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Abstract

is paper tackles Hamiltonian chaos by means of elementary tools of Riemannian geome

precisely, a Hamiltonian flow is identified with a geodesic flow on configuration space-t

wed with a suitable metric due to Eisenhart. Until now, this framework has never been gi

tion to describe chaotic dynamics. A gap that is filled in the present work. In a Riemann

etric context, the stability/instability of the dynamics depends on the curvature propertie

mbient manifold and is investigated by means of the Jacobi–Levi-Civita (JLC) equation

esic spread. It is confirmed that the dominant mechanism at the ground of chaotic dynamic

metric instability due to curvature variations along the geodesics. A comparison is reporte

utcomes of the JLC equation written also for the Jacobi metric on configuration space and

her metric due to Eisenhart on an extended configuration space-time. This has been applie

énon-Heiles model, a two-degrees of freedom system. Then the study has been extended to

lassical Heisenberg XY model at a large number of degrees of freedom. Both the advanta

drawbacks of this geometrization of Hamiltonian dynamics are discussed. Finally, a quick h

t forward concerning the possible extension of the differential-geometric investigation of ch

neric dynamical systems, including dissipative ones, by resorting to Finsler manifolds.
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whil olic

poin hat

for t ear

Ham ion

of th ked

out ven

to d een

done for

man een

lacki of

chao ugh

Meln ms

on A s in

dyna of

chao lity

of id lain

the hat

coul v’s
INTRODUCTION

s is well known, a rather common property of nonlinear dynamical systems, descri

system of differential equations, is the presence of deterministic chaos [1–3]. This me

despite the deterministic nature of a dynamical system of this kind, that is, desp

Cauchy’s theorem of existence and unicity of the solutions of differential equatio

describing a physical system by means of nonlinear differential equations the l

predictability of its behaviour is lost in the absence of stability of the dynamics.

r words, when we describe a physical system by means of a given dynamical syst

re always making approximations, that is, we necessarily neglect all the remain

ical world. In so doing, even infinitesimal perturbations coming from all what has b

ected are necessarily amplified - destroying predictability - if a dynamical system

able with respect to variations of the initial conditions. Such a dramatic consequenc

reaking of integrability of a three body problem was already pointed out by Poinc

e describing the complexity of the homoclinic tangles in the proximity of hyperb

ts in phase space [4]. It was at the beginning of the 60’s of the last century t

he first time the consequences of homoclinic tangles in phase space of a nonlin

iltonian system became visually evident. This was thanks to the numerical integrat

e equations of motion of the celebrated Hénon-Heiles model [5]. The numerically wor

surfaces of section in phase space displayed what Poincaré declared to be unable e

are to attempt drawing [6]. For many decades now, a huge amount of work has b

, both numerical and mathematical, on deterministic chaos. However, especially

y degrees of freedom systems, a theoretical explanation of the origin of chaos has b

ng. Homoclinic intersections certainly provide an elegant explanation of the origin

s in both dissipative and Hamiltonian systems. But this constructively applies - thro

ikov’s method - essentially to 1.5 or two degrees of freedom systems. Beautiful theore

xiom A systems [1] and Anosov flows [7] cannot account for the emergence of chao

mical systems of physical relevance. An independent attempt to explain the origin

s in Hamiltonian systems was put forward by N.S.Krylov who resorted to the possibi

entifying a Hamiltonian flow with a geodesic flow in configuration space to try to exp

origin of the dynamical instability (which we nowadays call deterministic chaos) t

d explain the spontaneous tendency to thermalization of many body systems. Krylo
3
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wher of
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eering approach focused on the search for negative curvatures in configuration sp

pped with a suitable metric [8]. Krylov’s work inspired abstract ergodic theory but

o too far to explain the origin of chaos in Hamiltonian dynamical systems. For instan

e case of the already mentioned Hénon-Heiles model, it turns out that no region

tive curvature can be found in configuration space, therefore Krylov’s intuition has b

rded for a long time. However, more recently, on the basis of numerical ”experimen

s been shown that chaos in Hamiltonian flows of physical relevance stems from anot

anism, parametric instability, which will be discussed throughout this paper. T

annian-geometric approach to explaining the origin of chaos in Hamiltonian flow

d on two fundamental elements [10]: i) the identification of a Hamiltonian flow wit

esic flow of a Riemannian manifold equipped with a suitable metric, so that the geod

tions
d2qi

ds2
+ Γijk

dqj

ds

dqk

ds
= 0 .

cide with Newton’s equations

d2qi

dt2
= −∂V (q)

∂qi
.

miltonian flow - of which the kinetic energy is a quadratic form in the velocities, t

=
1

2
aikp

ipk + V (q1, . . . , qN) - is equivalent to the solutions of Newton’s equation

on stemming from a Lagrangian function L =
1

2
aikq̇

iq̇k − V (q1, . . . , qN);

he description of the stability/instability of the dynamics by means of the Jacobi–L

ta (JLC) equation for the geodesic spread measured by the geodesic deviation vec

J (which locally measures the distance between nearby geodesics), which in a para

sported frame reads
d2Jk

ds2
+Rk

ijr

dqi

ds
J j
dqr

ds
= 0 .

e Rk
ijr are the components of the Riemann-Christoffel curvature tensor.

he most natural geometrization of Hamiltonian dynamics in a Riemannian framew

a consequence of Maupertuis least action principle for isoenergetic paths

δ

∫ q(t1)

q(t0)

dt W (q, q̇) = 0 ,

e W (q, q̇) = {[E − V (q)]aikq̇
iq̇k}1/2, which is equivalent to the variational definition

desic line on a Riemannian manifold, a line of stationary or minimum length join
4
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A

ds = 0 .

e subset of configuration space ME = {(q1, . . . , qN) ∈ RN |V (q1, . . . , qN) < E} is gi

on-Euclidean metric gJ of components

(gJ)ij = 2[E − V (q)]aij ,

ce the infinitesimal arc element ds2 = 4[E−V (q)]2dqi dq
i, then Newton’s equations

etrieved from the geodesic equations (1) of the manifold (ME, gJ).

he JLC equation for the geodesic spread can be rewritten as [11]

d2Jk

ds2
+ 2Γkij

dqi

ds

dJ j

ds
+

(
∂Γkri
∂qj

)
dqr

ds

dqi

ds
J j = 0 ,

h has general validity independently of the metric of the ambient manifold.

portantly, there are other Riemannian manifolds, endowed with different metric t

to geometrize Hamiltonian dynamics [11]. Two of these alternatives are concis

ribed in the following. One brings about the standard tangent dynamics equation

esic spread (JLC) equation, whereas the second one has never been investigated hithe

escribe chaos in Hamiltonian flows. This gap is filled in the present work. The cho

ng these manifolds is driven by practical computational reasons as will be discussed

t follows.

