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Abstract – A Bidirectional Reflectance Distribution Function (BRDF) catalog of different crops (mainly wheat, alfalfa, sunflower and maize)

was acquired during the whole crop cycles in 1997 (ReSeDA experiment). This was achieved using the airborne POLDER sensor. Data were

thus available in four wave bands (10 or 20 nm width) centered on 443 nm, 550 nm, 670 nm and 865 nm. The aim of this study is to compare the

ability of BRDF models to accurately fit and extrapolate POLDER BRDF data for a normalization process. We considered linear or semi-linear

BRDF models that describe the BRDF with few parameters (3 to 6) and allow fast inversion procedures. We first developed two linear BRDF

models (FLIK, Flexible Linear Kernels and GEN, generic model), and compared them to existing ones in the literature. The results are discussed

as a function of the number of directional data and their distribution in the hemisphere for each acquisition date.

remote sensing / linear BRDF models / inversion

Résumé – Évaluation de modèles linéaires à noyaux de BRDF pour la normalisation des données aéroportées POLDER de la campagne

Alpilles/ReSeDA. Un catalogue de données de réflectance bidirectionnelle (BRDF), acquis avec le capteur aéroporté POLDER, correspondant à

plusieurs types de cultures (principalement du blé, de la luzerne, du tournesol et du maïs) a été acquis lors de la campagne Alpilles/ReSeDA, tout

au long des cycles de cultures en 1997. Des données de réflectance bidirectionnelle sont donc disponibles dans quatre bandes, larges de 10 à

20 nm et centrées sur 443 nm, 550 nm, 670 nm, 865 nm. Le but de cette étude est de comparer l’aptitude des modèles linéaires de BRDF à estimer

et extrapoler précisément les données de réflectance POLDER, dans le cadre d’un processus de normalisation. Nous considérons des modèles li-

néaires ou semi-linéaires qui permettent de décrire la BRDF avec peu de paramètres (entre 3 et 6) ainsi que des procédures d’inversion très rapi-

des. Nous présentons d’abord le développement de deux modèles: FLIK, Flexible Linear Kernels, et GEN un modèle générique, puis les

comparons avec des modèles existants dans la littérature. Pour chaque date d’acquisition, les résultats sont discutés en fonction du nombre de

données bidirectionnelles diponibles pour l’inversion, ainsi que de leur répartition dans l’hémisphère.

télédétection / modèles de BRDF linéaires / inversion

1. INTRODUCTION

Remote sensing in the optical domain is one of the main

tools that quantify the state variables and the processes occur-

ring at the Earth’s surface. Seasonal observations are indeed

required to evaluate canopy temporal changes. Further, a

global coverage is also required in many cases to map the

characteristics of the canopy. For example, they are neces-

sary for global circulation models to evaluate the energy and

mass fluxes on a global scale. Large-scale sensors such as

NOAA/AVHRR, POLDER, VEGETATION, MODIS,

MISR, MERIS..., are particularly well suited to addressing

this issue. The interpretation of the temporal profile recorded

over a given area and derived from these sensors requires that
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the atmospheric effects and anisotropy of the target have to

be taken into account, or at least corrected. This leads to the

development of the so-called compositing algorithms that

provide a radiometric signal for which the canopy informa-

tion is enhanced and the atmospheric and bi-directional ef-

fects are minimized. These algorithms consist of normalizing

the reflectance data. This could allow one to ensure the com-

parison of remote sensing data from one sensor to another, as-

suming that spectral considerations also have to be taken into

account [7]. Compositing algorithms are divided into two

groups:

– Maximum Composite Value (MVC), [3, 5, 17]: it is a sim-

ple method based on the use of vegetation indices (VIs).

VIs are combinations of reflectances in different bands,

and particularly in the red and near infrared domains.

