

[49] Matthews, A. G. d. G., van der Wilk, M., Nickson, T., Fujii, K., Boukouvalas, A., León-Villagrá, P., Ghahramani, Z., and

Hensman, J., “GPflow: A Gaussian process library using TensorFlow,” Journal of Machine Learning Research, Vol. 18, No. 40,

2017, pp. 1–6.

[50] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat,

S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D.,

Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke,

V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X., “TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems,” , 2015. Software available from tensorflow.org.

52

https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1023/A:1021251113462
https://doi.org/10.1007/s10898-018-0715-1

	Introduction
	Gaussian Process surrogate models
	Mixed-variable Gaussian Process modeling
	Gaussian Process kernels
	Kernel operators

	Discrete kernels
	Compound Symmetry
	Hypersphere decomposition kernel
	Latent variable kernel
	Coregionalization
	Discrete kernel comparison

	Considerations on mixed-variable Gaussian Processes
	Category-wise and level-wise mixed-variable kernels
	Surrogate model scedasticity
	Training of the models
	Mixed-variable design of experiments

	Numerical comparison of the different mixed GP-based models
	Branin function
	Augmented Branin function
	Goldstein function
	Fourth benchmark function
	Fifth benchmark function
	Propulsion performance simulation
	Thrust frame structural analysis
	Model error estimation accuracy

	Result synthesis
	Conclusions

