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Abstract
Several studies have shown the ability of natural
gradient descent to minimize the objective func-
tion more efficiently than ordinary gradient de-
scent based methods. However, the bottleneck of
this approach for training deep neural networks
lies in the prohibitive cost of solving a large dense
linear system corresponding to the Fisher Infor-
mation Matrix (FIM) at each iteration. This has
motivated various approximations of either the
exact FIM or the empirical one. The most so-
phisticated of these is KFAC, which involves a
Kronecker-factored block diagonal approximation
of the FIM. With only a slight additional cost, a
few improvements of KFAC from the standpoint
of accuracy are proposed. The common feature
of the four novel methods is that they rely on a di-
rect minimization problem, the solution of which
can be computed via the Kronecker product singu-
lar value decomposition technique. Experimental
results on the three standard deep auto-encoder
benchmarks showed that they provide more accu-
rate approximations to the FIM. Furthermore, they
outperform KFAC and state-of-the-art first-order
methods in terms of optimization speed.

1. Introduction
In Deep Learning, the Stochastic Gradient Descent (SGD)
method (Robbins & Monro, 1951) and its variants are cur-
rently the prevailing methods for training neural networks.
To solve the problem

argmin
θ∈Rp

h(θ) :=
1

n

n∑
t=1

L(yt, fθ(xt)),
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where h denotes the empirical risk associated with the train-
ing data T = {(x1, y1), (x2, y2), . . . (xn, yn)} and the loss
function L, the batch SGD method produces iterates

θk+1 = θk − αk∇θh(Sk, θk),

where αk > 0 stands for the learning rate and where

∇θh(Sk, θk) =
1

|Sk|
∑

(xt,yt)∈Sk

∇θL(yt, fθk(xt))

is a batch approximation of the full gradient ∇θh(θk) =
1
n

∑n
t=1 ∇θL(yt, fθk(xt)) on a random subset Sk ⊂ T .

Despite its ease of implementation and great popularity in
the machine learning community, the SGD method, like all
other first-order methods, is known to have limited effec-
tiveness (requires many iterations in order to converge or
even simply diverges) for non-convex objective functions,
as is the case in deep neural networks.

In classical optimization, second-order methods are known
for their efficiency in terms of convergence speed compared
to first-order methods. A second-order iteration reads

θk+1 = θk − αk[H(θk)]
−1∇θh(θk),

where H(θk) ∈ Rp×p is the curvature matrix of h at θk. The
matrix H can be the Hessian matrix ∇2

θθh as in the Newton-
Raphson method, the drawback of which is that H−1∇θh
is not guaranteed to be a descent direction. It is wiser to
replace the Hessian matrix by a surrogate such as the Gen-
eralized Gauss-Newton matrix (Schraudolph, 2002) or the
Fisher Information Matrix (FIM) (Amari, 1998), which are
always positive semi-definite. Unfortunately, second-order
methods remain impractical for deep neural networks where
the number of parameters can quickly become very large
(tens of millions), making it impossible to compute and to
store, let alone to invert H .

A first way to avoid assembling and storing the matrix H
is the inexact resolution of the linear system by Conjugate
Gradient (CG), which requires only matrix-vector products.
This Hessian-free philosophy (Martens, 2010) is still expen-
sive, since the CG must be run with a significant number of
iterations before reaching an acceptable convergence.



Efficient Approximations of the Fisher Matrix in Neural Networks using Kronecker Product Singular Value Decomposition

An alternative is to consider the direct inversion of a diag-
onal approximation to H , as in (Becker & Le Cun, 1988)
for the Hessian matrix or in (Duchi et al., 2011; Tieleman &
Hinton, 2012; Kingma & Ba, 2015) for the empirical FIM.
The reader is referred to (Martens, 2014; Kunstner et al.,
2019) for the difference between the empirical and the exact
FIM (both are estimators of the true FIM but the second
one uses sampled outputs from the model distribution). An-
other approach is to use a low-rank approximation of the
Hessian matrix such as BFGS (Broyden, 1970; Fletcher,
1970; Goldfarb, 1970; Shanno, 1970) or its low-memory
version L-BFGS (Liu & Nocedal, 1989), which is better
suited to deep learning. Nevertheless, the trouble with di-
agonal and low-rank approximations is that they are very
rough and therefore give rise to less efficient algorithms
than a well-tuned SGD.

More advanced methods resort to a block-diagonal approx-
imation of a curvature matrix. Le Roux et al. (2008) and
Ollivier (2015) use respectively a block-diagonal approxi-
mation of the empirical and exact FIM where each block
contains the weights associated to a particular neuron. Based
on early ideas in (Heskes, 2000; Pascanu & Bengio, 2013;
Povey et al., 2014), a new family of methods under the name
of KFAC have recently emerged (Martens & Grosse, 2015;
Grosse & Martens, 2016; Ba et al., 2017; Martens et al.,
2018; George et al., 2018). Thanks to a Kronecker-factored
layer-wise block-diagonal approximation of the FIM, the
KFAC methods have proven to be more powerful than a
well-tuned SGD. Following similar lines of thought, Botev
et al. (2017) and Goldfarb et al. (2020) also proposed ef-
ficient approximations of respectively GGN and Hessian
matrices for training Multi-Layer Perceptrons (MLP).

The fundamental assumption on which KFAC hinges is
the independence between activations and pre-activation
derivatives. We believe that this premise, the theoretical
foundation of which is unclear, is at the root of a poor qual-
ity of the FIM approximation. This is why, in this work, we
wish to put forward four Kronecker-factored block-diagonal
approximations that aim at more accurately representing the
FIM by removing this assumption. To this end, we minimize
the Frobenius norm of the difference between the original
matrix and a prescribed form for the approximation, which
is achievable through the Kronecker product singular value
decomposition. Tests carried out on the three standard deep
auto-encoder benchmarks showed that our proposed meth-
ods outperform KFAC both in terms of FIM approximation
quality and optimization speed of the objective function.