WHY A RIEMANNIAN APPROACH TO HAMILTONIAN CHAOS

here are several phenomenological descriptions of chaos in nonlinear dynamical syste

wo-degrees of freedom Hamiltonian flows, Poincaré surfaces of section are very effect

rbitrary number of degrees of freedom, for instance, the development of a continu

ponent in the frequency spectra of the variables of the system is a typical conseque

chaotic dynamics. However, the paradigmatic phenomenological indicator, and qu

ive measure, of chaotic behaviour of a flow is the largest Lyapunov exponent λ1,

cting chaos does not explain its cause. Let us concisely summarize a physicist’s po

iew on what motivates resorting to the Riemannian approach. As mentioned in

duction, the classical explanation of the origin of chaos is based on homoclinic tang

vered by Poincaré and culminated in the Smale-Birkhoff homoclinic theorem. T
5
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rem states that if a diffeomorphism ϕ : M →M of an n-dimensional manifold M ha

rbolic fixed point x̃ with associated stable W s(x̃) and unstable W u(x̃) manifolds t

sect transversely at some point x0 6= x̃ then a hyperbolic invariant set Λ ⊂ M ex

h is invariant under the action of ϕ. A conceptually powerful theorem indeed. Howe

do we constructively apply this theorem to a given Hamiltonian system? The Melni

od provides a constructive way of proving the hypothesis of transversal intersect

een W u(x̃) and W s(x̃) in the Smale-Birkhoff homoclinic theorem. But this requ

nowledge of a homoclinic, or heteroclinic, loop formed by the W s(x̃) and W u(x̃) o

rbolic stationary solution x̃. For Hamiltonian flows of the quasi-integrable type, t

escribed by a Hamiltonian of the form H(α,J) = H0(J) + εH1(α,J), where (α,J)

n-angle coordinates, after the Poincaré-Birkhoff theorem [12] the resonant tori of

rable part H0(J) are broken by H1(α,J) into an even number of fixed points hal

h are hyperbolic and originate heteroclinic loops with unavoidable homoclinic inters

. In any case, the Smale-Birkhoff theorem of course applies to Hamiltonian flows

if from a theoretical physics viewpoint we assume that homoclinic tangles are b

always present in phase space of nonintegrable Hamiltonian systems, this is not v

factory. In fact, it does not provide an explicit evidence of what causes chaos,

s aside any attempt at constructively relating an explanation of the origin of chaos

ay of quantifying its strength through λ1. In this respect, the Riemannian geome

oach to Hamiltonian chaos has some advantages. It provides, loosely speaking, a ”n

explanation of the origin of chaos because a Hamiltonian flow is easily identified w

odesic flow, because the Jacobi-Levi-Civita equation for geodesic spread is a powe

to investigate the stability of a geodesic flow by relating its stability/instability to

ature landscape of the mechanical manifolds, landscape which is shaped by the ph

potential entering the metric. Finally, ”natural” because it makes use of the phys

dinates and momenta without any need to make coordinate transformations like,

nce, to action-angle variables. At the same time, for many-body systems the geome

oach allowed to develop, so to speak, a statistical theory of chaos [13] that can yield

ytical computations of the largest Lyapunov exponent thus providing at the same t

xplanation of the origin of chaos and a constructive method to compute its streng

ther remarkable result brought about by the geometric approach is the formulation o

rential-topological theory of phase transitions. This has been spawned by tackling
6
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corre ing
iltonian dynamical counterpart of a phase transition in the light of the Riemannian

trization of the dynamics. This combination has led to discover that in corresponde

phase transition there are peculiar geometrical changes of the mechanical manifolds t

from changes of their topology. This has paved the way to a topological theory of ph

sitions that goes beyond the existing theories on this topic [11] and that successfu

ies to a broad class of systems, also at small N (systems at nanoscopic and mesoscsco

s), and in the absence of symmetry-breaking.

EISENHART GEOMETRIZATION OF HAMILTONIAN DYNAMICS

is worth summarizing some basic facts of a geometrization of Hamiltonian dynam

h makes a direct and unexpected link between the standard tangent dynamics equatio

to numerically compute Lyapunov exponents, and the JLC equation for the geod

ad [11].

I.1. Eisenhart Metric on Enlarged Configuration Space-Time M × R2

.P.Eisenhart proposed a geometric formulation of Newtonian dynamics that makes u

mbient space, of an enlarged configuration space-time M × R2 of local coordina

1, . . . , qi, . . . , qN , qN+1). This space can be endowed with a nondegenerate pseu

annian metric [14] whose arc length is

ds2 = (ge)µν dq
µdqν = aij dq

idqj − 2V (q)(dq0)2 + 2 dq0dqN+1 ,

e µ and ν run from 0 to N + 1 and i and j run from 1 to N . The relation between

esics of this manifold and the natural motions of the dynamical system is contained

ollowing theorem [15]:

heorem. The natural motions of a Hamiltonian dynamical system are obtained

anonical projection of the geodesics of (M × R2, ge) on the configuration space-ti

× R2 7→ M × R. Among the totality of geodesics, only those whose arc lengths

ive definite and are given by

ds2 = c21dt
2

spond to natural motions; the condition (9) can be equivalently cast in the follow
7
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18)

19)
ral form as a condition on the extra coordinate qN+1:

qN+1 =
c21
2
t+ c22 −

∫ t

0

Ldτ , (

e c1 and c2 are given real constants. Conversely, given a point P ∈M×R belonging t

ctory of the system, and given two constants c1 and c2, the point P ′ = π−1(P ) ∈M×
qN+1 given by (10), describes a geodesic curve in (M × R2, ge) such that ds2 = c21dt

the full proof, see [15]. Since the constant c1 is arbitrary, we will always set c21 = 1

r that ds2 = dt2 on the physical geodesics.

rom (8) it follows that the explicit table of the components of the Eisenhart metri

by

ge =




−2V (q) 0 · · · 0 1

0 a11 · · · a1N 0
...