These combinations enhance the effect of the vegetation as

compared with the soil. The MVC technique consists of se-

lecting the maximum VI value over a determined period

(usually a decade) for a given pixel to avoid the effects of

atmosphere and clouds. Compositing algorithms do not ac-

count for changes in VIs as a result of sensor degradation,

solar zenith angle, and/or soil background collected at

near-nadir view angles under cloud-free, clear atmosphere

conditions [10]. Therefore, although MVC techniques are

very fast, they are not a good way to normalize data from

bi-directional effects.

– BRDF linear models (or kernel-driven models) [13, 21,

23]: this technique consists of inverting a simple BRDF

model on a selection of bidirectional reflectance data.

Once the model parameters are retrieved, the model can be

run in the forward direction to estimate the reflectance in

given directions, or the spectral albedo. As compared with

VIs, BRDF models provide a normalized variable that cor-

responds to the same viewing and solar conditions. This

technique is also fast since it resumes with the computation

of a pseudo inverse matrix.

This study is dedicated to the comparison of ten BRDF

models. The comparison was performed in terms of the

model’s ability to accurately fit Top Of Canopy (TOC)

bidirectional reflectance data. The extrapolation capacities of

the model were also investigated when inverted on a selected

amount of directions. This was performed using POLDER

data of the Alpilles/ReSeDA campaign. Two linear models

were also developed.

2. MATERIALS AND METHODS

2.1. The Alpilles/ReSeDA BRDF data set

Airborne BRDF data were acquired during the whole

Alpilles/ReSeDA campaign [1], for 16 acquisition dates dis-

tributed throughout the year. The acquisition was performed

for two hours at the solar noon. Images were corrected from

instrumental, geometrical and atmospheric effects by the

CESBIO [12]. They were delivered in a Lambert II projection

at a 20 m spatial resolution. Five flight lines were performed

during the acquisition of the BRDF. In this study, we only fo-

cused on the 37 agricultural fields that were monitored by

ground measurements. Each field was located on the image

using a precise map and GIS, in the same projection as

POLDER images. Edges were eliminated to avoid mixed pix-

els. For each field and image, the geometrical correction was

refined using correlation between POLDER NDVI and SPOT

NDVI, since SPOT images were more accurately geometri-

cally corrected. The extracted field BRDF corresponds to the

average reflectance value over the inside pixels of the sam-

pled crop. An example of the sampling for one crop at one

date is given in Figure 1. There is one flight line close to the

principal plane and another one close to the perpendicular

plane. The three other lines are further from the principal

plane. Using this sampling, it is possible to test kernel-driven

models on the accuracy of the fitting, as well as on their abil-

ity to extrapolate reflectance in flight lines other than the one

used for the inversion.

2.2. Kernel-driven BRDF models

Kernel-driven models are generally empirical or semi-em-

pirical and describe the directional variation of the

reflectance with few parameters (3 to 6). The main advantage

is that the inversion process is reduced to a pseudo-matrix in-

version. This allows operational processing of remote sens-

ing images. For the numerous models existing in the

literature (see the review of [21]), bidirectional reflectance

(ρ) is expressed as a linear combination of kernels (K) that
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Figure 1. Polar representation of POLDER BRDF sampling. Sun po-

sition is located with a �, the relative azimuth angle is represented by

the spokes, circles correspond to zenith angles. Flight lines are repre-

sented with different symbols.



are functions of the view (θ
v
) and solar (θ

s
) zenith angles and

the relative azimuth angle (ϕ) between the sun and the sensor

[15, 22, 23]

ρ θ θ ϕ λ α λ θ θ ϕ( , , , ) ( ) ( , , ).
v s i

i 1

n

i v s
K=

=
∑ (1)

The coefficients α
i
depend on the spectral band λ and on

the type of canopy observed by the sensor; n is the number of

model parameters. When considering a set of bidirectional

reflectance measurements, the model can be inverted using

pseudo matrix inversion:

[ ] [ ][ ] [ ] [ ] [ ].
–ρ α α ρ= ⇒ =K K
1

(2)

In this paper, we consider ten BRDF models:

– A very simple model that consists of taking the nadir

reflectance ρ
o

as an estimate of any bidirectional

reflectance.