The paper is organized as follows: Section 2 introduces the
natural gradient and KFAC methods. Section 3 proposes
the above mentioned novel approximations. In Section 4,
we present and comment several numerical experiments.
Finally, the conclusion overviews the work undertaken in

this research and outlines directions for future study.

2. Background and notation
We consider an ℓ-layer feedforward neural network fθ
parametrized by

θ = [vec(W1)
T , vec(W2)

T , . . . , vec(Wℓ)
T ]T ∈ Rp,

where Wi ∈ Rdi×(di−1+1) is the weights matrix associated
to layer i and “vec” is the operator that vectorizes a matrix
by stacking its columns together. This network transforms
an input x =: a0 ∈ Rd0 to an output z = fθ(x) by the
sequence

si = Wiāi−1, ai = σi(si), for i from 1 to ℓ,

terminated by z := aℓ ∈ Rdℓ . Here, āi−1 = (1, aTi )
T is the

augmented activation vector (value 1 is used for the bias)
and σi the activation function at layer i. The number of
neurons at layer i is di and the total number of parameters
is p =

∑ℓ
i=1 di(di−1 + 1).

For a given input-target pair (x, y), the gradient of the loss
L(y, fθ(x)) w.r.t to the weights is computed by the back-
propagation algorithm (LeCun, 1988). For convenience, we
adopt the shorthand notation Dv = ∇vL for the derivative
of L w.r.t any variable v, as well as the special symbol
gi = Dsi for the preactivation derivative. Starting from
Daℓ = ∂zL(y, z = aℓ), we perform

gi = Dai ⊙ σ′
i(si), DWi = giā

T
i−1, Dai−1 = WT

i gi,

for i from ℓ to 1, where ⊙ denotes the component-wise
product. Finally, the gradient ∇θL is retrieved as

Dθ = [vec(DW1)
T , vec(DW2)

T , . . . , vec(DWℓ)
T ]T .

2.1. Natural Gradient Descent

The loss function L(y, z) is now assumed to take the form

L(y, z) = − log(p(y|x, θ)),

where p(y|x, θ) is the density function of the network’s
predictive distribution Py|x(θ). Note that Py|x(θ) is multi-
variate normal for the standard square loss function, multi-
nomial for the cross-entropy one. Then, the natural gradient
descent method (Amari, 1998) is defined as

θk+1 = θk − αk [F (θk)]
−1 ∇θh(θk),

where

F (θ) = Ex∼Qx,y∼Py|x(θ)[Dθ(Dθ)T ]

is the FIM associated to the network parameter θ. The
expectation is taken according to the distribution Qx of the
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input data x and the conditional distribution Py|x(θ) of the
the network ’s output prediction y. For brevity and without
any risk of ambiguity, we will omit the subscripts for the
expectation and write E instead of Ex∼Qx,y∼Py|x(θ).

The natural gradient method can be seen as the steepest
descent method in the space of model’s probability distribu-
tions with the metric induced by the Kullback-Leibler (KL)
divergence (Amari & Nagaoka, 2000). Indeed, it can be
shown that for some constant scaling factor λ > 0,

− 1

λ
[F (θ)]−1∇θh(θ) = argmin

d:KL[Py|x(θ) ∥Py|x(θ+d)] = c

h(θ + d).

The appealing property of the natural gradient F−1∇h is
that it has an intrinsic geometric interpretation, regardless
of the actual choice of parameters. A thorougher discussion
can be found in (Martens, 2014).

It follows from the definition of the FIM that

F = E[Dθ(Dθ)T ] =

F1,1 . . . F1,ℓ

...
...

Fℓ,1 . . . Fℓ,ℓ

 ,

in which the block

Fi,j = E[vec(DWi)vec(DWj)
T ] = E[āi−1ā

T
j−1 ⊗ gig

T
j ]

is a di(di−1 + 1) × dj(dj−1 + 1) matrix. We recall that
the Kronecker product A ⊗ B between two matrices A ∈
RmA×nA and B ∈ RmB×nB is the mAmB ×nAnB matrix

A⊗B =

 A1,1B . . . A1,nA
B

...
...

AmA,1B . . . AmA,nA
B

 .

The blocks of F can be given the following meaning: Fi,i

contains second-order statistics of weight derivatives on
layer i, while Fi,j,i ̸=j represents correlation between weight
derivatives of layers i and j.

2.2. KFAC method

The Kronecker-factored approximate curvature (KFAC)
method introduced by (Martens & Grosse, 2015) is
grounded on two assumptions that provide a computation-
ally efficient approximation of F .

The first assumption is that Fi,j = 0 for i ̸= j. In other
words, weight derivatives in two different layers are uncor-
related. This results in block-diagonal approximation

F ≈ diag(F1,1, F2,2, . . . Fℓ,ℓ).

This first approximation is insufficient, insofar as the blocks
of Fi,i are very large for neural networks with high number
of units in layers. A further approximation is in order.

The second assumption is that of independent activations
and derivatives (IAD): activations and pre-activation deriva-
tives are independent. i.e ∀i, ai−1 ⊥⊥ gi. This allows each
block Fi,i to be factorized into a Kronecker product of two
smaller matrices, i.e.,

Fi,i = E[āi−1ā
T
i−1 ⊗ gig

T
i ]

≈ E[āi−1ā
T
i−1]⊗ E[gigTi ]

=: ĀKFAC
i−1 ⊗GKFAC

i ,

(1)

with ĀKFAC
i−1 = E[āi−1ā

T
i−1] ∈ R(di−1+1)×(di−1+1) and

GKFAC
i = E[gigTi ] ∈ Rdi×di .

These two assumptions yield the KFAC approximation

FKFAC = diag(ĀKFAC
0 ⊗GKFAC

1 , . . . , ĀKFAC
ℓ−1 ⊗GKFAC

ℓ ).