...
. . .

...
...

0 aN1 · · · aNN 0

1 0 · · · 0 0




, (

e aij is the kinetic energy metric. The Christoffel coefficients

Γijk =
1

2
gim
(
∂gmk
∂qj

+
∂gmj
∂qk

− ∂gjk
∂qm

)
(

e and with aij = δij are found to be non-vanishing only in the following cases

Γi00 = −ΓN+1
0i = ∂iV , (

e ∂i = ∂/∂qi so that the geodesic equations read

d2q0

ds2
= 0 , (

d2qi

ds2
+ Γi00

dq0

ds

dq0

ds
= 0 , (

d2qN+1

ds2
+ ΓN+1

0i

dq0

ds

dqi

ds
= 0 ; (

g ds = dt one obtains

d2q0

dt2
= 0 , (

d2qi

dt2
= −∂V

∂qi
, (

d2qN+1

2
= −dL . (
dt dt

8
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25)

26)
ation (17) states only that q0 = t. The N equations (18) are Newton’s equations,

is the differential version of (10).

he fact that in the framework of the Eisenhart metric the dynamics can be geometri

an affine parametrization of the arc length, i.e., ds = dt, will be extremely useful in

wing, together with the remarkably simple curvature properties of the Eisenhart met

I.1.1. Curvature of (M × R2, ge)

he curvature properties of the Eisenhart metric ge are much simpler than those of

bi metric, and this is obviously a great advantage from a computational point of vi

components of the Riemann–Christoffel curvature tensor are

Rk
ijr =

(
ΓtriΓ

k
jt − ΓtjiΓ

k
rt + ∂jΓ

k
ri − ∂rΓkji

)
. (

e, and after Eq.(13), the only non-vanishing components of the curvature tensor ar

R0i0j = ∂i∂jV (

e the Ricci tensor has only one nonzero component

R00 = 4V (

at the Ricci curvature is

KR(q, q̇) = R00q̇
0q̇0 ≡ 4V , (

the scalar curvature is identically vanishing R(q) = 0 .

I.1.2. Geodesic Spread Equation for the Eisenhart Metric ge

he Jacobi equation (3) for (M × R2, ge) takes the form

∇2J0

ds2
+R0

i0j

dqi

ds
J0dq

j

ds
+R0

0ij

dq0

ds
J i
dqj

ds
= 0 , (

∇2J i

ds2
+Ri

0j0

(
dq0

ds

)2

J j +Ri
00j

dq0

ds
J0dq

j

ds
+Ri

j00

dqj

ds
J0dq

0

ds
= 0 , (

∇2JN+1

2
+RN+1

i0j

dqi
J0dq

j

+RN+1
ij0

dqi
J j
dq0

= 0 , (

ds ds ds ds ds

9
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since Γ0
ij = 0 and Γi0k = 0 it is ∇J0/ds = dJ0/ds, R0

ijk = 0, and ∇J i/ds = dJ i/ds,

accelerating components of the vector field J are found to obey the equations

d2J i

ds2
+

∂2V

∂qi∂qk

(
dq0

ds

)2

Jk = 0 . (

using dq0/ds = 1 one is left with

d2J i

dt2
+

∂2V

∂qi∂qk
Jk = 0 , (

usual tangent dynamics equations. This fact is a crucial point in the developmen

ometric theory of Hamiltonian chaos because there is no new definition of chaos

geometric context. In fact, the numerical Lyapunov exponents computed by mean

(28) already belong to geometric treatment of chaotic geodesic flows.

I.2. Eisenhart Metric on Configuration Space-Time M × R

nother interesting choice of the ambient space and Riemannian metric to reformu

tonian dynamics in a geometric language was also proposed by Eisenhart [14]. If

the description of Hamiltonian chaos in this framework is coherent with the resu

ined by standard treatment based on the tangent-dynamics/JLC equations discussed

receding section has never been investigated before.

his geometric formulation makes use of an enlarged configuration space M × R, w

coordinates (q0, q1, . . . , qN), where a proper Riemannian metric Ge is defined to gi

ds2 = (Ge)µν dq
µdqν = aij dq

idqj + A(q) (dq0)2 , (

e µ and ν run from 0 to N and i and j run from 1 to N , and the function A(q) does

icitly depend on time. With the choice 1/[2A(q)] = V (q) + η and under the conditio

q0 = 2

∫ t

0

V (q) dτ + 2ηt , (

he extra variable it can easily be seen that the geodesics of the manifold (M×R, Ge)

atural motions of standard autonomous Hamiltonian systems. Since
1

2
aij q̇

iq̇j +V (q

here E is the energy constant along a geodesic, we can see that the following relat

s between q0 and the action:

q0 = −2

∫ t

T dτ + 2(E + η)t . (

0

10
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35)
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licitly, the metric Ge reads as

Ge =




[2V (q) + 2η]−1 0 · · · 0

0 a11 · · · a1N
...

...
. . .

...