– Models from the literature: MRPV [6], Walthall (non-re-

ciprocal form) [20], Roujean [16], and Li-dense/

Ross-thick (Li-Ross) [21].

– Two models that we developed: GEN (Sect. 2.2.1) and

FLIK (Sect. 2.2.2). The FLIK model can be derived in

4 models differing by their number of parameters.

Table I presents a comparison of the model’s properties.

The number of model parameters is an important feature

since, depending on cloud occurrence and the latitude of ob-

servation, the inversion process may be performed on very

few bidirectional reflectance data. Considering that for large

swath sensors, reflectances are acquired at a quasi-constant

zenith solar angle for a given pixel, the reciprocity property is

interesting to extrapolate reflectance for other solar positions.

This could allow, on one hand, the normalization of the data

acquired by the sensor for the same view and solar position,

and on the other hand, the estimation of the albedo integrated

value during the day. Some models also take into account the

hot spot feature, that is characterized by a higher reflectance

level in the principal plane with a peak in the solar direction

[11]. This may be useful if the sensor is able to sample

reflectance in the principal plane, like the POLDER instru-

ment.

2.2.1. The GENeric model (GEN)

The generic model is based on the idea that there is a “ge-

neric” shape of the BRDF for any kind of surface. To accu-

rately fit the BRDF of a given area, the generic shape can be

shifted by multiplying it by a factor and/or adding an offset.

The generic shape was first determined by using the database

provided by [2]. It corresponds to various canopy BRDF

(about 350) acquired by the POLDER instrument from No-

vember 1996 to June 1997. The MRPV model was inverted to

get the 3 parameters α
i
(λ) for each pixel and acquisition date

in the four POLDER bands. The MRPV was chosen since it is

one of the most accurate models [22, 23]. The root mean

square error between the measured BRDF and the one esti-

mated after MRPV inversion is less than 0.05 for the whole

database. The “generic” shape is then obtained by averaging

the 3 MRPV parameters over all the situations described in

the database:

ρ θ θ ϕ λ α λ θ θ ϕ
GEN v s i

i 1

3

MRPV

v s
K

i

( , , , ) ( ) ( , , )=
=
∑ (3)

where α
i
(λ) are the 3 averaged MRPV parameters (over all

the pixel/date situations), K
i

MRPV
are MRPV kernels and ρ

GEN

is the “generic” BRDF. The bidirectional reflectance ρ mod-

eled with the GEN model is then expressed as:
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where a(λ) and b(λ) are the GEN model parameters.

Inverting the GEN model therefore consists of computing

the linear regression coefficients (multiplying factor a and

offset b) from the measured BRDF and the generic one.

2.2.2. The Flexible Linear Kernel model (FLIK)

A majority of BRDF models are made up of three kernels.

Adding more kernels should increase the accuracy. The FLIK

model is based on this idea, and we thus investigated the pos-

sibility of choosing the number of parameters (from 3 to 6).

To determine the corresponding kernels, we used neural net-

works. This was performed in three steps:

(1) Simulation of a synthetic data set, using four models in

four wave bands (green, red, near infrared and middle in-

frared): SAIL [18, 19], Hapke’s model [9], MRPV, and

5-scale [4]. m=427 situations were thus simulated for

p=364 combinations of view and solar angles. This can

be resumed in a reflectance matrix  ρ
m, p

.

(2) Singular Value Decomposition [8] of the reflectance ma-

trix: the reflectance matrix is decomposed into a product

of three matrices:

     ρ
m, p m, k k, k k, p

U V= Ω (5)

where, due to the reflectance matrix construction (m situ-

ations × p angle combinations),  U
m, k

depends only on

the spectral band and canopy,  Ω
k, k

is the singular

value matrix that is diagonal and gives the variance ex-

plained by the kernel k. The product   U
m, k k, k

Ω
gives the FLIK parameters α

i, i=1...k
.  V

k, p
depends only

on viewing and solar geometry and corresponds to the

value of FLIK kernels for each of the 364 angle combina-

tions.
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Table I. Comparison of BRDF model properties.