KFAC has been extended to convolution neural networks
(CNN) by Grosse & Martens (2016). However, due to
weight sharing in convolutional layers, it was necessary to
add two extra assumptions regarding spatial homogeneity
and spatially uncorrelated derivatives.

The decisive advantage of FKFAC is that it can be inverted in
a very economical way. Indeed, owing to the properties (A⊗
B)−1 = A−1 ⊗B−1 and (A⊗B)vec(X) = vec(BXAT )
of the Kronecker product, the approximate natural gradient
F−1

KFAC∇h can be evaluated as

F−1
KFAC∇h =

vec(G−1
1 (∇W1

h)Ā−1
0 )

...
vec(G−1

ℓ (∇Wℓ
h)Ā−1

ℓ−1)

 , (2)

where the KFAC superscripts are dropped from now on to
alleviate notations. This drastically reduces computations
and memory requirements, since we only need to store,
invert and multiply the smaller matrices Āi−1’s and Gi’s.

In practice, because the curvature changes relatively slowly
(Martens & Grosse, 2015), the factors (Āi−1, Gi) are com-
puted at every T1 iterations and their inverses at every T2

iterations. Moreover, (Āi−1, Gi) are estimated using ex-
ponentially decaying moving average. At iteration k, let
(Āold

i−1, G
old
i ) be the factors previously computed at iteration

k − T1 and (Ānew
i−1, G

new
i ) be those computed with the cur-

rent mini-batch. Then, setting ρ = min(1 − 1/k, α) with
α ∈ [0, 1], we have

Āi−1 = ρĀold
i−1 + (1− ρ)Ānew

i−1,

Gi = ρGold
i + (1− ρ)Gnew

i .

Another crucial ingredient of KFAC is the Tikhonov regular-
ization to enforce invertibility of FKFAC. The straightforward
damping FKFAC + λI deprives us of the possibility of apply-
ing the formula (A⊗ B)−1 = A−1 ⊗ B−1. To overcome
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this issue, Martens & Grosse (2015) advocated the more
judicious Kronecker product regularization

F̃i,i = (Āi−1 + πiλ
1/2I)⊗ (Gi + π−1

i λ1/2I)

where λ > 0 and

πi =

√
tr(Āi−1)/(di−1 + 1)

tr(Gi)/di
.

3. Four novel methods
While staying within the framework of the first assumption
(block-diagonal approximation), we now design four new
methods that break free from the second hypothesis (IAD)
in order to achieve a better accuracy: KPSVD, Deflation,
Lanczos-bidiagonalization and KFAC-corrected.

3.1. KPSVD

In our first method, called KPSVD, the factors (Āi−1, Gi)
are specified as the arguments of the best possible approxi-
mation of Fi,i by a single Kronecker product. Thus,

(Āi−1, Gi) = argmin
(R,S)

∥Fi,i −R⊗ S∥F (3)

= argmin
(R,S)

∥E[āi−1ā
T
i−1 ⊗ gig

T
i ]−R⊗ S∥F ,

where ∥ · ∥F denotes Frobenius norm. Problem (3) can be
solved at a low cost by means of the Kronecker product
singular value decomposition technique (van Loan, 2000).
To write down the solution, we need the following notion.
Let

M =


M1,1 . . . M1,d

M2,1 . . . M2,d

...
...

Md,1 . . . Md,d

 ∈ Rd′d×d′d

be a uniform block matrix, that is, Mµ,ν ∈ Rd′×d′
for all

(µ, ν) ∈ {1, . . . d}2. The zigzag rearrangement operator Z
converts M into the matrix

Z(M) =



vec(M1,1)
T

...
vec(Md,1)

T

...
vec(M1,d)

T

...
vec(Md,d)

T


∈ Rd2×(d′)2 ,

by flattening out each block in a column-wise order and
by transposing the resulting vector. This operator is to be
applied to each M = Fi,i with d = di−1 + 1 and d′ = di.

Theorem 3.1. Any solution of (3) is also a solution of the
ordinary rank-1 matrix approximation problem

(vec(ĀKPSVD
i−1 ), vec(GKPSVD

i )) =

argmin
(R,S)

∥Z(Fi,i)− vec(R) vec(S)T ∥F . (4)

Proof. See appendix A.1.

Problem (4) is solved as follows. Let UTZ(Fi,i)V = Σ be
the singular value decomposition (SVD) of Z(Fi,i). Let σ1

be the greatest singular value of Z(Fi,i) and (u1, v1) be the
associated left and right singular vectors. A solution is,

ĀKPSVD
i−1 =

√
σ1 MAT(u1), GKPSVD

i =
√
σ1 MAT(v1),

where “MAT,” the converse of “vec,” turns a vector into a
matrix. The question to be addressed now is how to compute
u1, v1 and σ1. We recommend the power SVD algorithm
(see appendix B.1), which only requires the matrix-vector
multiplications Z(Fi,i)v and Z(Fi,i)

Tu. These operations
can be performed without explicitly forming Fi,i or Z(Fi,i),
as elaborated on in the upcoming Proposition.

Proposition 3.1. For all u ∈ R(di−1+1)2 and v ∈ Rd2
i ,

Z(Fi,i)v = E[ gTi V gi vec(āi−1ā
T
i−1) ],

Z(Fi,i)
Tu = E[ āTi−1Uāi−1 vec(gig

T
i ) ],

with U = MAT(u) and V = MAT(v).

Proof. See appendix A.2.

Estimating Z(Fi,i)v and Z(Fi,i)
Tu

Let us consider a batch B = {(x1, y1), . . . , (xm, ym)}
drawn from the training data T . We recall that the ex-
pectation is taken with respect to both Qx (data distribution
over inputs x) and Py/x(θ) (predictive distribution of the
network). To estimate Z (Fi,i) v and Z (Fi,i)

T
u, we use

the Monte-Carlo method as suggested by Martens & Grosse
(2015): we first compute the statistics āi−1’s and gi’s during
an additional back-propagation performed using targets y’s
sampled from Py/x(θ) and then set

Z(Fi,i)v ≈ 1

m

m∑
t=1

gTi,tV gi,t vec(āi−1,tā
T
i−1,t),

Z(Fi,i)
Tu ≈ 1

m

m∑
t=1

āTi−1,tUāi−1,t vec(gi,tgTi,t).