0 aN1 · · · aNN




, (

together with the condition (31), this gives an affine parametrization of the arc len

the physical time, i.e., ds2 = 2(E+η)dt2, along the geodesics that coincide with natu

ons. The constant η can be set equal to an arbitrary value greater than the largest va

| so that the metric Ge is nonsingular. This metric is a priori very interesting becaus

s to have some better property than the Jacobi metric and than the previous metric

ct, at variance with the Jacobi metric gJ in Eq.(6), the metric Ge is nonsingular on

dary V (q) = E; moreover, by varying the total energy E we get a family of differ

ics gJ , whereas by choosing a convenient value of η, at different values of the energy

ic Ge remains the same. The consequence is that a comparison among the geomet

e submanifolds of (M×R, Ge)—where the geodesic flows of different energies “live”—

ningful. To the contrary, this is not true with (ME, gJ). In some cases, the possibi

aking this kind of comparison can be important. With respect to the Eisenhart me

M × R2 in the previous section, the metric Ge on M × R defines a somewhat ric

etry, for example the scalar curvature of ge is identically vanishing, which is not

of Ge.

the case of a diagonal kinetic-energy metric, i.e. aij ≡ δij, the only non vanish

stoffel symbols are

Γi00 =
(∂V/∂qi)

[2V (q) + 2η]2
, Γ0

i0 = − (∂V/∂qi)

[2V (q) + 2η]
, (

ce the geodesic equations

d2q0

ds2
+ Γ0

i0

dqi

ds

dq0

ds
+ Γ0

0i

dq0

ds

dqi

ds
= 0 , (

d2qi

ds2
+ Γi00

dq0

ds

dq0

ds
= 0 , (

h, using the affine parametrization of the arc length with time, i.e., ds2 = 2(E + η)
11
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(dq0/dt) = 2[V (q) + η] from (30), give

d2q0

dt2
= 2

dV

dt
,

d2qi

dt2
= −∂V

∂qi
, i = 1, . . . , N , (

ectively. The first equation is the differential version of (30), and equations (36)

ton’s equations of motion.

I.2.1. Curvature of (M × R, Ge)

he basic curvature properties of the Eisenhart metric Ge can be derived by mean

iemann curvature tensor, which is found to have the non-vanishing components

R0i0j =
∂i∂jV

(2V + 2η)2
− 3(∂iV )(∂jV )

(2V + 2η)3
, (

ce, after contraction, using G00 = 2V +2η the components of the Ricci tensor are fou

e

Rkj =
∂k∂jV

(2V + 2η)
− 3(∂kV )(∂jV )

(2V + 2η)2
,

R00 =
4V

(2V + 2η)2
− 3‖∇V ‖2

(2V + 2η)3
, (

e4V =
N∑

i=1

∂2V /∂qi 2, and thus we find that the Ricci curvature at the point q ∈M

in the direction of the velocity vector q̇ is

KR(q, q̇) = 4V +Rij q̇
iq̇j (

the scalar curvature at q ∈M × R is

R(q) =
4V

(2V + 2η)
− 3‖∇V ‖2

(2V + 2η)2
. (

I.2.2. Geodesic Spread Equation for the Eisenhart Metric Ge

et us now give the explicit form of Eq.(3) in the case of (M × R, Ge), the enlar

guration space-time equipped with one of the Eisenhart metrics. Since the nonvanish
12
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stoffel coefficients are Γi00 and Γ0
0i, then using the affine parametrization of the arc len

physical time, we obtain

d2Jk

dt2
+

2(∂kV )

2V + 2η

dJ0

dt
+

[
∂2kjV −

4(∂kV )(∂jV )

2V + 2η

]
J j = 0 , (

d2J0

dt2
− 2(∂iV )q̇i

2V + 2η

dJ0

dt
− 2(∂iV )

dJ i

dt
−
[
∂2ijV −

2(∂iV )(∂jV )

2V + 2η

]
q̇iJ j = 0 ,

e the indexes i, j, k run from 1 to N . These equations have not yet been used to tac

iltonian chaos, but are certainly worth to be investigated. As reported in Ref.[

JLC equation in Eq.(7) is rather complicated for the kinetic energy (Jacobi) me

), it considerably simplifies to (28) for (M × R2, ge), and displays an intermed

of complexity for (M × R, Ge) as shown by Eqs.(41). This is related with a differ

ee of ”richness” of the geometrical properties of the respective manifolds. It is theref

rtant to check whether all these geometrical frameworks provide the same informat

t regular and chaotic motions [17–19], a necessary condition which a-priori could

tioned as it was done in Ref.[16] even though the claims of this work have been pro

g in [20].

ORDER AND CHAOS IN A PARADIGMATIC TWO-DEGREES OF FRE

MODEL WITH (M × R, Ge)

he first benchmarking is performed for a two-degrees of freedom system. In this cas

digmatic candidate is the Hénon-Heiles model described by the Hamiltonian

H =
1

2

(
p2x + p2y

)
+

1

2

(
q21 + q22

)
+ q21q2 −

1

3
q32 . (

is case, the JLC equation for the Jacobi metric is exactly written in the form

d2J⊥

ds2
+

1

2

[ 4V
(E − V )2

+
‖∇V ‖2

(E − V )3

]
J = 0 , (

d2J‖

ds2
= 0 (

e the expression in square brackets is the scalar curvature of the manifold (ME, gJ)

e metric tensor whose components are in Eq.(6), J⊥ and J‖ are the components of

esic separation vector transversal and parallel to the velocity vector along the refere

esic, respectively. It is well evident that this scalar curvature is always positive and t
13
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tic motions can only be the consequence of parametric instability due to the variabi

e scalar curvature along the geodesics. At first sight, the scalar curvature of (M×R,
in Eq.(40) can take also negative values as is shown in Figure 1. On the one side t

d add another source of dynamical instability to parametric instability, but, on the ot

the extension of regions of negative curvature depends on the value of the arbitr

meter η that enters the metric Ge, extension that can be arbitrarily reduced making

ribution to degree of chaoticity not intrinsic. In Figure 2 the plane (q1, q2) is taken

ce of section of phase space trajectories when p2 = 0 and p1 > 0.
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1. Configuration space of the Hénon-Heiles model. The dashed lines represent the equipo

oundaries: V (q1, q2) = 0.0833 (cyan); V (q1, q2) = 0.125 (green); V (q1, q2) = 0.1667 (yello

panel: η = 0.045. Right panel: η = 0.1667. The scale of colours represents different inter

lues of the scalar curvature given in Eq.(40).