Model Nb of parameters Reciprocal Hot spot Approach

Nadir

Walthall

MRPV

Roujean

Li-Ross

GEN

FLIK3

FLIK4

FLIK5

FLIK6

1

3

3

3

3

2

3

4

5

6

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Empirical

Empirical

Semi-empirical

Semi-empirical

Semi-empirical

Semi-empirical

Semi-empirical

Semi-empirical

Semi-empirical

Semi-empirical

pk,kk,km,m,p VU Ω=ρ



(3) Calibration of artificial neural networks (ANN) with the

matrix  V
k, p

to get FLIK kernels. 4 back-propagation

neural networks are considered, with two hidden layers

(5 neurons, k neurons, k = 3, ..., 6). The learning rule is

the Levenberg/Marquardt algorithm. ANN inputs are:

cos(θ
s

+ θ
v
), cos(θ

s
– θ

v
), cosϕ, that make FLIK recipro-

cal by construction. The singular values show that 90%

of the variance is explained with the first three kernels

(Tab. II).

Once the ANNs are calibrated, the kernel values are com-

puted by using view and solar directions of reflectance mea-

surements as inputs. The inversion process is performed as

for any linear BRDF model.

3. RESULTS AND DISCUSSION

The 10 BRDF models were first tested in terms of accu-

racy to fit the reflectance data on the whole POLDER sam-

pling. Then, we tested their extrapolation capacities by

inverting them on a selected amount of data (perpendicular or

principal plane) and running them in the forward direction to

restore the whole sampling. Finally, we considered the

model’s performances as a function of the number of data

available for the inversion. Performances were evaluated in

terms of Root Mean Square Error (RMSE). As the solar angle

value remained quite constant for each POLDER acquisition

date (standard deviation less than 2
o
), we only investigated

the extrapolation capacity for view angles. Results are shown

as a function of the date of acquisition, the sampling, or the

waveband, and are computed for the 37 considered crops.

3.1. Accuracy of the fitting

In this section, the models were inverted using the BRDF

sampled in all directions. Table III shows the results obtained

for the 10 models as a function of the wavebands, for all the

16 dates. RMSE are of the same order in the three visible

bands, and higher in the near infrared, since the reflectance

level at 865 nm increases. The Nadir model performed quite

badly, with a RMSE of about twice the lowest value. This

demonstrates the need for models that take into account the

canopy reflectance anisotropy. The performances of the mod-

els from the literature were very similar, the MRPV model

being slightly better. The FLIK model is also accurate, espe-

cially when the number of parameters is higher than 4 since

more than 95% of the BRDF can be described (Tab. II). The

GEN model is not as good at short wavelengths where atmo-

spheric effects are significant. As it is less flexible than the

other models (only 2 parameters and a generic directional

variation), it may be more sensitive to residual directional at-

mospheric effects.

Figure 2 shows the evolution of the RMSE as a function of

the acquisition date for the Nadir, MRPV, FLIK6 and GEN

when considering all the wavebands together. The same evo-

lution is observed for all the models: the RMSE is maximum

for the day of experiment 541. For this day, the POLDER im-

ages were contaminated by clouds. The evolution is therefore

mainly due to the image quality. In the rest of the study, re-

sults are presented for the day of experiment 555 (July the

8th), for which a good image quality is observed. Only the

865 nm waveband is considered since the same behavior is

observed for the other channels, with lower RMSE levels.
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Table II. Cumulative percentage of variance explained by the FLIK

kernels.

Kernel number % information

1

2

3

4

5

6

70.7

82.4

88.8

93.5

96.9

100

Table III. RMSE between measured and estimated directional

reflectance, as a function of POLDER wavebands, for ten BRDF

models. The inversion is performed on all sampling directions. The

16 dates are considered all together.