So far, we have not paid attention to the symmetry of the
matrices (ĀKPSVD

i−1 , GKPSVD
i ) in problem (3). It turns out that

symmetry is automatic, while positive semi-definiteness
occurs for some solutions to be selected.
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Proposition 3.2. All solutions (ĀKPSVD
i−1 , GKPSVD

i ) of prob-
lem (3) are symmetric. Besides, we can select solutions for
which these matrices are positive semi-definite.

Proof. See appendix A.3.

3.2. Kronecker rank-2 approximation to Fi,i

Since the KPSVD method of §3.1 is merely a Kronecker
rank-1 approximation of Fi,i, it is most natural to look for
higher order approximations. The two methods presented
in this section are based on seeking a Kronecker rank-2
approximation R⊗ S + P ⊗Q of Fi,i that achieves

min
(R,S,P,Q)

∥Fi,i − (R⊗ S + P ⊗Q)∥F . (5)

Again, the zigzag rearrangement operator Z enables us to
reformulate (5) as an ordinary rank-2 matrix approximation
problem. To determine a solution of the latter, there are two
techniques in practice: deflation (Saad, 2011) and Lanczos
bi-diagonalization (Golub & Kahan, 1965).

3.2.1. DEFLATION

The rank-1 factors (R,S) and the rank-2 factors (P,Q) are
computed successively, one after another:

1. Apply the power SVD algorithm to Z(Fi,i) to compute
(R,S) so as to minimize ∥Fi,i−R⊗S∥F . The solution
is known to be (R,S) = (ĀKPSVD

i−1 , GKPSVD
i ).

2. Let F̂i,i = Fi,i −R⊗ S. Apply the power SVD algo-
rithm to Z(F̂i,i) to compute (P,Q) so as to minimize
∥F̂i,i − P ⊗Q∥F .

3. Set Fi,i ≈ R⊗ S + P ⊗Q.

In step 2, we need to calculate the matrix-vector products
Z(F̂i,i)v and Z(F̂i,i)

Tu. These operations can be done ef-
ficiently without explicitly forming F̂i,i or Z(F̂i,i). Indeed,

Z(F̂i,i)v = Z(Fi,i)v −Z(R⊗ S)v,

Z(F̂i,i)
Tu = Z(Fi,i)

Tu−Z(R⊗ S)Tu.

On one hand, we know how compute Z(Fi,i)v and
Z(Fi,i)

Tu from Proposition 3.1. On the other hand, it is
not difficult to show that

Z(R⊗ S)v = ⟨vec(S), v⟩ vec(R),

Z(R⊗ S)Tu = ⟨vec(R), u⟩ vec(S),

where ⟨·, ·⟩ stands for the dot product.

3.2.2. LANCZOS BI-DIAGONALIZATION

In contrast to deflation, the Lanczos bi-diagonalization al-
gorithm (see appendix B.2) computes (R,S) and (P,Q) at
the same time. It does so by simulataneously computing
the two largest singular values σ1 ≥ σ2 of Z(Fi,i) with
the associated singular vectors (u1, v1) and (u2, v2). Once
these singular elements are determined, it remains to set

R =
√
σ1 MAT(u1), S =

√
σ1 MAT(v1),

P =
√
σ2 MAT(u2), Q =

√
σ2 MAT(v2).

Similarly to KPSVD, we only have to perform the matrix-
vector multiplications Z(Fi,i)v and Z(Fi,i)

Tu without
forming and storing Fi,i or Z(Fi,i).

In pratice, it is advisable to implement the restarted version
of the algorithm (Saad, 2011), which consists of three steps:

1. Start: Choose an initial vector q(0) and a dimension
K for the Krylov subspace.

2. Iterate: Perform Lanczos bidiagonalization algorithm
(appendix B.2).

3. Restart: Compute the desired singular vectors. If
stopping criterion satisfied, stop. Else set q(0) =
linear combination of singular vectors and go to 2.

3.3. KFAC-CORRECTED

Another idea is to simply add an ad hoc correction to the
KFAC approximation. Put another way, we consider

Fi,i ≈ ĀKFAC
i−1 ⊗GKFAC

i + Ācorr.
i−1 ⊗Gcorr.

i ,

using the best possible correctors, that is,

(Ācorr.
i−1, G

corr.
i ) =

argmin
(P,Q)

∥Fi,i − ĀKFAC
i−1 ⊗GKFAC

i − P ⊗Q∥F . (6)

Again, the solution of (6) can be computed by applying
the power SVD algorithm to the matrix Z(Fi,i − ĀKFAC

i−1 ⊗
GKFAC

i ). The matrix-vector multiplications required can be
done in the same way as in the deflation method without
explicitly forming and storing the matrices.

3.4. Inversion of A⊗B + C ⊗D

For each of the last three methods, we need to solve a linear
system of the form (A⊗B + C ⊗D)u = v in an efficient
way. This is far from obvious, since due to the sum, the well-
known and powerful identities (A⊗B)−1 = A−1 ⊗B−1

and (A⊗B)−1vec(X) = vec(B−1XA−T ) can no longer
be applied.

There are many good methods to compute u, but the most
appropriate for our problem is that of Martens & Grosse
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(2015), since it takes advantage of symmetry and definite-
ness of the matrices. Below is a summary of the algorithm,
the full details of which are in (Martens & Grosse, 2015).

1. Compute A−1/2, B−1/2 and the symmetric
eigen/SVD-decompositions

A−1/2CA−1/2 = E1S1E
T
1 ,

B−1/2DB−1/2 = E2S2E
T
2 ,

where S1,2 are diagonal and E1,2 are unitary.