t the lowest energy, E = 0.0833, when all the motions are regular, the trajectories

d to visit also regions of negative curvature, whereas at higher energies, E = 0.125

0.1667, the chaotic trajectories considered display a large number of intersections

ns of positive curvature. In other words, the role of negatively curved regions does

ar to play a relevant role in determining the chaotic instability of the dynamics.
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0 and p1 > 0. Upper left panel corresponds to E = 0.0833; upper right panel correspond

0.125; lower panel corresponds to E = 0.1667. For all these cases η = 0.0833.

s a matter of fact, the comparison of the results obtained by numerically integrat

tability equations (28), (41), and (43) along with the equations of motion of the Hén

s model, at different energies and initial conditions, show an excellent qualitative

titative agreement. The integration of the Hamilton equations of motion is perform

a symplectic integrator and the stability equations have been integrated with a four

r Runge-Kutta scheme (see Appendix A for details). The choice of the energy val
15
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ons are chosen according to the selections in Ref.[18]. The quantity reported in Figu

d 4 is

λ(t) =
1

t
log

[
‖J̇(t)‖2 + ‖J(t)‖2
‖J̇(0‖2 + ‖J(0)‖2

]
(

e the separation vector J is in turn the solution of the three different stability equatio
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3. Numerical solutions of the tangent dynamics equation (28) (black line) compared to

ion of equation (41) (blue line), and to the solution of equation (43) (red line). Left pa

0.0833, η = 0.0833 and the initial condition is point (a) of Figure 1 of [18]. The dashed gr

is the reference t−1 slope for regular motions. Right panel: E = 0.125, η = 0.0833 and

l condition is point (d) of Figure 3 of [18].

he robustness of the results obtained by means of Eq.(41) for the manifold (M ×R,

respect to different choices of the free parameter η has been checked and confirmed

particular the close agreement between the results obtained with the Eqs.(41) and (

h confirms that chaos stems from parametric instability, because in the latter equat

calar curvature is always positive. The right panel of Figure 3 shows a clear qualita

ement among the three patterns λ(t) but some quantitative deviations that do

ge neither with longer integrations not by changing the value of η in the case of λ

puted with (41). Perhaps such a discrepancy could stem from the inhomogeneity of

tic layer in phase space due to the presence of very small regular islands, inhomogen
16
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rved at higher energy (right panel of Figure 4) when the chaotic layer seems m

ogeneous. The reason why the geometrization of Hamiltonian dynamics by mean

R, Ge) can be of prospective interest relies on its intermediate geometrical ”richne
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4. Numerical solutions of the tangent dynamics equation (28) (black line) compared

olution of equation (41) (blue line), and to the solution of equation (43) (red line). H

0.1667, η = 0.0833 and the initial condition for the left panel is point (a) of Figure 5 of [

for the right panel point (c2) of the same Figure.

n (M × R2, ge) the scalar curvature is always vanishing, the Riemann curvature ten

st the Hessian of the potential and the Ricci tensor has only one non-vanishing com

, to the opposite, on (ME, gJ) the Riemann curvature tensor has O(N4) non-vanish

ponents and at large N the scalar curvature can happen to be overwhelmingly nega

out affecting the degree of chaoticity of the dynamics. The geometry of (M × R,

finitely richer than that of (M × R2, ge) and less complicated than that of (ME, g

efore, and mainly at large N , this framework can offer some computational advant

ore refined investigations about the geometric origin of parametric instability of

esics. Loosely speaking, to give an idea of what a more refined geometrical investigat

t mean, it has been shown [11, 22] that integrability is related with the existence

ng tensor fields on the mechanical manifolds, therefore the degree of breaking of
17
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en symmetries associated with Killing tensor fields could be defined, investigated,

ed with the existence of weak and strong chaos in Hamiltonian flows.

ONE-DIMENSIONAL XY -MODEL IN THE EISENHART METRIC (M ×R,

et us now proceed to investigate how Hamiltonian chaos is described in this geome

ework at a large number of degrees of freedom. This is shown for a specific mo

one-dimensional classical XY model. The reason for choosing this model is tha

a rich variety of dynamical behaviors: at low energy it is equivalent to a collection

ly coupled harmonic oscillators, at asymptotically high energy it represents a set

y rotating spins, at intermediate energies it displays a strongly chaotic dynamics,

essed by the whole spectrum of Lyapounov exponents [21]. Moreover, for this mo

as necessary to introduce an ad hoc adjustment of an otherwise successful geomet

stical model for the analytic computation of the largest Lyapounov exponent [13] carr

the framework (M × R2, ge). It is thus interesting to check whether or not anot

etric framework can allow to fix the problem more naturally.

he 1D XY model, describes a linear chain of N spins/rotators constrained to rotat

ne and coupled by a nearest-neighbour interaction. This model is formally obtai

stricting the classical Heisenberg model with O(2) symmetry to one spatial dimens

potential energy of the O(2) Heisenberg model is V = −I
∑

〈i,j〉
si · sj, where the s

tended only over nearest-neighbour pairs, I is the coupling constant, and each si

modulus and rotates in the plane. To each “spin” si = (cos qi, sin qi), the velo

(−q̇i sin qi, q̇i cos qi) is associated, so that H =
N∑

i=1

1

2
ṡ2i −I

∑

〈i,j〉
si · sj. The Hamilton

is model is then

H(p, q) =
N∑

i=1

p2i
2

+ I
N∑

i=1

[1− cos(qi − qi−1)] , (

canonical coordinates qi and pi are thus given the meaning of angular coordinates

enta. As already mentioned above, this Hamiltonian system has two integrable lim

he low-energy limit it represents a chain of harmonic oscillators, as can be seen
18
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adop e pi
nding the potential energy in power series

H(p, q) ≈
N∑

i=1

[
p2i
2

+
I

2
(qi+1 − qi)2

]
, (

e pi = q̇i, whereas in the high-energy limit it represents a system of freely rotat

cts, since the kinetic energy increases with total energy without bounds, at varia

potential energy which is bounded from above.