Model 443 nm 550 m 670 nm 865 nm

Nadir

Walthall

MRPV

Roujean

Li-Ross

GEN

FLIK3

FLIK4

FLIK5

FLIK6

0.035

0.016

0.017

0.018

0.018

0.028

0.018

0.017

0.015

0.015

0.039

0.018

0.017

0.019

0.018

0.020

0.018

0.018

0.016

0.016

0.039

0.017

0.016

0.018

0.018

0.017

0.018

0.018

0.016

0.015

0.059

0.028

0.027

0.028

0.029

0.029

0.028

0.028

0.025

0.025

Figure 2. Evolution of the RMSE as a function of the acquisition date

(logarithmic scale). Day of experiment is day of the year for year

1996, and day of the year +366 for year 1997. Wavebands are all con-

sidered together.



3.2. Extrapolation capacities

In this section, for day 555 and the NIR band, two combi-

nations of sampling inversion and sampling reconstruction

are considered:

(1) Inversion near the principal plane sampling. Reconstruc-

tion on all sampling directions of the 5 flight lines.

(2) Inversion on the perpendicular plane sampling. Recon-

struction on all sampling directions of the 5 flight lines.

Model inversion was performed if more than

6 bidirectional reflectance data were available. Considering

the reconstruction in all sampling directions ((1) and (2)), the

MRPV and GEN performed the best while the Nadir gave the

highest RMSE (Fig. 3). The error is increased when the inver-

sion was performed on the perpendicular plane. This is due to

a low number of bidirectional reflectance data in this plane

(on average, 9 data against 16 data near the principle plane).

The more parameters you have when few data are used for the

inversion, the better the fitting, but the extrapolation capaci-

ties are not so good. The increase of the RMSE may therefore

become important for the FLIK models with more than 3 pa-

rameters. Although it does not take into account the hot spot

feature, the Walthall model’s performances near the principal

plane are satisfactory since the hot spot peak was very rarely

sampled during the ReSeDA campaign.

3.3. Impact of the number of bidirectional data

available for the inversion

Figure 4 investigates the impact of the number of data

available for the inversion of the two best models (the MRPV

and GEN), and the Walthall and FLIK6 near the principal

plane (reconstruction in all sampling directions). The

16 dates are taken into account to avoid particular situations.

The results show that the number of sampling directions has

an influence on the FLIK6 model, as it has been observed in

Section 3.2. FLIK6 requires more than 12 directional data to

get the same performances as the other models. The number

of directions is, however, not the only limiting feature: the di-

rections themselves as well as the state of the surface (bare

soil, limited or high crop development) may also have an in-

fluence on the results: taking the MRPV model as an exam-

ple, for some cases, higher RMSE are observed when invert-

ing on 14 data instead of 6.

4. CONCLUSIONS

This study is dedicated to the comparison of kernel-driven

BRDF models using the experimental data set of the

Alpilles/ReSeDA campaign. This data set was interesting

since it corresponds to quite full bidirectional sampling of the

reflectance as well as providing the BRDF of 37 fields (4 crop

types) on 16 dates during the year. This allows the compari-

son of the models in terms of estimation accuracy as well as

extrapolation capacities. The MRPV, and the generic model

we developed performed slightly better than the others. Con-

versely, the results for the FLIK model with more than 4 pa-

rameters are not satisfactory when few data are available for

the inversion. However, model’s extrapolation capacities de-

pend not only on the number of directional data used for the

inversion, but also on the nature of the sampled directions or

the type of the observed surface. In this study we were not

able to investigate solar extrapolation capacities, since data

were acquired at constant sun zenith angles. This has already

been performed on a simulated data set by [22] who demon-

strated that the Walthall model was not accurate as compared

with the other models we studied. Further validations should

be performed on experimental data sets. The use of the

MRPV or GEN models to get normalized products from

POLDER data is thus recommended. This could allow hemi-

spherical reflectance estimates that are of great importance

for characterizing the surface albedo [14, 22, 23].
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rithmic scale). The reconstruction is performed on all sampling direc-
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Figure 4. RMSE at 865 nm for day 555, as a function of number of

sampling directions available.
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