2. Set K1 = A−1/2E1, K2 = B−1/2E2. Then,

u = vec(K2[(K
T
2 V K1)⊘ (11T + s2s

T
1 )]K

T
1 ),

where E ⊘ F denotes the Hadamard or element-wise
division of E by F , s1,2 = diag(S1,2), 1 vector of
ones and V = MAT(v). Note that K1,2, s1,2 can be
stored and reused for different choices of v.

4. Experiments
We have evaluated our proposed methods as well as KFAC,
SGD and ADAM on the three standard deep-auto-encoder
problems used for benchmarking neural network opti-
mization methods (Martens, 2010; Sutskever et al., 2013;
Martens & Grosse, 2015; Botev et al., 2017). The bench-
marks consist of training three different auto-encoder ar-
chitectures with CURVES, MNIST and FACE datasets re-
spectively. See appendix D for a complete description of
the network architectures and datasets. In our experiments,
all our proposed methods as well as KFAC use approxima-
tions of the exact FIM F . Experiments were performed
with PyTorch framework (Paszke et al., 2019) on super-
computer with Nividia Ampere A100 GPU and AMD Mi-
lan@2.45GHz CPU.

The precision value ϵ for power SVD and Lanczos bi-
diagonalization algorithm was set to 10−6. Also for these
two algorithms, we used a warm-start technique which
means that the final results of the previous iteration are used
as a starting point (instead of a random point) for the current
iteration. This has resulted in a faster convergence. In all
experiments, the batch sizes used are 256, 512 and 1024 for
CURVES, MNIST and FACES datasets respectively.

We first evaluate the approximation qualities of the FIM and
then report the results on performance of the optimization
objective.

4.1. Approximation qualities of the FIM

We investigated how well our proposed methods and KFAC
approximate blocks of the exact FIM. To do so, we com-
puted for each of the problems the exact FIM and its differ-
ent approximations of the 5th layer of the network. For a

fair comparison, the exact FIM as well as its different ap-
proximations were computed during the same optimization
process with an independent optimizer (SGD or ADAM).
We ran two independent tests with SGD and ADAM opti-
mizers respectively and ended up with the same results. We
therefore decided to report only the results obtained with
ADAM. Let F be the exact FIM of the 5th layer of the net-
work and F̂ be any approximation to F (F̂ is in the form
A ⊗ B for KFAC and KPSVD, and R ⊗ S + P ⊗ Q for
KFAC corrected, Deflation and Lanczos). We measured the
following two types of error:

• Error 1: Frobenius norm error between F and F̂ :
∥F − F̂∥F /∥F∥F ;

• Error 2: ℓ2 norm error between the spectra of F and F̂ :
∥spec(F ) − spec(F̂ )∥2/∥spec(F )∥2 where spec(M)
denotes the spectrum of M and ∥ · ∥2 is the ℓ2 norm.

Note that here the Fisher matrices were estimated without
the exponentially decaying averaging scheme which means
that only the mini-batch at iteration k is used to computed
the Fisher matrices at this iteration.

As we can see in Figure 1, for each of the problems, the
Deflation method gives the best approximation, followed by
the other methods. The Error 1 and Error 2 made by our
different methods remain lower than those caused by KFAC
throughout the optimization process. This suggests that
our methods give a better approximation to the Fisher than
KFAC, and that increasing the rank does improve the quality
of approximation. One can go further in this direction if
there is no prohibitive extra cost.

4.2. Optimization performance

We now consider the network optimization in each of the
three problems. We have evaluated our methods against
KFAC and the baselines (SGD and ADAM). Here the dif-
ferent approximations to the FIM were computed using the
exponentially decaying technique as described in §2.2. The
decay factor α was set to 0.95 as in (Martens & Grosse,
2015). Since the goal of KFAC as well as our methods
is optimization performance rather than generalization, we
performed Grid Search for each method and selected hy-
perparameters that gave a better reduction to the training
loss. The learning rate η and the damping parameter λ
are in range {10−1, 10−2, 10−3, 10−4, 3 ·10−1, 3 ·10−2, 3 ·
10−3, 3 · 10−4}, and the clipping parameter c belongs to
{10−2, 10−3} (see appendix E for definition of c). Note
that damping and clipping are used only in KFAC and our
proposed methods. Update frequencies T1 and T2 were set
to 100. The momentum parameters were β = 0.9 for SGD
and (β1, β2) = (0.9, 0.999) for ADAM.

Figure 2 shows the performance of the different optimizers
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(a) CURVES (b) MNIST (c) FACES

Figure 1. Comparison between FIM approximation qualities of our methods and KFAC. For each problem, at each training iteration of the
network with ADAM optimizer, the exact FIM and its different approximations are computed for layer 5 of the network. Error 1 and
Error 2 described in subsection 4.1 are measured. For the sake of visual comparison between different methods, the display scale in the
axis of ordinates was deliberately restricted to [0, 1] for the MNIST problem. It thus seems that the error curves for KFAC, whose peak
amplitudes are about 6.5, are truncated.

on the three studied problems. The first observation is that
in each problem, KFAC as well as our methods optimize the
training loss function faster than SGD and ADAM both with
respect to epoch and time. Although our methods may seem
much more computationally expensive than KFAC since at
each iteration we perform the power SVD or Lanczos bi-
diagonalization to estimate the Fisher matrix, they actually
have the same order of magnitude in computational cost as
KFAC. See appendix C for a comparison of the computa-
tional costs. For each of the three problems, we observe
that KFAC and KPSVD perform about the same while the
DEFLATION, LANCZOS and KFAC-CORRECTED meth-
ods have the ability to optimize the objective function much
faster both with respect to epoch and time.

Although this is not our object of study, we observe that
for each of the three problems, our proposed methods also
maintain a good generalization.