.1. Numerical solution of the JLC equation for (M × R, Ge)

et us proceed by comparing the outcomes of the integration of the equations (28)

computed along the flow of the Hamiltonian (46). The standard tangent dynam

tions (28) can be split as

J̇ iq = J ip

J̇ ip = − ∂2V

∂qi∂qj
J jq (

h explicitly read as

J ip (

−I cos(qi−1 − qi)J i−1q + I [cos(qi−1 − qi) + cos(qi − qi+1)]J
i
q −I cos(qi−1 − qi)J i+q

ce the Largest Lyapunov Exponent is worked out by computing

λ1 = lim
t→∞

1

t
log

[ ‖Jq(t)‖2 + ‖Jp(t)‖2
‖Jq(0)‖2 + ‖Jp(0)‖2

]
. (

he same time, the integration of the JLC equations (41), by setting J = (J0, J i),

sing η = E, yields another estimate of the instability exponent through the analog

ition

λG = lim
t→∞

1

t
log

[
‖J(t)‖2Ge

+ ‖J̇(t)‖2Ge

‖J(0)‖2Ge
+ ‖J̇(0)‖2Ge

]
. (

have solved the equations of motion of the 1D XY model (setting I = 1) and

ent dynamics equations (49) by using a bi-lateral symplectic algorithm [23]. The J

tions (41) have been solved by using a third-order predictor-corrector algorithm.

c boundary conditions have been considered. Random initial conditions have b

ted by taking the qi randomly distributed in the interval [0, 2π], and by taking th
19
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sian-distributed and suitably scaled so as to complement with the kinetic energy

rence between the total energy initially set and the initial value of the potential ene

lting from the random assignment of the qi. Figure 5 shows the comparison between

lts obtained at different values of the energy density ε = E/N for λ1(ε) and λG(ε) defi

e. It is well evident that the results so obtained are globally in very good agreeme

nergy densities in the interval between ε ' 0.2 and ε ' 100 the agreement is perf

eas at lower energy densities, below ε ' 0.2, small discrepancies are found which se

to a slower time-relaxation of λG(t) with respect to λ1(t).

f course, an unavoidable check of consistency has to be performed on an integra

mics. This check has been performed on the flow of the Hamiltonian (47). The resu

ined with the equations (28) and (41) are reported in Figure (6). As expected

chaotic dynamics, it is found that λ1(t) decays as a straight line of slope −1 in dou

rithmic scale, and λG(t) decays with an oscillating pattern with a t−1 envelope. T

been checked at different N and energy values. Some cases are reported in Figure 6
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5. Lyapunov Exponents λ1 (cyan circles) and λG (green triangles) versus the energy den

a system of N = 150 spins. The parameter η has been set as η = E.
20



FIG. and

cyan hed

line i

VI.

In un-

der s y -

mea pic

man ion

of th ion

wher d

wher the

aver ble
���� ���� � �� ��� ����

��-�

�����

�����

�����

�

��

���

�

λ

6. Lyapunov Exponents λ1(t) (red, green and black lines) versus λG(t) (blue, magenta

lines) for a system of N = 2, 100, 1000 harmonic oscillators, respectively. The black das

s the t−1 reference slope for a regular dynamics. Here ε = 1 and η = E.

THE EFFECTIVE SCALAR MODEL FOR THE JLC EQUATION

[13] an effective scalar approximation of the JLC equation (7) has been worked out

ome suitable hypothesis. In a nutshell, at largeN under an hypothesis of quasi-isotrop

ning that a coarse-grained mechanical manifold appears as a constant curvature isotro

ifold - with broad spatial spectrum of curvature variations at a finer scale, the evolut

e norm of the geodesic separation vector is described by a stochastic oscillator equat

d2ψ(s)

ds2
+
[
〈kR〉+ 〈δ2kR〉1/2η(s)

]
ψ(s) = 0

e η(s) a δ-correlated gaussian stochastic process of zero mean and unit variance, an

〈kR〉 =
1

N − 1
〈KR〉

〈δ2kR〉1/2 =
1

N − 1
(〈K2

R〉 − 〈KR〉2)

e KR is the Ricci curvature of the mechanical manifold under consideration, and

ages are meant along a reference geodesic or as microcanonical averages on suita
21
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gy surface ΣE. By putting k0 = 〈kR〉, σ = 〈δ2kR〉1/2,

τ1 =
〈 dt
ds

〉 π

2
√
k0 + σ

τ2 =
〈 dt
ds

〉k1/20

σ

(

hence defining τ−1 = 2(τ−11 + τ−12 ), an analytic expression for a geometric Larg

unov Exponent is given by [13]

λ(k0, σ, τ) =
1

2

(
Λ− 4k0

3Λ

)
,

Λ =


σ2τ +

√(
4k0
3

)3

+ σ4τ 2




1/3

. (

can be applied to the geometrization on the manifold (M × R, Ge) of Hamilton

mics. In this case the Ricci curvature reads as

R(s) =
1

2(E + η)
∆V − 3‖∇V ‖2

2V + 2η
+
∂2kjV q̇j q̇k

2V + 2η
− 3∂jV q̇j∂kV q̇

k

(2V + 2η)2

)
≡ KR(t)

2(E + η)
(

using the arc-length parametrization ds2 = 2(E + η)dt2 with physical time, we

pute by means of Eqs.(53) an analytic prediction of λG(ε) for (M ×R, Ge) and comp

the outcome obtained for (M × R2, ge).

he first step consists in computing the average Ricci curvature and its variance of the

ifolds at different values of the energy density. We can limit these computations to

e choice of N for which the asymptotic values of 〈kR〉 and 〈δ2kR〉 are already attai

[13]). Moreover, for non-integrable systems, after the Poincaré-Fermi theorem, all

tant energy surface is accessible to the dynamics, and since chaos entails phase sp

ng, with sufficiently long integration times we obtain good estimate of microcanon

ages of the observables of interest. Figures 7 and 8 provide the comparison betw

and 〈δ2kR〉 for the two manifolds.
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7. Average of Ricci curvature 〈KR〉 of M × R2 (red squares) and of M ×R (green triangl

ctively, vs energy density ε for a system of N = 150. Here η = E.

omewhat unexpectedly these average quantities are found to be practically coincide

it is not surprising that the application of the effective scalar model for the JLC equat

alled above - yields outcomes in close agreement, as shown by Figure 9.
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8. Average variance of the Ricci curvature σK of M × R2 (red squares) and of M ×R (gr

gles) vs energy density ε for a system of N = 150 particles. Here η = E.
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9. Geometric Lyapunov Exponents λ λ worked out for M × R2 (red squares) and for M

n triangles) vs energy density ε, for a system of N = 150 particles. Here η = E.
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10. Comparison between the two Geometric Lyapunov Exponents λge (red squares),

n triangles) and the standard numerical computation of λ1 (cyan circles) vs energy densi

system of N = 150. Here η = E.
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he comparison among the outcomes λge(ε), λGe(ε) of the ”statistical” formula (53),

standard computation of λ1(ε) are displayed in Figure 10. By standard computat

(ε) we mean computing the average rate of the exponential growth of the norm of

ent vector in Eq.(48) as per Eq.(45). The discrepancy, observed approximately for

nterval between 0.2 and 2, has been given an explanation in Ref.[13] where it has b

n that the numerical distribution of the Ricci curvature of M × R2 actually displ

n-vanishing skewness with an excess of negative values with respect to a Gauss

ibution. This information is lost in the effective scalar model for the JLC equation ab

lled. An ad hoc displacement of 〈kR〉 to empirically account for the excess of nega

es of KR allowed to exactly retrieve the pattern of λ1(ε) by means of the scalar effec

el. A-priori the use of (M × R, Ge) could have fixed the problem more naturally b

pointedly, this has not been the case thus calling for an improvement of the effec

r model, possibly taking into account higher order moments of the Ricci curvat

ibution. Finally, it is worth to mention that the potential function of the Hamilton

has a large number of critical points qc, that is such that ∇V (q)|q=qc = 0 [11]; near e

cal point, in Morse chart one has V (q) = V (qc)−
k∑

i=1

q2i +
N∑

i=k+1

q2i where k is the Mo

x of a given critical point. Now, the neighborhoods of critical points are enhancer

s because using the expression for V (q) in Morse chart together with ∇V (qc) = 0, b

tions (28) and (41) diagonalize with k unstable components in proximity of a crit

t of index k. Morse theory relates critical points of a suitable real valued function (h

potential function) with topological properties of its levels sets, here of equipoten

ifolds in configuration space. In other words, the 1D XY model highlights the neces

king into account also some topological property of the mechanical manifolds in or

prove the effective scalar model for the JLC equation.

DISCUSSION

ummarizing, the geometrization of Hamiltonian dynamics within the framework of

guration space-time equipped with an Eisenhart metric, (M×R, Ge), provides a corr

nction of regular and chaotic motions and it is in qualitative and quantitative agreem

the two other geometrization frameworks reported above. As already remarked,

ntage of this framework could be that of an intermediate level of complexity/richnes
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eometry with respect to (ME, gJ) and (M ×R2, ge) which could be useful in perform

elaborated investigations about the relation between geometry and chaos.

et us conclude with an outlook at a prospective extension to generic dynamical syste

e geometric description of chaos in systems of differential equations

ẋi = f i(x1, . . . , xN) = f i(x) (

is, also in the case of dissipative systems. By differentiation with respect to time

55) we get a new system of equations

ẍi =
N∑

j=1

∂f i(x)

∂xj
ẋj =

N∑

j=1

∂f i(x)

∂xj
f j(x) (

can be derived from the Lagrangian function

L(x, ẋ) =
N∑

i=1

[ẋi − f i(x)]2 (

the usual Lagrange equations. To this Lagrangian L(x, ẋ) one associates a me

tion homogeneous of degree one in the velocities

Λ(xa, ẋa) = L(xi, ẋi/ẋ0)ẋ0 , a = 0, 1, . . . , N ; i = 1, . . . , N (

lving an extra velocity ẋ0; through this metric function a metric tensor expressed as

gab(x, ẋ) =
1

2

∂2Λ2

∂ẋa∂ẋb
(

ides the tangent bundle of the configuration space of the system (55) with a Finsler

ture. The geodesics of this space, minimizing the functional

∫ τ1

τ0

Λ(xa, ẋa)dτ , are gi

0, 24]
d2xa

ds2
+ γabc(x, ẋ)

dxb

ds

dxc

ds
= 0 (

e γabc(x, ẋ) are the connection coefficients derived from the velocity dependent me

, ẋ), and coincide with the solutions of Eqs.(56). Then a geodesic deviation equatio

ed also on Finsler manifolds and relates stability/instability of the geodesics with

ature properties of the space [10]. This approach certainly deserves to be investiga

ckle chaotic dynamics of dissipative systems with the same methodological appro

essfully applied to Hamiltonian systems.
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PPENDIX A

remark about numerical integrations.

order to faithfully represent the true trajectories of a Hamiltonian flow by me

umerical pseudo-trajectories one has to resort to symplectic algorithms. Symple

rithms compute the time evolution of the coordinates, that is {pi(t), qi(t)} → {pi(
qi(t+ ∆t)}, by performing a canonical transformation at each time step [25], theref

he Poincaré invariants in phase space are conserved, in particular energy conservat

phase space volumes conservation (Liouville theorem) are fulfilled. Energy fluctuati