We evaluated our methods on others MLP architectures and
obtained good results. However, when considering CNN
architectures, we did not observe any gain in performance
compared to KFAC. This can be explained by the fact that
IAD is not the only assumption made by KFAC for CNNs
(Grosse & Martens, 2016) and therefore steering clear from
this hypothesis alone is insufficient to reach a better perfor-
mance.

5. Conclusion and perspectives
In this work, we proposed a series of novel Kronecker factor-
izations to the blocks of the Fisher of multi-layer perceptrons
using the Kronecker product Singular Value Decomposition
technique. Tests realized on the three standard deep auto-
encoder problems showed that our proposed methods outper-
form KFAC both in terms of Fisher approximation quality
and in terms of optimization speed of the objective function.
These facts are even more noticeable for the methods using
high rank approximations.

KFAC as well as our methods use a block-diagonal approx-
imation of FIM where each block corresponds to a layer.
This results in ignoring the correlations between the layers.
Future works will focus on incorporating cross-layer infor-
mation, as was attempted by Tselepidis et al. (2020) with a
two-level KFAC preconditioning approach.
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(a) CURVES

(b) MNIST

(c) FACES

Figure 2. Comparison of optimization performance of different algorithms on each of the 3 problems (CURVES top row, MNIST middle
row and FACES bottom row). For each problem, from left to right, first figure displays training loss vs epoch, second one represents
training loss vs time, the third depicts validation loss vs epoch and the last displays validation loss vs time.
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A. Proofs
A.1. Proof of Theorem 3.1

Proof. We are going to derive the identity

∥Fi,i −R⊗ S∥F = ∥Z(Fi,i)− vec(R)vec(S)T ∥F (7)

for all R ∈ R(di−1+1)×(di−1+1) and S ∈ Rdi×di , from which Theorem 3.1 will follow. For notational convenience, let

M = Fi,i, d = di−1 + 1, d′ = di.

We recall that M has the block structure

M =


M1,1 . . . M1,d

M2,1 . . . M2,d

...
...

Md,1 . . . Md,d

 ∈ Rd′d×d′d,

where each block Mµ,ν , (µ, ν) ∈ {1, . . . , d}2, is of size d′ × d′. By definition of the Frobenius norm,

∥M −R⊗ S∥2F =

d∑
µ=1

d∑
ν=1

∥Mµ,ν −Rµ,νS∥2F

=

d∑
µ=1

d∑
ν=1

∥vec(Mµ,ν)−Rµ,νvec(S)∥22

=

d∑
µ=1

d∑
ν=1

∥vec(Mµ,ν)
T −Rµ,νvec(S)T ∥22, (8)

where Rµ,ν is the (µ, ν)-scalar entry of R and ∥ · ∥2 denotes the Euclidean norm. By virtue of

Z(M) =



vec(M1,1)
T

...
vec(Md,1)

T

...
vec(M1,d)

T

...
vec(Md,d)

T


, vec(R)vec(S)T =



R1,1vec(S)T
...

Rd,1vec(S)T
...

R1,dvec(S)T
...

Rd,dvec(S)T


,

the last equality of (8) also reads ∥M −R⊗ S∥2F = ∥Z(M)− vec(R)vec(S)T ∥2F , which proves (7).

A.2. Proof of Proposition 3.1

Proof. Using the shorthand notations

A = āi−1ā
T
i−1, G = gig

T
i , d = di−1 + 1, d′ = di

we have

Fi,i = E[A⊗ G] = E


A1,1G . . . A1,dG

...
...

Ad,1G . . . Ad,dG


 ∈ Rd′d×d′d.
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Hence,

Z(Fi,i) = E





vec(A1,1G)T
...

vec(Ad,1G)T
...

vec(A1,dG)T
...

vec(Ad,dG)T




∈ Rd2×(d′)2

For all v ∈ R(d′)2 ,

Z(Fi,i)v = E





vec(A1,1G)T
...

vec(Ad,1G)T
...

vec(A1,dG)T
...

vec(Ad,dG)T




v = E





A1,1vec(G)T v
...

Ad,1vec(G)T v
...

A1,dvec(G)T v
...

Ad,dvec(G)T v




= E[ (vec(G)T v) vec(A)].

The scalar quantity vec(G)T v can be further detailed as

vec(G)T v = (vec(gigTi ))
T v = (gi ⊗ gi)

T v = (gTi ⊗ gTi ) vec(MAT(v)),

owing to the identities vec(xyT ) = y ⊗ x and (A ⊗ B)T = AT ⊗ BT . Invoking now (A ⊗ B) vec(X) = vec(BXAT ),
we end up with

vec(G)T v = vec(gTi MAT(v) gi) = vec(gTi V gi).

Therefore, Z(Fi,i)v = E[(gTi V gi) vec(A)]. The proof of Z(Fi,i)
Tu = E[(āTi−1Uāi−1) vec(Gi)] for all u ∈ Rd2

goes along
the same lines.

A.3. Proof of Proposition 3.2

Proof.
▷ Symmetry. By construction and up to a choice of sign,

vec(ĀKPSVD
i−1 ) =

√
σ1u1, vec(GKPSVD

i ) =
√
σ1v1,

where σ1 is the largest singular value of Z(Fi,i) associated with left and right singular vectors (u1, v1). From the standard
SVD properties

Z(Fi,i)v1 = σ1u1, Z(Fi,i)
Tu1 = σ1v1,

we infer that √
σ1vec(ĀKPSVD

i−1 ) = Z(Fi,i)v1 = E[ (gTi MAT(v1)gi) vec(āi−1ā
T
i−1) ],

the last equality being a consequence of Proposition 3.1. The scalar quantity gTi MAT(v1)gi can be moved into the argument
of the “vec” operator, after which we can permute E and “vec” to obtain

√
σ1vec(ĀKPSVD

i−1 ) = E[ vec((gTi MAT(v1)gi) āi−1ā
T
i−1) ] = vec(E[ (gTi MAT(v1)gi) āi−1ā

T
i−1 ]).