E can be made arbitrarily small by reducing the integration time step. Any ot

of integration scheme, no matter if of high order, would not faithfully represen

iltonian flow.

ymplectic algorithms are mappings producing pseudo orbits in phase space which, a

er’s interpolation theorem [26, 27], are homeomorphic to true phase space trajecto

n homeomorphism which can be made arbitrarily close to the identity according to

e of ∆t.

he simplest one is the leap-frog scheme which, for Hamiltonians of the form

H(p, q) =
N∑

i=1

p2i
2

+ V (q) (

s as

qi(t+ ∆t) = qi(t) + ∆t pi(t)

pi(t+ ∆t) = pi(t)−∆t∇iV [q(t+ ∆t)] .
(

he precision of this integration scheme is considerably improved by resorting to a sec

r bilateral symplectic algorithm [23] which takes into account the exchangeability of
27
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64)
)} and {qi(t)} under a suitable canonical transformation, it explicitly reads as

(q(0),p(0)) = [q(t),p(t)]

q
(1)
i = qi(t)

p
(1)
i = pi(t)−

1

2
∆t∇iV

[
q(1)
]

q
(2)
i = q

(1)
i + ∆t p

(1)
i

p
(2)
i = p

(2)
i −

1

2
∆t∇iV

[
q(2)
]

p
(3)
i = p

(2)
i

q
(3)
i = q

(2)
i +

1

2
∆t p

(3)
i

p
(4)
i = p

(3)
i −∆t∇iV

[
q(3)
]

q
(4)
i = q

(4)
i + ∆t p

(3)
i

[q(t+ 2∆t),p(t+ 2∆t)] = (q(4),p(4)) .

(

or what concerns all the versions of the JLC equations, independently of the me

, these are linear differential equations for the components of the geodesic separat

or, therefore any standard integration scheme is appropriate, e.g. like Runge-Kutta

ictor-corrector algorithms. Moreover, the JLC equations on the manifolds (ME, gJ)

R, Ge) contain both first and second order derivatives of their solutions preventin

ment with symplectic integrators for these equations.

PPENDIX B

he standard operational way to detect chaos and to quantify its strength is through L

v characteristic exponents. A trajectory is said to be chaotic if its (largest) Lyapu

nent λ1 is positive. It is customary to say that λ1 is an asymptotic quantity beca

athematical definition relies on Oseledeč’s multiplicative theorem [28]. Let us quic

ll why.

or a generic flow ϕt : M → M on a manifold M , given an invariant measure, µ,

ting by dϕtx : TxM → T(ϕtx)M its tangent dynamics, Oseledeč’s theorem ensures t

M1, ∀e ∈ TxM (e 6= 0), with M1 ⊂M and such that µ(M1) = 1, the quantity

λ(x, e) = lim
1

ln ‖ dϕtx(e)‖ , (

t→∞ t

28
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whil of

ξ(t). rix

exist tor
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prob

H for
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refer by
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any and
h is independent of the metric of M , exists and is finite. More explicitly, let J(x)

Jacobian matrix of the Hamiltonian flow ϕt at the point x = (p1, . . . , pN , q1, . . . , q

oting by ξ the variation vector, the tangent dynamics dϕt is described by

dξi
dt

= Jik(x(t))ξk .

iori, the largest positive eigenvector of the Jacobian matrix could give the local va

1, however this possibility is ruled out by the fact that J : TxM → T(ϕtx)M is not

morphism of a vector space. In other words, we do not know how the reference fram

ge going from TxM to T(ϕtx)M unless a connection on M is given. Thus we have

truct an endomorphism of, say, TxM . This proceeds as follows. Take a vector ξx ∈ T
its transformed ξ(ϕtx) ∈ T(ϕtx)M ; notice that

〈ξ(ϕtx), J ξx〉 = 〈J∗ξ(ϕtx), ξx〉

that the product appearing at the left-hand side belongs to T(ϕtx)M , while the prod

e right-hand side necessarily belongs to TxM , i.e., J∗ξ(ϕtx) ∈ TxM , and in gen

x)‖ 6= ‖ξx‖, whence J∗ 6= J−1. Therefore J maps the tangent vectors forward in ti

e J∗ maps these vectors backward in time but not retracing the forward evolution

Having defined G =
n∏

i=1

Ji(ϕ
i−1x), Oseledeč’s theorem states that the limiting mat

Λx = lim
n→∞

(G∗G)1/2n

s and is finite, and thus for any n the product (
n∏

i=1

J∗i )(
n∏

k=1

Jk) maps an arbitrary vec

TxM into a vector ξnx ∈ TxM , i.e., into the same tangent space TxM . Thus an eigenva

lem for Λx is well defined in the vector space TxM .

aving derived the tangent dynamics equation (28) - which is used to compute λ1

iltonians of the form (64) - by means of the JLC equation for the Eisenhart me

× R2, means having recognized its covariant nature. This means that the way

ence frames change going from TxM to T(ϕtx)M is automatically taken into account

Levi-Civita connection of the manifold M × R2. As a consequence, there is no lon

need to invoke the asymptotic property of λ1 which is also locally well defined
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H. Poincaré, Les Méthodes Nouvelles de la Mécanique Celeste, (Blanchard, Paris, 1987),

3, p.389.

D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, P

Steklov Math. Inst. 90, 1-235 (1967).

N. S. Krylov, Works on the Foundations of Statistical Physics, (Princeton University Pr

Princeton, 1979).

The natural and elegant geometric setting of Hamiltonian dynamics is provided by symple

geometry. This geometrical framework is very powerful to study, for example, symmetr

However, symplectic manifolds are not endowed with a metric, and without a metric we

not know how to measure the distance between two nearby phase space trajectories and t

to study their stability/instability through the time evolution of such a distance.

M. Pettini, Geometrical hints for a nonperturbative approach to Hamiltonian dynamics, P

Rev. E 47, 828 (1993).

M. Pettini, Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics, I

Series n.33, (Springer, New York, 2007).
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