Hence, upon taking the “MAT” operator,
√
σ1Ā

KPSVD
i−1 = E[ (gTi MAT(v1)gi) āi−1ā

T
i−1 ].

Since each (gTi MAT(v1)gi) āi−1ā
T
i−1 is a symmetric matrix, their expectation is also symmetric. The symmetry of GKPSVD

i

is proven in a similar fashion.
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▷ Positive and semi-definiteness. Since ĀKPSVD
i−1 and GKPSVD

i are symmetric, they can be diagonalized as

ĀKPSVD
i−1 = UTDU, D = diag(α1, α2, . . . , αdi−1+1),

GKPSVD
i = V TEV, E = diag(β1, β2, . . . , βdi

),

with orthogonal matrices U and V . Because āi−1ā
T
i−1 is positive semi-definite, all the α’s must have the same sign (as

gTi MAT(v1)gi). Likewise, all the β’s must have the same sign. We are going to show that it is possible to modify the
matrices, while preserving minimality of the Frobenius norm, so that the sign of the α’s is equal to that of the β’s.

To this end, we first observe that

ĀKPSVD
i−1 ⊗GKPSVD

i = (UTDU)⊗ (V TEV ) = (U ⊗ V )T (D ⊗ E)(U ⊗ V ),

which leads us to introduce
C = (U ⊗ V )Fi,i (U ⊗ V )T .

By unitary invariance of the Frobenius norm, we have

∥Fi,i − ĀKPSVD
i−1 ⊗GKPSVD

i ∥2F = ∥(U ⊗ V )T (C −D ⊗ E)(U ⊗ V )∥2F = ∥C −D ⊗ E∥2F .

The last quantity can be expressed as

∥C −D ⊗ E∥2F =

di(di−1+1)∑
ω=1

(Cω,ω − (D ⊗ E)ω)
2 +

∑
ξ ̸=η

C2
ξ,η =

di(di−1+1)∑
ω=1

(Cω,ω − αµ(ω)βτ(ω))
2 +

∑
ξ ̸=η

C2
ξ,η,

where µ(ω) ∈ {1, . . . , di−1 + 1} and τ(ω) ∈ {1, . . . , di} can be uniquely determined1 from ω ∈ {1, . . . , di(di−1 + 1)} in
such a way that ω = (µ(ω)−1)di+τ(ω). Since the α’s have the same sign and the β’s have the same sign, the αµ(ω)βτ(ω)’s
appearing in the above equality must all have the same sign. On the other hand, because Fi,i is positive semi-definite, C is
also positive semi-definite, which implies that Cω,ω ≥ 0.

If αµ(ω)βτ(ω) ≥ 0 for all ω, we have what we claim. Assume that αµ(ω)βτ(ω) ≤ 0 for all ω. Then, it is readily checked that
for all ω,

|Cω,ω + αµ(ω)βτ(ω)|2 ≤ |Cω,ω − αµ(ω)βτ(ω)|2.

This means that if we set, for instance,

R = UTDU = ĀKPSVD
i−1 , S = V T (−E)V = −GKPSVD

i ,

then
∥Fi,i −R⊗ S∥2F ≤ ∥Fi,i − ĀKPSVD

i−1 ⊗GKPSVD
i ∥2F .

If the inequality were strict, minimality of (ĀKPSVD
i−1 , GKPSVD

i ) would be contradicted. Therefore, we must have equality.
This entails that (R,S) is another minimizer for which the eigenvalues of R have the same sign as those of S. In such a case,
we select this pair for the factors (ĀKPSVD

i−1 , GKPSVD
i ). This procedure allows us to assume that the α’s and the β’s all have the

same sign. In other words, either both matrices are positive semi-definite or both of them are negative semi-definite. Since

ĀKPSVD
i−1 ⊗GKPSVD

i = (−ĀKPSVD
i−1 )⊗ (−GKPSVD

i ),

we have the freedom to choose the sign so that both matrices are positive semi-definite.

B. Algorithms
B.1. Power SVD algorithm

Algorithm to compute the dominant singular value σ1 = σmax of a real rectangular matrix and associated right and left
singular vectors.

1The solution is given by µ(ω) = 1 + ⌊(ω − 1)/di⌋ and τ(ω) = di⌊(ω − 1)/di⌋, where ⌊·⌋ is the integer part, but this does not
matter here.
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Algorithm 1 SVD Power algorithm

Input: A ∈ Rm×n, v(0) ∈ Rm, ϵ (precision), kmax (maximum iteration).
Output: σ1, u1 and v1 (Av1 = σ1u1 , ATu1 = σ1v1 )
for k = 1 to kmax do
w(k) = Av(k−1); u(k) = w(k)/∥w(k)∥2
z(k) = ATu(k); v(k) = z(k)/∥z(k)∥2
σ(k) = ∥z(k)∥2
error = ∥Av(k) − σ(k)u(k)∥2
if error ≤ ϵ then

Break
end if

end for

B.2. Lanczos bidiagonalization algorithm

Algorithm 2 Lanczos bidiagonalization algorithm

Input:A ∈ Rm×n, q(0) ∈ Rm, ∥q(0)∥ = 1, K (dimension of Krylov subspace), ϵ (precision)
Output: Matrices P ∈ Rn×K , Q ∈ Rm×K , H ∈ RK×K and P ∈ RK×K

Start:
w(0) = Aq(0)

α(0) = ∥w(0)∥
p(0) = w(0)/α(0)

H[0, 0] = α0

P [:, 0] = p(0)

Q[:, 0] = q(0)

for k = 0 to K − 1 do
z(k) = AT p(k) − α(k)q(k)

β(k) = ∥z(k)∥
if β(k) ≤ ϵ then

Break
else
q(k+1) = z(k)/β(k)

w(k+1) = Aq(k+1) − β(k)p(k)

α(k+1) = ∥w(k+1)∥
p(k+1) = w(k+1)/α(k+1)

H[k + 1, k + 1] = α(k+1)

H[k, k + 1] = β(k)

P [:, k + 1] = p(k+1)

Q[:, k + 1] = q(k+1)

end if
end for

Consider input A and outputs H,P,Q of Algorithm 2. The truncated SVD factorization of H yields the rank-k approximation

H ≈ XkΣkY
T
k =

k∑
i=1

σixiy
T
i , σ1 ≥ σ2 ≥ . . . ≥ σK .

Let Uk = PXk and Vk = QYk. Then,
A ≈ Ak = UkΣkV

T
k

is a rank-k approximation of A (Golub & Kahan, 1965).
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C. Computational costs
Here we estimate the computation costs required to compute F̂ (estimate of F ), F̂−1 and F̂−1∇h of our proposed methods
compared to KFAC. We recall that here d denotes the number of neurons in each layer, ℓ denotes the number of network
layers and m the mini-batch size. Table 1 summarizes orders of computational costs required by each method. We did not
include forwards and backwards/additional backwards costs as they are the same for all methods. K is the dimension of
Krylov subspace in Lanczos bi-diagonalization algorithm (see §B.2). k1 and k2 represent the number of iterations at which
the corresponding algorithm has converged (power SVD or Lanczos bi-diagonalization algorithm). In our experiments, we
found that they are of the order of tens. As for c1 and c2 they denote implementation constants.

As we can see in Table 1, our proposed methods are of the same order of magnitude as KFAC in terms of computation costs.

Table 1. Range of the computational costs per update.

F̂ F̂−1 F̂−1∇h

KFAC 2ℓmd2 2ℓd3 2ℓd3

KPSVD 4k1ℓmd2 2ℓd3 2ℓd3

DEFLATION 2ℓmd2 + 4k1ℓmd2 c1ℓd
3 c2ℓd

3

LANCZOS 4k2ℓmd2 +ℓK3 + 2ℓKd2 c1ℓd
3 c2ℓd

3

KFAC-CORRECTED 2ℓmd2 + 4k1ℓmd2 c1ℓd
3 c2ℓd

3

Explanation of the entries of Table 1

• KFAC: To compute F̂ , we need to compute 2ℓ terms Āi−1 = E[āi−1ā
T
i−1] and Gi = E[gigTi ] of computational costs

O(md2) each. For F̂−1, the inverses of the ℓ pairs Āi−1 and Gi are required. The computational cost of each Ā−1
i−1 or

G−1
i is O(d3). As for F̂−1∇h, we need to perform ℓ matrix-matrix multiplications G−1

i ∇WhA−1
i−1 (see equation (2)).

• KPSVD: The computation of F̂ requires to apply the power SVD algorithm. if k1 is the iteration number of convergence,
then for each layer i, we need to perform k1 matrix-vector multiplications Z(Fi,i)v = E[(gTi V gi)vec(āi−1ā

T
i−1)]

and Z(Fi,i)
Tu = E[(āTi−1Uāi−1)vec(gigTi )]. The computational cost of Z(Fi,i)v or Z(Fi,i)

Tu is O(md2). The
computational costs required for F̂−1 and F̂−1∇h are the same as in KFAC.

• DEFLATION and KFAC-CORRECTED: The computation of F̂ is a combination of the computation of F̂ in KFAC
and in KPSVD so the complexity is the sum of the complexity in KFAC and KPSVD. As for F̂−1 and F̂−1∇h the
technique described in subsection 3.4 is used and the complexities are O(c1ℓd

3) for F̂−1 (SVD and matrix-matrix
multiplications) and O(c2ℓd

3) for F̂−1∇h (matrix-matrix multiplications).

• LANCZOS: To compute F̂ , the Lanczos bi-diagonalization algorithm is applied for each layer. Like in KPSVD,
if k2 is the iteration number of convergence then k2 Z(Fi,i)v and Z(Fi,i)

Tu (in O(md2) each) were necessary for
each layer. At the end Lancozs bi-diagonalization algorithm, we need to perform for each layer, the SVD of matrix
H ∈ RK×K (in O(K3)) and matrix-matrix operations PXk (in O(Kd2)) and QYk (in O(Kd2)).The computational
costs required for F̂−1 and F̂−1∇h are the same as in DEFLATION or KFAC-CORRECTED.

D. Network architectures and Datasets
We describe here the datasets and network architectures (Hinton & Salakhutdinov, 2006) used in our tests.

• Auto-encoder problem 1

– Network architecture: 784− 1000− 500− 250− 30− 250− 500− 1000− 784

– Activations functions: ReLU − ReLU − ReLU − ReLU − ReLU − ReLU − ReLU − Sigmoid
– Data : MNIST (images of shape 28 × 28 of handwritten digits. 50000 training images and 10000 validation

images).
– Loss function: binary cross entropy
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• Auto-encoder problem 2

– Network architecture: 625− 2000− 1000− 500− 30− 500− 1000− 2000− 625

– Activation functions: ReLU − ReLU − ReLU − ReLU − ReLU − ReLU − ReLU − Linear
– Data : FACES (images of shape 25× 25 people. 82800 training images and 20700 validation images).
– Loss function: mean square error.

• Auto-encoder problem 3

– Network architecture: 784− 400− 200− 100− 50− 25− 6− 25− 50− 100− 200− 400− 784

– Activations functions: ReLU − ReLU − ReLU − ReLU − ReLU − ReLU − ReLU − ReLU − ReLU − ReLU −
ReLU − Sigmoid

– Data : CURVES (images of shape 28 × 28 of simulated handdrawn curves. 16000 training images and 4000
validation images).

– Loss function: binary cross entropy.

E. Gradient clipping
We applied the KL-clipping technique (Ba et al., 2017): after preconditioning the gradients, we scaled them by a factor ν
given by

ν = min

(
1,

√
c∑ℓ

i=1 |GT
i ∇h(Wi)|

)
,

where Gi denotes the preconditioned gradient and c is a constant that represents the maximum clipping parameter.


